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Contact problems as they occur in tribology and colloid science are often solved with
the assumption of hard-wall and hard-disk repulsion between locally smooth surfaces.
This approximation is certainly meaningful at sufficiently coarse scales. However, at
small scales, thermal fluctuations can become relevant. In this study, we address the
question how they render non-overlap constraints into finite-range repulsion. To this
end, we derive a closed-form analytical expression for the potential of mean force
between a hard wall and a thermally fluctuating, linearly elastic counterface. Theoretical
results are validated with numerical simulations based on the Green’s function molecular
dynamics technique, which is generalized to include thermal noise while allowing for
hard-wall interactions. Applications consist of the validation of our method for flat
surfaces and the generalization of the Hertzian contact to finite temperature. In both
cases, similar force-distance relationships are produced with effective potentials as with
fully thermostatted simulations. Analytical expressions are identified that allow the thermal
corrections to the Hertzian load-displacement relation to be accurately estimated. While
these corrections are not necessarily small, they turn out surprisingly insensitive to the
applied load.

Keywords: contact mechanics, statistical mechanics and classical mechanics e.t.c., molecular dynamics

simulation, boundary element method, modeling and simulation, Hertzian contact analysis

1. INTRODUCTION

One of several drawbacks when applying continuum theory to small-scale contact problems, as they
occur, for example, in contact mechanics or in colloid science, is that continuum theories often
ignore the effect of thermal fluctuations. This can lead to noticeable errors of continuum-theory
based predictions for the dependence of displacement or indentation on load when two objects
are pressed against each other (Luan and Robbins, 2005, 2006). Temperature can affect mechanical
contacts and their interpretation in numerous other ways. For example, the presence of thermal
noise generally impedes an unambiguous definition of contact area (Mo et al., 2009; Cheng et al.,
2010; Mo and Szlufarska, 2010; Eder et al., 2011; Jacobs and Martini, 2017). In addition, large
standard deviations of experimentally measured depinning forces of atomic-force microscope
tips have been observed, which were accompanied by unexpectedly large reductions of the
depinning force with increasing temperature (Pinon et al., 2016). It is possible that thermal
surface fluctuations, which were not included in the modeling of temperature effects on tip
depinning, are responsible for a significant reduction of effective surface energy and thereby for
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a reduction of the depinning force. In fact, it has been shown
that thermal fluctuations limit the adhesive strength of compliant
solids (Tang et al., 2006). Finally, in the context of colloid science,
it may well be that thermal corrections have a non-negligible
effect on the surprisingly complex phase diagram of Hertzian
spheres (Pàmies et al., 2009). It is therefore certainly desirable to
model the effect of thermal fluctuations in a variety of contact and
colloid problems.

While thermal fluctuations can be incorporated into
simulations with so-called thermostats (Allen and Tildesley,
1987; Frenkel and Smit, 2002), proper sampling can require
a significant computational overhead. In addition, some
contact solvers do not appear amenable to thermostatting.
This concerns in particular those contact-mechanics
approaches that optimize the stress field, as done with the
classical solver by Polonsky and Keer (Polonsky and Keer,
1999; Müser et al., 2017), rather than the displacement
fields in the Green’s function molecular dynamics (GFMD)
method (Campañá and Müser, 2006; Zhou et al., 2019).

The just-mentioned issues motivated us to investigate how
thermal noise affects the mean force F (per unit area) between
surfaces as a function of their interfacial separation, or, gap
g. The pursued idea is to integrate out the internal degrees
of freedom, whereby an areal free-energy density can be
defined. The procedure is similar in spirit to the construction
of interatomic potentials, for which the (quantum-mechanical
ground-state) fluctuations of electrons are integrated out rather
than the (thermal) fluctuations of internal elastic degrees
of freedom.

In our first attempt on constructing effective surface
interactions, we restrict our attention to the oldest, and arguably
most commonly used model for the interactions between
surfaces, namely a non-overlap constraint. Depending on context
and dimension, it can also be called hard-wall, hard-disk, or
hard-sphere repulsion, which, by definition is infinitesimally
short ranged. Since atoms fluctuate about their equilibrium sites
in solids, thermal fluctuations automatically make repulsion
effectively adopt a finite range.

The central goal of this study is to quantify the just-described
effects and to ascertain if constitutive laws obtained for flat walls
can be applied to other systems, in particular to a Hertzian
contact. A secondary goal is to identify an analytical expression
for the thermal corrections to the load-displacement relation in a
Hertzian contact.

2. MODEL AND NUMERICAL METHOD

2.1. Definition of the Model and
Nomenclature
The model consists of a homogeneous, semi-infinite, elastic solid
with an originally flat bottom surface, which is pressed down
against a continuous, perfectly rigid substrate being fixed in
space. The latter, which will also be called indenter, is either
perfectly flat, i.e., h(r) = 0, or parabola, in which case h(r) =
−r2/(2Rc), where Rc is the radius of curvature. In order to reduce
finite-size effects and to simplify both analytical and numerical

treatments, periodic boundary conditions are assumed by default
within the quadratic, interfacial plane.

The elastic surface is subjected not only to an external load
per particle, l, squeezing it down against the indenter but also to
thermal fluctuations, as they would occur in thermal equilibrium
at a finite temperature T. We restrict our attention to frictionless
contacts and small counterface slopes. This allows us to consider
only displacements of the elastic surface normal to the interface.
As such, the elastic energy of the surface can be written as a
functional of the field u(r) according to

Uela[u(r)] =
E∗A

4

∑

q

q
∣

∣ũ(q)
∣

∣

2
. (1)

Here, u(r) states the z-coordinate of the elastic solid’s bottom
surface as a function of the in-plane coordinate r = (x, y). E∗

is the contact modulus, A the (projected) interfacial area, q an
in-plane wave vector, and q its magnitude.

ũ(q) =
1

A

∫

d2r e−iq·ru(r) (2)

denotes the Fourier transform of u(r). The short-hand notation
u0 = ũ(q = 0) will be used for the center-of-mass coordinate.

For flat indenters, only u0 will be used to denote the mean
distance, or gap, between indenter and the solid surface. Here,
we define the displacement d as a function of temperature and
load according to

d(T, L) ≡ hind(r = 0)− 〈u(T, L, r → ∞)〉, (3)

where 〈u(T, L, r → ∞)〉 is the thermal expectation value that
the field u(r) would have (infinitely) far away from the top if the
simulation cell were infinitely large. d is sometimes also called
interference, as it states an effective penetration of the indenter
into the elastic solid.

It is discussed in the literature (Müser, 2014) how to
extrapolate accurately u(L, r) to r → ∞ for all those cases, in
which an indenter acts relatively localized in the center of a finite
simulation cell. However, in the current work, we are interested
mostly in the temperature-induced reductions of d, i.e., in the
term dT defined in the expression

d = d0 − dT , (4)

where d0 denotes the displacement for an ideal, athermal
Hertzian indenter at a given load. In the current work, we
compute dT through the following approximation

dT ≈ 〈u(T, L, rX)〉 − u(0, L, rX), (5)

where rX is the point that is the most distant from the center
of the Hertzian indenter. We found that the first three to four
digits are accurate in this estimate if the athermal Hertzian
contact radius is less than one quarter of the simulation cell’s
linear dimension. This is because the (true) surface displacement
fields converge quite quickly to their asymptotic 1/r form
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outside the (original) contact radius in the case of short-ranged
potentials and because the finite-size corrections to the true
surface displacements are not very sensitive to temperature.

The interaction with a counterface is modeled within the
Derjaguin approximation (Derjaguin, 1934) so that the surface
energy density depends only on the local interfacial separation,
or, gap, g(r) = u(r) − h(r), between the surfaces, i.e., the
interaction potential is obtained via an integration over the
surface energy density γ (g) via

Uint =
∫

A
d2r γ {g(r)}, (6)

In the full microscopic treatment, hard-wall repulsion is
assumed, i.e.,

γ (g) =
{

∞ if g < 0
0 else .

(7)

Finally, the probability of a certain configuration to occur is taken
to be proportional to the Boltzmann factor, i.e.,

Pr[u(r)] ∝ e−β(Uela+Uint), (8)

where β = 1/kBT is the inverse thermal energy.
One central “observable” in this work is the distance

dependence of the mean force per atom, f (u0), for flat surfaces
and finite temperatures. One might want to interpret this
function as a cohesive-zone model, or, in the given context better
as a repulsive-zone model. Because of the so-called equivalence
of ensembles, which is valid for sufficiently large, systems, it does
not matter if the separation is fixed and the force measured, or,
vice versa.

Note that we will go back and forth between continuous
and discrete descriptions of displacement fields. For the
discrete description, the elastic solid is partitioned into atoms,
which are arranged on a square lattice with the lattice
constant 1a. This was done for reasons of simplicity, even
if other discretizations are possible, e.g., into a triangular
lattice (Campañá andMüser, 2006). Transitions between discrete
and continuous representations in real space can be achieved
with the substitutions

∑

n

... ↔
1

1a2

∫

A
d2r..., (9)

while transitions between summations and integrals in the
wavevector domain can be achieved with

∑

q

... ↔
A

(2π)2

∫

d2q... . (10)

To simplify the analytical evaluation of integrals, the square
Brillouin zone (BZ) of the surface will be approximated with a
circular domain. In this case, the upper cutoff for q is chosen to
be qmax =

√
4π/1a as to conserve the number of degrees of

freedom with respect to the original BZ.

2.2. Thermal GFMD
GFMD is a method allowing a linearly elastic boundary-
value problem to be solved efficiently (Campañá and Müser,
2006; Venugopalan et al., 2017; Zhou et al., 2019). The
(discretized) surface displacement field reflects the dynamical
degrees of freedom. Elastic interactions are described in
terms of appropriate elastic Green’s functions, which—in the
case of in-plane spatial homogeneity and infinitely large (or
periodically repeated) systems—are (block) diagonal in the
Fourier representation. The simplest case, which is considered
here, is a frictionless contact and a semi-infinite elastic substrate.
The equations to be solved in GFMD—using the regular tricks of
the trade—are

mq
¨̃u(q)+ ηq ˙̃u(q)+

q E∗

2
ũ(q) = F̃(q, t), (11)

where F̃(q, t) is the Fourier transform of all external forces acting
on the surface atoms. The terms mq and ηq represent inertia
and damping coefficients of different surface modes, which may
depend on the wave vector. For isotropic systems, these terms
only depend on q but not on the direction of q.

The effect of thermal fluctuations can be cast as random
forces, which have to satisfy the fluctuation-dissipation theorem
(FDT) (Kubo, 1957). In the given formalism, random forces must
have a zero mean, while their second moments must satisfy,

〈Ŵ(q, t)Ŵ(q′, t′)〉 = 2 ηq kBT δq,q′ δ(t − t′), (12)

assuming discrete atoms, finite domains but continuous times.
Here, δ(...) is the Dirac delta function, which can be replaced with
δt,t′/1t in a molecular dynamics (MD) simulation, in which the
time t is discretized into steps of size 1t.

At this point, GFMD is only used to generate the correct
distribution of configurations, which—in a classical system—
does not depend on the choice of inertia. As such, the mq

can be chosen at will as far as static observables are targeted.
However, in order to reproduce realistic dynamics, appropriate
choices for mq (see also the discussion on quantum effects in
section 3.3) and ηq have to be made. In fact, realistic dynamics
require the treatment of damping and random noise to have
“memory,” as discussed in Kajita et al. (2010). When being
interested in fast equilibration, themq are better chosen such that
the usually slowly equilibrating long-wavelength modes are made
light so that characteristic times for different modes coincide
as closely as possible (Zhou et al., 2019). In this context, it is
also worth mentioning that significant progress has been made
recently on GFMD to properly reflect not only true (rather than
efficient) dynamics of crystalline solids (Kajita, 2016) but also for
truly visco-elastic materials with broad relaxation functions (van
Dokkum and Nicola, 2019).

2.3. Hard-Wall Interactions in Thermal
GFMD
Non-overlap constraints can be implemented in athermal GFMD
by placing any atom, predicted to have penetrated the rigid solid,
back onto its surface. This procedure no longer works at finite
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temperatures. It violates the FDT because the damping that is
effectively imposed by this algorithm, is not compensated by a
conjugate random force.

The standard way of treating hard-wall or hard-disk
interactions is to make it make the time step so large that the
next collision between two hard sphere occurs at the end of
it. Before proceeding with the time stepping, an ideal, elastic
collision is then assumed. This course of action does not appear
to be viable for contact mechanics, because it would lead to
prohibitively small time steps for large-scale contacts, where
several (hundred) thousands of grid points are usually classified
as being in contact. Specifically, when doubling the system sizeN,
the typically allowed time step will have to be halved on average
so that the asymptotic computational effort would scale with N2

rather than with N or N ln N.

2.3.1. Effective Hard-Wall Potentials
An alternative to the standard ways of implementing non-overlap
constraints is to allow its violation in a controlled fashion. For
example, the true hard-wall interaction can be replaced with a
finite-range energy density penalty of the form

γ (g) =
κo E

∗ 1a

n

(

−g

1a

)n

2(−g) (13)

where 2 is the Heavyside step function and κo and n are
dimensionless parameters. In lose analogy to a Richardson
extrapolation, an observable of interest O can be computed for
a fixed exponent n but different values of κo. Finally, the results
can be extrapolated to hard-wall interactions by investigating the
asymptotics ofO(1/κ) in the limit of 1/κ → 0. Large values of κo
will limit the time step 1t. However, these limits do not depend
on system size. Thus, the numerical effort will scale with O(1/N)
rather than with O(1/N2) as is the case when dynamics are based
on the more accurate, flexible time-step collision dynamics.

Good numbers for the exponent n and the dimensionless
hard-wall stiffness κo need to be chosen. In order for the
effective hard-wall potential to have a minimal effect on 1t,
the (non-negative) exponent n should be as small as possible.
However, we would like the force to be a continuous function,
for reasons explained at length in any better text book on
molecular dynamics (Allen and Tildesley, 1987; Frenkel and Smit,
2002). While these arguments can be somewhat academic when
the discontinuities are small, we are going to send κo to large
numbers resulting in significant force discontinuities. Thus, n
must be chosen greater equal two. This appears to make n = 2
the optimal choice.

The next question to be answered is: Given a time step 1t
and an exponent of n = 2, what is a good value for κo? Here,
it is useful to keep in mind that we do not need very accurate
dynamics in the “forbidden” overlap zone. The main purpose of
the stiff harmonic potential is to eliminate overlap as quickly as
possible, i.e., to effectively realize a collision of the particles with
the position of the (original) hard wall. However, the stiffness
should remain (well) below a critical value above which energy
conservation is violated in the absence of a thermostat even when
a symplectic integrator, such as the Verlet algorithm, is used. For

Verlet, the critical time step for a harmonic oscillator is 1tc =
T/π , where T is the oscillator period, i.e., for 1t < 1tc, the
trajectory may be inaccurate, but the energy is conserved (except
for round-off errors). This can be achieved by setting the overlap
stiffness to

ko = νo π2 m

dt2
− ks, (14)

where ks = 1u2/(kBT), while m is the inertia of the considered
degree of freedom. νo is a numerical factor, whichmust be chosen
less than unity. At and above the critical value of νo = 1,
energy conservation would be no longer obeyed in the absence
of a thermostat. At the same time, dynamics but also static
distribution functions are very inaccurate, even if a thermostat
prevents the system from blowing up.

The optimum value for ko certainly depends on the specific
investigated problem. However, the analysis of simple models
can provide useful preliminary estimates. This will be done in
section 2.3.3.

2.3.2. Approximate Collision Rules
A second possibility to avoid the poor efficiency of exact collision
dynamics is to use approximate collision rules and to control
the error of the imprecision with the time step. A simple
possibility would be to keep 1t fixed in a simulation and to
make the deflection of the atom after the regular time stepping.
For example, when using velocity Verlet, the following pseudo
code could be invoked after a regular time step, in which the
constraint was ignored:

if (z violates constraint) then
z = 2zconstr-z
vz = -vz (velocity Verlet)
zold = 2zconstr-zold (standard Verlet)

end if

Note that this approach requires extra care to be taken when
dynamics are formulated in a wavevector representation, which
is usually the case in efficient boundary-element methods. If
implemented the following overhead would have to be realized:
old positions (or velocities) in real space will then have to be
kept in memory. Moreover, two additional Fourier transforms
will have to be invoked in each time step, which would double
the number of the (asymptotically) most expensive function
calls. Since approximate collision dynamics turn out to show
similar scaling with 1t in simple models as effective hard-wall
repulsion, see section 2.3.3, we did not pursue approximate
collision rules further at this point of time in the full contact-
mechanics simulations.

2.3.3. Numerical Case Studies
To explore the relative merit of the two proposed hard-wall
methods, we investigate the following single-particle problem: an
originally free, harmonic oscillator with a (thermal) variance of
1u2. This harmonic oscillator is then constrained to have no
negative deflections from its mechanical equilibrium site. The
analytical solution to this problem stating the force F needed
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FIGURE 1 | Mean displacement u0 as a function of time step 1t when using
(a) approximate collision rules (open circles) and (b) harmonic effective
hard-wall potentials (closed diamonds) for two different values of νo, see
Equation (14). Dashed lines show linear fits, the solid line the exact, analytical
solution. The equilibrium site of the spring is placed at us = 0, moreover
1u2 = kBT = 1.

to realize a given constraint is contained in the mean-field
approximation to the full elastic problem, which is presented in
section 3.2.2. The given constraint of the spring sitting exactly on
the hard wall corresponds to a value, where 〈u0〉 crosses over from
its short-range to its long-range asymptotic behavior. Therefore,
we see this case as being representative for both scaling regimes.

In essence, the problem we investigate corresponds to the
choice where kBT, k, and m are used to define the unit system,
which makes 1u2 being unity (in units of kBT/k) as well. The
default time step that we use for the free oscillator is 2π/30,
i.e., 30 time steps per period. The damping coefficient is chosen
to be γ = 1, whereby the free harmonic oscillator is slightly
underdamped. While this choice is not necessarily ideal, it
still tends to be effective for a fast equilibration, irrespective
of whether the temperature is zero or finite. Results for the
convergence of how the estimate for the mean displacement u0
approaches the exact value with decreasing time step 1t are
shown in Figure 1.

At a given value of 1t, the approximate collision rules clearly
outperform the approximate hard-wall interactions. However, u0
has leading-order corrections of order 1t in both approaches.
With the choice νo = 0.1, the asymptotic result for the
parabolic, effective hard-wall potential has an accuracy of better
than 1%, which should be accurate enough for most purposes.
In both approaches, simulations must be run at two different
values of 1t, say e.g., at 1t = 0.25 and 1t = 0.15 in
order to perform a meaningful 1t → 0 extrapolation. In
a full contact-mechanics simulation, the number of required
Fourier transforms doubles when using the approximate collision
rules, which in turn leads to increased stochastic errors given
a fixed computing time contingent. For this reason, but also
because approximate collision rules require significantly more
coding—in particular when averaging wall-surface forces from
collisions when using wavevector dependent inertia—we decided
to use the harmonic, effective hard-wall potential for the full
contact-mechanics simulations.

3. THEORY

The main purpose of this section is to identify an analytical
expression for the thermal expectation value of an interfacial
force per atom f (u0) as a function of their mean separation u0
in the case of a hard wall. This will be done by defining the
partition function Z(N,β , u0) of a fluctuating surface in front of
a wall, which is linked to the free energy through the relation
F(kBT, u0) = −kBT lnZ(β , u0). The mean force between hard
wall and elastic surface can then be calculated from

f = −
1

N

∂F(N, kBT, u0)

∂u0
. (15)

Minor errors in the treatment presented below appear in
numerical coefficients that result, for example, by having
approximated the Brillouin zone of a square with a sphere,
or, by having replaced a discrete set of wave vectors (finite
system) with a continuous set (infinitely large system). However,
these and related approximations are controlled, because errors
resulting from them can be estimated and they could even be
corrected systematically.

3.1. The Statistical Mechanics of a Free
Surface
Since the free surface is the reference state, we start with its
discussion. An important quantity, in particular in a mean-field
approach, is the variance of atomic displacements due to thermal
noise. For a fixed center-of-mass coordinate, it is defined as the
following thermal expectation value:

1u2 ≡
〈

{

u(r)− ũ(0)
}2

〉

. (16)

It can be evaluated in its wavevector representation in a
straightforward manner. Specifically,

1u2 =
∑

q′

〈

|ũ(q′)|2
〉

(17)

≈
A

(2π)2

∫

d2q
2 kBT

qE∗A
(18)

≈
2

√
π

kBT

E∗1a
, (19)

where we made use of equipartition for harmonic modes, see also
Equation (29).

Of course, up to the prefactor of 2/
√

π ≈ 1.1284, which is very
close to unity, Equation (19) follows directly from dimensional
analysis. However, in a quantitative theory, we wish to know and
perhaps to understand its precise value. A numerical summation
over a square BZ assuming a square real-space domain with N
atoms reveals that 1u2 can be described by

1u2 =
(

1.1222−
1.24
√
N

)

kBT

E∗1a
, (20)

with more than three digits accuracy if
√
N > 512. This result

is fairly close to the analytical result based on a BZ, which is
approximated as sphere.
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Assuming discretization down to the atomic scale of 1a ≈
2.5 Å yields a root-mean square (rms) height of

1u ≈ 1.5
√

GPa/E∗ Å (21)

at room temperature. Thus, for soft-matter systems, the effect
of thermal fluctuations is not necessarily non-negligible at room
temperature. The dominant restoring forces to height fluctuation
at short scales will then be due to surface tension rather than
due to elasticity (Xu et al., 2014). However, it might be possible
to suppress those effects when immersing the surfaces into an
appropriate liquid, e.g., crosslinked polyethylene glycol (PEG)
into uncrosslinked PEG.

An outcome of Equation (19) is that the fluctuations are
dominated by the small scales. In the simplest approximation,
which can be made in direct association with the Einstein model
of solids, each surface atom is coupled harmonically to its lattice
site with a spring of stiffness kE = kBT/{(N − 1)1u2}. In reality,
i.e., in less than infinite dimensions, there is always a correlation
of thermal height fluctuations.

To deduce an estimate for the distance over which height
fluctuations are correlated, we calculate the thermal displacement
autocorrelation function (ACF) Cuu(r). It can be defined and
evaluated to obey:

Cuu(1r) =
〈

u(r) u(r+ 1r)
〉

(22)

≈
1

2π2

kBT

qE∗

∫

√
4π/1a

0
dq

∫ 2π

0
dϕ eiqr cosϕ (23)

=
1

π

kBT

rqE∗

∫

√
4πr/1a

0
d(qr)J0(qr) (24)

=
2 kBT

qE∗

√
4π r

1a
1F2

(

1

2
; 1,

3

2
;
−π r2

1a2

)

(25)

≈
{

2 kBT√
π E∗ 1a

+O(r2) for r → 0

kBT/(π q E∗ r) for r → ∞,
(26)

where J0(x) is the Bessel function of the first kind and 1F2(...)
is a generalized hypergeometric function. Unfortunately, the
result obtained analytically this way shows Helmholtz ringing at
intermediate values of r (i.e., within a substantial range of 1u),
which is why the exact analytical solution for Cuu(r) is of little
practical use, except in the two limiting cases r = 0 and r → ∞.
Helmholtz ringing is generally a consequence of sharp cutoffs
in the wave vector domain. Interestingly, it persists even for a
square BZ when the exact expectation values for |ũ(q)|2 are used
and the correlation function Cuu(r) is extended to the continuous
domain between the lattice positions. The validity of these claims
is demonstrated in Figure 2.

A quite reasonable approximation or rather generalization of
Cuu(r) to a continuous function can be made by constructing
the simplest expression with the correct asymptotic behaviors
summarized in Equation (26):

Cuu(r) ≈
2

√
π

kBT

E∗
1

(1a2 + 4π r2)1/2
. (27)
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FIGURE 2 | The radial displacement ACF Cuu(r)—normalized to its value at
r = 0—as a function of distance r: asymptotic approximation given in
Equation (27) (black line), exact correlation function along the [10] direction
with interpolation between non-lattice sites (dashed brown line), numerically
exact results for systems of size 2,048 × 2,048 (red circles), 512× 512 (green
squares), and 128× 128 (blue diamonds). They were also obtained for the [10]
direction, except for the open symbols, which refer to the [11] direction.

As can be seen in Figure 2, this asymptotic approximation is
quite reasonable already at a nearest-neighbor spacing of r =
1a and has errors of less than 5% (in the limit of large N)
for larger values of r. While numerical results for finite systems
in Figure 2 include predominantly data for r parallel to [1, 0],
similar results are obtained for other directions as well, as
demonstrated examplarily for the [1, 1] direction of the N =
128× 128 lattice.

The asymptotic ACF has decayed to approximately 30%
of its maximum value at the nearest-neighbor distance. This
means that the displacements of adjacent lattice sites are
essentially uncorrelated.

The last property of interest used in the subsequent treatment
is the partition function of a free surface (fs):

Zfs(β) =
∏

q

λq
√

2π1u2(q)
(28)

with

1u2(q) =
2 kBT

q E∗A
. (29)

λq = h/
√

2mq kBT represents the thermal de Broglie wavelength
of a surface mode. It reflects the ideal-gas contribution of the
momenta conjugate to the ũ(q) to the partition function. As long
as E∗ is small compared to the ambient pressure and as long
as temperature is kept constant, the sole purpose of including
λq into the calculation is to render the partition function
dimensionless. This is why a precise determination of mq is not
needed at this point, even if it might be an interesting topic
in itself and of relevance for a quantum-mechanical treatment,
which is discussed in section 3.3.
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In themean-field (Einstein solid) approximation, the partition
function simplifies to

Zmf(β) =
(

λmf√
2π1u2

)N

, (30)

with 1u having been introduced in Equation (19) and λmf being
a mean-field de Broglie wavelength.

3.2. Interaction of a Thermal, Elastic
Surface With a Flat Wall
In this section, we investigate the statistical mechanics of an
elastic surface in front of a flat, hard wall. To this end we
derive expressions for the partition function of the system, from
which the mean force between surface and wall (at fixed mean
separation) can be derived in a straightforward fashion. Different
mean-field strategies will be pursued toward this end. They turn
out to be quite accurate in different asymptotic limits of the
full problem.

3.2.1. First Mean-Field Approximation
The arguably simplest analytical approach to the contact problem
is an adaptation of the so-called Einstein solid, which was already
alluded to in section 3.1, to surface atoms. We first do it such
that a degree of freedom is a hybrid of an atom in real space and
a delocalized, ideal sine wave. Specifically, we first assume that
elastic energy of an individual atom reads

vmf
ela(u) =

kBT

21u2
u2. (31)

In order to maintain a zero expectation value of u, it
is furthermore assumed that the interaction energy with a
counterface placed at a distance u0 from the atom’smean position
is given by

vmf
sub(u) =

1a2

2π

∫ 2π

0
dϕ γ (u0 + u cosϕ). (32)

This means, an oscillation of an atom entails an undulation.
With this assumption, u0 automatically corresponds to the atom’s
mean position.

The excess free energy per particle 1F/N for a fixed center-
of-mass position satisfies

e−βF/N =
1

√
2π1u2

∫ ∞

−∞
du e−β{vmf

ela(u)+vmf
sub(u)}, (33)

where the term “excess” refers to the change of the free energy
relative to that of a free surface. For hard-wall interactions, the
integral in Equation (33) can be evaluated to be

e−βF/N =
1

√
2π1u2

∫ u0

−u0

du e−βvela(u)

= erf

(

u0√
21u

)

. (34)

Hence,

F

N kBT
= − ln

{

erf

(

u0√
21u

)}

(35)

≈







− ln
(
√

2
π

u0
1u

)

for u0 < 1u/2
1u√
πu0

e−u20/(21u2) for u0 > 21u.
(36)

For reasons of completeness, the force predicted from this first
mean-field approximation is stated as:

fmf1(u0) =
√

2

π

kBT

1u

exp{−u20/(21u2)}
erf{u0/(

√
21u)}

. (37)

In the limit of u0 → 0, repulsion diverges proportionally with
1/u0, while it decays slightly quicker than exponentially in u20 for
separations u0 ≫ 1u. Both limiting behaviors are confirmed in
the results section, albeit, with a prefactor of a little less than one
half for large separations.

3.2.2. Second Mean-Field Approximation
Another mean-field approach would be to abandon the
evaluation of the interaction in terms of an undulation and to
introduce a Lagrange parameter, i..e, an external force f divided
by the thermal energy, ensuring u to adopt the desired value of
u0. Thus, the probability of a displacement u to occur satisfies

Pr(u) ∝ e−(u−u0)2/(21u2)−βf (u−u0)2(u), (38)

where f needs to be chosen such that 〈u〉 = u0 so that the lattice
position of the particle ueq is situated at ueq = u0+βf1u2. At ueq,
there is no elastic restoring force in the spring. The requirement
〈u〉 = u0 automatically leads to the following self-consistent
equation for f :

β f 1u =
√

2

π

exp
{

− (β f 1u2−u0)2

21u2

}

1− erf
(

β f 1u2−u0√
21u

) . (39)

This line of attack leads to similar results for the f (u0) at
small u0 as the first mean-field approach. However, for large u0
the predicted force turns out half that of the first mean-field
approximation. In fact, the second mean-field theory turns out to
be a quite reasonable approximation to the numerical data for any
value of 1u, see the results and discussion presented in section 4.

3.2.3. Probabilistic Approach
The exact expression for the excess free energy of an elastic body
in front of a hard wall can be defined by a path integral,

e−βF(u′0) =
1

ZA

∫

D[u(r)] δ
(

u′0 − u0
)

e−β vtot[u(r)], (40)

where D[u(r)] denotes an integral over all possible displacement
realizations and

ZA =
∫

D[u(r)] δ
(

u0 − u′0
)

e−β vela[u(r)]. (41)
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In the case of hard-wall repulsion, the r.h.s. of Equation (40)
is easy to interpret: It represents the relative number of
configurations that are produced with the thermal equilibrium
distribution of a free surface (fs), whose maximum displacement
is less than u0, i.e.,

e−βF(u0) =
〈

Pr(umax < u0)
〉

fs , (42)

This insight defers the problem of having to solve the path
integral in Equation (40) to an exercise in probability theory:
determine the likelihood of N′ = N1a2/1Ac independent
Gaussian random number with mean zero and variance 1u2

to be less than u0. Here 1Ac is the correlation area for the
displacements. Given that Cuu(1r) has decayed to a few 10%
at nearest-neighbor distances, it can only be marginally larger
than 1 a2.

For large values of N′, the distribution of maximum values
umax = max{u(r)} converges to the Gumbel distribution, also
known as the generalized extreme value (gev) distribution type-
I (David and Nagaraja, 2003). It is given by

Pr(umax) =
1

βgev
e−(e−z) (43)

with

z =
umax − µgev

βgev
, (44)

where µgev is the mode of the Gumbel distribution, i.e., the most
likely value for umax to occur, and βgev a parameter determining
the shape of the distribution. For a normal Gaussian distribution
8G(u/1u), they are given by

µgev

1u
=

√
2 erf−1

(

1−
2

N′

)

(45)

βgev

1u
=

1

N′ · 8G(µgev/1u)
(46)

in the limit of large N′. Here erf−1(...) stands for the inverse
function of the error function (David and Nagaraja, 2003).

In fact, Figure 3 shows that the distribution of umax as
produced with GFMD and by taking the maximum value ofN′ =
0.92N independent random numbers are essentially identical
and that both can be approximated quite well with the Gumbel
distribution. If setting N′ = N, the (open) symbols in Figure 3

would shift by roughly half their symbol size to the right. As
expected, discrepancies between the Gumbel distribution and the
numerical data decrease with increasing N′.

Rather than relying on the Gumbel distribution, one might as
well write down the exact probability of one positive Gaussian
random variable (grv) to be less than u0 and take the result into
the N′/2-th power. (On average, there are N′/2 positive grv’s,
whose value may not exceed u0. The negative grv’s are irrelevant
with respect to the violation of the violation of the non-overlap
constraint.) In this approximation,

Pr(umax < u0) =
{

erf

(

u0√
2σ

)}N′/2

. (47)
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FIGURE 3 | Distribution of maximum displacements for different system sizes
as obtained from GFMD (closed symbols). Considered system sizes are
N = 128× 128 (diamonds), 512× 512 (squares), 2048× 2048 (circles).
Comparison is made to the distribution of the maximum of N′ = 0.92N
independent random numbers of mean zero and variance 1u (open symbols)
as well as to the corresponding Gumbel distribution.

and therefore

1F = −
N′kBT

2
ln

{

erf

(

u0√
21u

)}

. (48)

This result turns out to apply to large separations, that is, to
u0/1u ≫ 1. The functional form of F(u) is identical to the one
obtained in the first mean-field variant, except for the prefactor,
which is reduced by a little more than a factor of two.

3.3. Handling Quantum Effects
Throughout this paper, it is assumed that thermal vibrations
are classical. In reality, atoms are quantum mechanical,
which enhances their fluctuations about their equilibrium
sites. Differences between classical and quantum systems can
matter when the Debye temperature is clearly larger than the
ambient temperature. In this section, we briefly sketch how the
quantum-mechanical fluctuations could be modeled rigorously
but also suggest an alternative approach. The latter is easily
implemented and should be reasonably accurate except for very
large squeezing forces.

A rigorous treatment could be based on path-integral
techniques (Berne and Thirumalai, 1986; Müser, 2002), in which
quantum-mechanical (QM) point particles are represented in
terms of classical ring polymers. The course of action would
be an acquisition of the proper Green’s function with similar
fluctuation formulae as in the original GFMD paper (Campañá
and Müser, 2006), while simulating (half) solids and acquiring
elastic tensor or stiffness elements as done, for example, in
Schöffel and Müser (2001). For a harmonic system, the stiffness
of the various modes would be identical in the classical and
the quantum system so that the most important variable to
be determined would be the q-dependent inertia mq of the
surface modes. It would have to be selected such that it yields
the correct zero-point vibration in a path-integral augmented
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GFMD simulation. The latter would benefit from replacing
the free-particle propagator in so-called imaginary time with
one that is symmetry-adopted for hard walls as done in
Müser and Berne (1997).

In classical systems, 1u is dominated by the shortest
wavelength modes. This will be even more so for quantum
systems, because modes show greater quantum effects at short
than at long wavelengths. In other words, the model of an
Einstein solid should provide a reasonable approximation for the
true, quantum-mechanical variance1u2QM of a free elastomer. In
this approximation, the effective stiffness of a spring coupling the
z-coordinate of a surface atom to its lattice site is E∗1a, divided
by a factor very close to 1.12, which we consider negligible
in the present discussion. If m is the mass of a surface atom,
the associated eigenfrequency would be ω0 =

√
E∗1a/m.

Thus, the temperature-dependent internal energy of an Einstein
mode is obtained as U = h̄ω0 coth{h̄ω0/(2kBT)}/2, where h̄
is the reduced Planck constant, see any textbook on statistical
mechanics. Since U = 2〈Vpot〉 for the quantum or classical
harmonic oscillator, it can be deduced that

1u2QM ≈
1u2

2 kBT tanh{h̄ω0/(2kBT)}
. (49)

If quantum effects need to be included, the value of 1u2QM would

have to replace that of 1u2 in any application of the method.
The treatment would not be exact, because the wavefunction and
thus the quantum-mechanical probability density go to zero at
the hard-wall constraint. This would lead to enhanced repulsion,
in particular at large compression, for which we expect repulsion
to divergemore quickly thanwith 1/u0 because of the uncertainty
prinple. Yet, using 1u2QM instead of the classical 1u2 would
be roughly analogous to a first-order perturbation theory and
thereby represent quantum effects accurately for separations
u0 & 1uQM.

3.4. Thermal Hertzian Contacts
3.4.1. Preliminary Considerations
At small temperatures, the relative leading-order corrections to
the zero-temperature displacement u0(T = 0) can be expected to
depend on powers of the variables defining the problem, i.e.,

dT

d0
∝

(

Rc

1a

)α (

E∗R2c
L

)β (

kBT

E∗R3c

)γ

, (50)

where the contact modulus E∗ and the contact radius Rc were
effectively used to define the units of pressure and length,
respectively. With the help of a further dimensional analysis,
which can be conducted in a similar fashion as that in Müser
(2014), the sum rule

α + 3β − 5γ = 0 (51)

follows immediately for the exponents introduced on the r.h.s.
of Equation (50). This relation is valid for a quadratic tip shape,
linear elasticity, assuming the interfacial stress is a function of
u(r)/1u with 1u ∝

√
T.

The r.h.s. of Equation (50) and the sum rule for exponents in
Equation (51) can also be valid at high-temperatures. However,
different exponents will apply. At intermediate temperatures, an
expansion over terms such as those discussed so far are the only
possibility to conform to the dimensional analysis.

3.4.2. Low-Temperature Approximation
At very small temperatures, the stress profile can be expected
to differ only marginally from that of the athermal contact. In
a perturbative approach to the problem, one could therefore
assume that the most important correction to the original
Hertzian gap gH(r) is a constant shift by dT . The latter can be
determined by minimizing the thermal excess energy per atom

eT = −dT L+
1

1a2

∫

d2rFpa
{

gH(r)+ dT
}

(52)

≈ −dT L+
2π

1a2

∫ ac

0
dr rFpa(dT), (53)

whereFpa ≡ F/N denotes the hard-wall, free-energy normalized
to the atom. The approximation in Equation (53) is motivated
by the expectation that the dominant contribution to eT resides
within the original contact area. Minimization of eT w.r.t. dT
leads to

L =
π a2c
1a2

f (dT) (54)

≈
π a2c
1a2

√

2

π

kBT

1u

exp
(

−u20/21u2
)

erf(u0/
√
21u)

(55)

where the last approximation is only valid at small temperatures.
Taylor expanding this last expression leads to

dT

d0
≈

T

T∗ (56)

with

T∗ =
L1a2

π kB Rc
. (57)

3.4.3. High-Temperature Approximation
At very large temperatures, dT is in excess of d0 so that
deformations of the elastic solids are very small. In a first-
order perturbative approach, it then makes sense to assume
the displacement field to be a constant, i.e., to be dT . In that
approximation, individual forces can be simply summed up
with a mean gap of dT + r2n/(2Rc). Recasting the sum as an
integral yields

L ≈
N′

2N

1

1a2

∫

d2r fmf1

(

dT +
r2

2Rc

)

(58)

≈ L0
1u

dT
e−d2T/(21u2) (59)

with

L0 =
√

2

π

N′

N

kBT Rc

1a2
. (60)
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FIGURE 4 | Mean force f , in units of 1/β1u, as a function of normalized mean
separation u0/1u, where 1u represents the height standard deviation of a
surface atom in the absence of a counterface.

Equation (59) can be solved for dT with the help of the Lambert
W functionW(x) ≈ ln x− ln ln x for x ≫ 1:

dT

1u
≈

√

W

(

L20
L2

)

. (61)

4. RESULTS

4.1. Potential of Mean Force for a Flat Hard
Wall
In this section, we investigate to what extent the three approaches
introduced in section 3.1 reproduce accurate, numerical results
for the thermal repulsive-zone model. To this end, we chose units
such that E∗ = 1 and 1a = 1 and consider different values
of u0/1u, which is the only dimensionless variable for the given
problem besides the system size, which is varied as well.

Figure 4 compares GFMD data to the various approximative
approaches introduced in section 3. The first mean-field
approach appears to be asymptotically exact for small u0, while
the approach based on the law of large numbers seems to be
asymptotically exact for large u0. In between these two regimes,
there is a smooth transition between them. This transition
is reflected quite well by the second mean-field approach.
Unfortunately, we did not identify a closed-form analytical
expression for it, which would nevertheless be nice to have
when implementing a potential of mean force into a simulation.
However, as is demonstrated in Figure 4, simple switching
functions introduced next allow one to approximate numerical
data reasonably well.

Since both force-distance asymptotic dependencies have the
same functional form and since the transition between them is
quite continuous, it is relatively easy to come up with switching
functions allowing the numerically determined free energy to
be approximated reasonably well. Defining Fmf1 through the

free-energy expression in Equation (35), this is done via

F(u0) ≈ w1(u0)Fmf1(u0)+ w2(u0)1F (62)

with the weighting functions

w1(u0) =
1

2

{

N′

N
+

(

2−
N′

N

)

e−u20/1u2
}

(63)

w2(u0) = e−u20/1u2
{

1− tanh(u0/1u)
}

(64)

The numerical value for 1F turned out to be 1F = −N′kBT/2.
The forces f (u) in a coarse-grained description are obtained as
negative derivative by differentiating the r.h.s. of Equation (62).
The resulting expression corresponds to the numerical GFMD
data for systems with nx = ny ≥ 128 with maximum errors less
than 10%, at least when taking the exact value for 1 u2.

In terms of an efficient implementation of the method, we
recommend to use tabulated expressions for f (u) for intermediate
values of u and the asymptotic expressions for u ≪ 1u and
u≫ 1 u.

4.2. Hertzian Indenter
We now consider a Hertzian indenter as transferability test
for our effective potential. In addition, the effects that thermal
fluctuations have on the load displacement relation are explored
along with an analysis of how to meaningfully define a contact
area in the presence of thermal fluctuations.

The solution of the continuous displacement field has no
dimensionless number if the contact radius ac is taken to be the
unit of length. However, ac/1a starts to matter as soon as it
is no longer large compared to unity. Since discreteness effects
are a different topic discussed elsewhere (Müser, 2019), ac/1a is
chosen sufficiently large so that the discrete problem reflects the
continuous Hertz contact reasonably well.

To test the applicability of the thermal repulsive-zone model
in the realm of Hertzian contact mechanics, the following
parameters were chosen as useful defaults after some trial and
error: Rc = 2561a and a normal load of L = 131 E∗ 1a2 leading
to ac ≈ 30 1a within regular Hertzian contact mechanics. In the
athermal Hertzian contact, the mean contact pressure turns for
these parameters is p ≈ 0.049 E∗. Results for the stress profile at
a temperature of kBT = 0.2E∗ 1a3 are shown in Figure 5.

An interesting but perhaps also obvious outcome of the data
presented in Figure 5 is that there is no abrupt transition from
finite to zero contact stress, once thermal fluctuations are finite.
This observations is of relevance when discussing the concept of
“true contact area.” Since collisions in a hard-wall potential are
instantaneous, the probability of observing two (finite) surfaces
to be in contact has a statistical measure of zero, so that the
instantaneous contact area could be argued to be (almost) always
zero. Contact exists only in the isolatedmoments of time at which
collisions take place. However, during these isolated moments
of time, the forces between surfaces is infinitely large such that
time averaging yields a distribution which resembles the well-
known Hertzian stress profile; the smaller the temperature the
closer the stress profiles between original and finite-temperature
stress profiles.
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FIGURE 5 | (Left) Interfacial stress σ as a function of distance r from the symmetry axis in a Hertzian contact geometry. The (blue) circles reflect zero temperature
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the symmetry axis.

The question of how to meaningfully define (repulsive)
contact area when repulsion has a finite range and adhesion is
neglected arises naturally. In a recent paper (Müser, 2019), it
was proposed to define the contact line (or edge) to be located,
where the gradient of the normal stress has a maximum slope.
In the current example, this leads to a reduction of the contact
radius of order 1%, which is significantly less than the reduction
of approximately 30% of the normal displacement in the given
case study.

In contrast to contact radii, force and displacement can
be defined unambiguously. Thermal noise will reduce the
interference d by dT due to the effectively finite range of
the repulsion, as discussed in the definition of the model in
section 2.1. Since the description for an athermal Hertzian
contact is scale free —in the sense that the functional form
for stress and displacement are independent of any parameter
defining a Hertzian contact– the function f (T) ≡ dT/d0
must have a universal shape if 1a ≪ ac. This is because the
thermal repulsive zone model for hard-wall repulsion is a scale-
free function of the gap divided by 1u. Figure 6 reveals that
results on the thermal displacement for different Hertzian contact
realizations can indeed be collapsed quite closely onto a single
master curve 4(T/T̃) defined through

dT = d̃0 4(T/T̃), (65)

where

d̃0 =
(

RcL

E∗1a3

)− 1
3

d0 (66)

and

T̃ =
(

L

E∗R2c

)
2
3 E∗1a3

kB
. (67)

The master curve shown in Figure 6 reveals asymptotic regimes
at low and at high temperatures, respectively. They can be
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model (black circles) is defined in the method section. In one case, load was
increased by a factor of two (red squares), and in another case, the radius of
curvature was increased by a factor of eight (orange diamonds) with respect to
the default values. Finally, values found for blunt atomic-force microscope
(AFM) tips were also considered: 1a = 2.5 Å, Rc = 200 nm, E∗ = 100 GPa,
and L = 200 nN (green triangles). Solid blue and red line show the low- and
intermediate-temperature approximation from Equation (68). The dashed
brown line represents the high-temperature limit of Equation (61).

approximated with power laws. However corrections logarithmic
in temperature need to be made at low temperature to obtain
quantitative agreement over broad temperature ranges. We find
numerically that

4(t) ≈
{

t (1− ln t) for t ≪ 1
1.727

√
t {1+ ln(t)/6} for 0.1 < t < 104

. (68)

Inserting the low-temperature approximation of themaster curve
into Equation (65) and reshuffling terms yields

dT

d0
≈

T

T∗

(

1− ln
T

T̃

)

(69)
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value at r = 0 at two different reduced temperatures T/T∗ for the default
model. Lower and upper temperature are indicated by dashed blue and solid
red lines, respectively.

for T ≪ T̃. This means that the low-temperature treatment
presented in section 3.4.2 obtained the correct linear term, but
failed to predict the logarithmic corrections, which become very
large at small ratios T/T̃. Before discussing the origin of those
corrections, we wish to emphasize that there are indeed two
characteristic temperatures for the Hertzian contact, namely T∗

and T̃.
The suspicion that significantly better results at small

T/T̃ are obtained when extending the integration domain
in Equation (53) back to radii beyond the athermal contact
radius turns out incorrect. The main reason for the deviations
lies in the assumption of a constant thermal shift of the
thermal displacement. Figure 7 reveals that the thermal shift
far away from the indenter is noticeably larger than at r = 0
and that discrepancies grow (logarithmically) with decreasing
temperature. Since the simple treatment allows one to rationalize
why dT is (roughly) linear in temperature, we decided to keep the
discussion of the low-temperature limit.

Before investigating the magnitude of thermal displacements
in real units and not just in reduced units, we briefly comment
on the intermediate-temperature behavior. Most importantly, we
wish to emphasize that the approximation made in Equation (68)
for t > 0.1 is only valid on the shown domain and that it does not
extend to t → ∞.

However, from a practical point of view, it appears virtually
impossible to design a real-laboratory experiment, in which the
asymptotic high-temperature regime of t > 103 could ever
be reached. The only possible exception coming to our minds
would involve the use of hagfish slime. It has extraordinarily
small elastic moduli of order 0.02 Pa (Ewoldt et al., 2011), though
the values of 1a to be used in a continuum model would be
clearly in excess of the atomic scale, because hagfish slime stops
being homogeneous well above the atomic scale. Since the contact
mechanics of hagfish slime and related systems is somewhat of
a niche application, we would argue that the analytical solution
given in Equation (61) is merely a nice mathematical result and

that the t > 0.1 approximation made in Equation (68) can be
considered the high-temperature limit for all other purposes.

One may wonder how the master curve shown in Figure 6

translates into a d(T) dependence when real units rather than
reduced units are used. To answer that question, the expansions
obtained previously are represented again for a moderately hard-
matter (E∗ = 1 GPa) and a soft-matter (E∗ = 50 MPa)
system, see Figure 8 and further validated by additional GFMD
simulations. In both cases, a radius of curvature of Rc = 50 nm
was assumed and the load was chosen such that the ratio of
maximum Hertz pressure to E∗ was in the order of 0.1%, i.e., a
load where plastic deformation can be assumed to be minor.

Figure 8 reveals that both studied systems qualify as
being clearly in the intermediate-temperature regime at room
temperature. Relative corrections of the normal displacement
for the stiffer system are rather minor but non-negligible for
the soft-matter system. This observation brings us to the next
and final question, which is addressed in Figure 9, namely to
what extent do thermal correction affect the load-displacement
relation? After all, most indentation experiments are done at
constant temperature and varying load rather than at constant
load and varying temperature. Combining Equations (65–67)
with the intermediate-temperature expansion of Equation (68)
and the analytical solution for the displacement-load relation in
a Hertzian contact, leads to the following relation:

dT = drefT

{

1−
1

9
ln

(

L/Lref
)

}

(70)

with drefT ≈ 1.4261u and

Lref =
(

kBT

E1a3

)3/2

E∗R2c . (71)

In other words, the elastomer surface is effectively shifted by
a little less than 1.5 times the thermal standard deviation of
its smallest-scale surface fluctuations. The effects of load are
minuscule as they enter only logarithmically in the ninth’ root
of the load.

Figure 9 confirms that the thermal fluctuation in most real
Hertzian contacts should lead to corrections that appear as
almost constant shifts to the eye, even for soft-matter systems,
for which the absolute shifts can be relatively large. In the case
study presented in Figure 9, the thermal shift reads dT ≈ 1.2
at a load of L ≈ 16 nN and barely more at a much reduced
load dT ≈ 1.7 at a load as small as L ≈ 0.16 nN In order for
the dT correction to acquire twice the value compared to that
at 16 nN, the compressive force in our example would have to
be as small as L ≈ 20 fN, which is scarcely measurable. For
the reasons of completeness, we state that the range of validity
of the intermediate-temperature approximation of 0.1 < t <

104 demonstrated in Figure 6 translates to a range of loads
of 0.15 < L/nN < 1.5 · 104 for the specific examples studied
here. Upper and lower limits are well beyond loads that could
be meaningfully applied or measured experimentally for the
system of question while measuring the normal displacement
with high resolution.
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5. SUMMARY

In this work, we analyzed the effect that thermal fluctuations
can have on contact mechanics in the case of hard-wall
interactions. To this end, we first demonstrated that thermal
surface fluctuations are dominated by short wavelengths
undulations. They smear out the originally infinitesimally short-
range repulsion to a finite range of 1u ≈

√

kBT/(E∗1a).
The functional form of the repulsive force was derived
analytically and shown to diverge inversely proportionally with
the interfacial separation u0 at small u0 but to decay slightly more
quickly than exponentially in −u20/(21u2) at separations clearly
exceeding 1 u.

To come to these results, the Green’s function molecular
dynamics (GFMD) technique was generalized to include thermal
noise. Particular emphasis was placed on the question how to
handle (the original) hard-wall interactions in the simulations.

We found that replacing the hard-wall overlap constraint
with a stiff harmonic potential produces satisfactory results if
simulations are done at different values for the stiffness and
extrapolation is made to infinite stiffness. The GFMD results are
described very well with different mean-field approximations to
the problem, which made it possible to identify a highly-accurate,
closed-form analytical expression for the distance-force relation
a flat, thermal elastomer interacting with a flat, rigid substrate.

It may be important to note that each microscopic interaction
law requires the coarse-graining to be done for that particular
interaction. For example, if thermal fluctuations were to be
treated in a Dugdale model (Dugdale, 1960) (e.g., hard-wall
constraint plus a constant adhesive stress acting up to a finite
range), results for the hard-wall constraint cannot be simply
incorporated, but a new parametrization of thermal effects has
to be done.

Application of our methodology to Hertzian contacts revealed
that thermal fluctuations can induce non-negligible shifts in
the normal displacement. As a zero-order approximation,
it can be assumed that the thermally induced shift of
a Hertzian indenter is a little less than 1.5 times the
thermal standard deviation of surface positions of a free,
unconstrained surface. Corrections turn out to depend only
logarithmically on the ninth’ root of the normal load. Thus,
thermal noise leads to a shift of the load-displacement curve
that is roughly equal to the root-mean-square fluctuation
of surface atoms but almost independent of the load. As
a referee of this manuscript noticed: This picture is simple
and easily understandable intuitively aposteriori, but by no
means trivial and understandable in advance. The result
of an essentially load-independent displacement shift may, in
part, explain why Hertzian contact models often apply all
the way down to the nanoscale: Essentially constant shifts
remain unnoticed.

We expect similar results for randomly rough and other hard-
wall indenters as for Hertzian contacts, because the thermal
shift for the Hertz contact is relatively insensitive to the
radius of curvature. However, the effect of thermal fluctuations
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will be more important in the case of short-range adhesion.
Given the results from this study, quite noticeable adhesion
reductions may be expected when its range is in the order
of or less than the thermal displacement 1u. Future studies
are ongoing elucidating the reduction of adhesion due to
thermal vibrations.
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