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Mild combustion processes occur with mixtures highly diluted and preheated by a

strong recirculation of hot exhausted gases (thus mass and sensible enthalpy) within the

combustion chamber. This strategy configures a process based on autoignition kernels

outside or close to flammability limits transported by convection in the combustion

chamber, thus defining a process with unique physical and chemical features drastically

different from traditional deflagrative-diffusive flames. The article aims at analyzing the

recent issues relative to kinetic aspects involved in moderate or intense low-oxygen

dilution (MILD) combustion processes. First, the article comes through the identification

of peculiar experimental features of simple hydrocarbons oxidation process induced

by highly preheated and diluted conditions in model reactors typical of chemical

engineering. Second, the effects of steam and carbon dioxides on fuel oxidation process,

whose presence within the combustion chamber is imposed by high levels of hot gas

recirculation, are addressed. Third, the article comes through a thorough analysis of

recent scientific contributions on kinetic aspects of MILD combustion processes to

identify the critical points in modeling activities.

Keywords: jet stirred flow reactor, tubular flow reactor, combustion regimes, temperature oscillations, NTC

behavior, H2O and CO2 chemical effects, chemistry modeling queries

INTRODUCTION

The attention of the scientific and industrial community involved in the identification and
development of energy production systems has been devoted to new technologies under the
keywords of high efficiency and reduced emissions. Given this background, clean combustion
processes still can play an important role, but they are required to be flexible with respect to thermal
loads, to respond to the fluctuation of energy produced (Luo et al., 2015) by renewable sources in
virtue of their intrinsic intermittence (Lund and Kempton, 2008; Keyhani et al., 2010; Østergaard,
2012; Abdmouleh et al., 2015) and to be flexible with respect to fuel nature itself, given the high
variability of fuels composition and smart “energy carriers” (Spliethoff et al., 1996; McKendry,
2002; Demirbas, 2004; Hosseini and Wahid, 2016; Van Vuuren et al., 2017; SMARTCATs COST1).
Such a further requirement embitters the difficulties to develop advanced combustion technologies,
because new processes [i.e., staged combustion, lean premixed, etc. (Zabetta et al., 2005; Huang and
Yang, 2009; Dunn-Rankin, 2011; Cozzi and Coghe, 2012)] may work properly in restricted ranges
of system parameters.

Among new combustion concepts, one promising candidate to simultaneously meet thermal
efficiency needs and pollutant emission restrictions, while responding to fuel and thermal load
flexibility, appears to be the moderate or intense low-oxygen dilution (MILD) combustion

1SMARTCATs COST Action CM1404, http://www.smartcats.eu/.
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(Wünning and Wünning, 1977; Weber et al., 2000, 2005;
Cavaliere and de Joannon, 2004; Dally et al., 2004; Milani and
Wünning, 2007). This combustion is also renewed as flameless
oxidation (or FLOX) (Wünning and Wünning, 1977; Milani
and Wünning, 2007), high-temperature air combustion (Katsuki
and Hasegawa, 1998; Tsuji et al., 2003), and low-temperature
combustion for engine applications (Saxena and Bedoya, 2013).

The MILD combustion has been successfully employed in
furnaces and boilers, and it could be potentially used into
many other applications, such as gas turbines, biogas burners,
burners for hydrogen reformers, or for combined heat and power
(CHP) units and engines (Levy et al., 2004; Riccius et al., 2005;
Lückerath et al., 2008; Khalil and Gupta, 2011; Li et al., 2011;
Reddy et al., 2015; Ho et al., 2016). In addition, MILD-oxyfuel
combustion for coal combustions represents a subcategory of
MILD processes with high potentiality to overcome problems
relative to oxycombustion systems (Li et al., 2011, 2013).

MILD combustion relies on a strong recirculation of mass and
sensible enthalpy by recycling the exhausted gases to dilute and
simultaneously preheat fresh reactants (Wünning and Wünning,
1977; Katsuki and Hasegawa, 1998; Weber et al., 2000, 2005;
Tsuji et al., 2003; Cavaliere and de Joannon, 2004; Dally et al.,
2004; Milani andWünning, 2007; Khalil and Gupta, 2011; Saxena
and Bedoya, 2013; Reddy et al., 2015). The intrinsic nature
of the process is based on autoignition/fuel-ultra-lean kernels
that increase in size while being transported by convection
(Van Oijen, 2013; Minamoto and Swaminathan, 2015), imposed
by high-turbulence exhausted gas recirculation fluid-dynamics
patterns, thus defining a process with homogenous intensive
parameters within the combustion chamber (Özdemir and
Peters, 2001; Noor et al., 2013a; Sidey et al., 2014; Sidey and
Mastorakos, 2015).

Characteristic working temperatures are modest (T <

1,500K) and below critical values for the production of pollutants
(i.e., NOx, particulate matter; Wünning and Wünning, 1977;
Weber et al., 2000; Cavaliere and de Joannon, 2004; Milani
and Wünning, 2007), while complete fuel conversion, high
thermal efficiencies, and process stability are ensured by the
high recirculated sensible enthalpy. Because the stability of the
oxidation process does not rely on heat feedback mechanisms
from the flame front, as in conventional diffusion/deflagrative
flames, but on the recycled sensible heat, the process is
intrinsically highly flexible with respect to fuels chemical/physical
properties and quality (Weber et al., 2005; Colorado et al., 2010;
Derudi and Rota, 2011; Hosseini and Wahid, 2013; Noor et al.,
2013a), given that the mixture temperature after the mixing
process between fresh reactants and recirculated gas is higher
than mixtures autoignition one.

MILD combustion processes present unique
physical/chemical features, drastically different from traditional
combustion systems, which should be discussed at basic levels
for the fine comprehension of the process itself. The structure of
the reactive region (Özdemir and Peters, 2001; de Joannon et al.,
2012a,b; Van Oijen, 2013; Minamoto et al., 2014; Minamoto and
Swaminathan, 2015; Sorrentino et al., 2019), the chemistry (de
Joannon et al., 2005; Zhukov et al., 2005; Li et al., 2014; Sabia
et al., 2014; Lubrano Lavadera et al., 2018b), and the interaction

between chemistry–turbulence (Dally et al., 2004; Parente et al.,
2008, 2016; Isaac et al., 2013; Noor et al., 2013b) represent key
points to address, with strong implications also on modeling
activities (Dally et al., 2004; Parente et al., 2008, 2016; Isaac et al.,
2013; Noor et al., 2013b).

Among the issues to consider, the chemical aspect of the
oxidation process represents a fundamental one. In fact, the high
levels of dilution coupled with moderate working temperatures
imply a drastic change of the kinetics involved during the fuel
oxidation process with respect to flame chemistry, with relatively
lower chemical characteristic times and heat release rates (Dally
et al., 2004; de Joannon et al., 2005; Zhukov et al., 2005; Parente
et al., 2008, 2016; Isaac et al., 2013; Noor et al., 2013b; Li
et al., 2014; Sabia et al., 2014; Lubrano Lavadera et al., 2018b).
Furthermore, it occurs in presence of great amounts of non-inert
species, such as carbon dioxide and steam, which can alter the
kinetic routes by means of several effects, here reported:

1) Thermal: higher heat capacities with respect to N2, thus lower
adiabatic flame temperature;

2) Kinetic: they participate directly in bimolecular reactions
and enhance the role of third-molecular reactions because of
higher third-body efficiencies with respect to N2. For these
effects, a huge literature has been produced in the last decade,
as reported in the next paragraphs (Fedyaeva et al., 2018;
Lubrano Lavadera et al., 2018a).

In addition, these species can modify the structure of the reactive
region because of the variation of the transport properties of
the mixture (Dally et al., 2004; Mardani et al., 2010, 2013)
and lowering local temperatures by enhancing heat radiation
transfer (Dally et al., 2004; Mardani et al., 2013; Sorrentino et al.,
2018; Zhang et al., 2019) mechanisms, because of their high
radiative properties.

In this article, the chemical issues of MILD combustion
processes are discussed. They will be analyzed throughout the
implication on simple hydrocarbons oxidation chemistry, but
the discussion could be extended to higher pressures (Gurentsov
et al., 2002; Zhukov et al., 2005; Sjöberg et al., 2007; Le Cong and
Dagaut, 2008, 2009a,b; Anderlohr et al., 2010; Xie et al., 2014b;
Donohoe et al., 2015), to H2 and syngas (Mueller et al., 1999;
Park et al., 2003; Wang et al., 2003; Zabetta et al., 2005; Le Cong
and Dagaut, 2008; Lee et al., 2012; Xie et al., 2014a), or to high-
molecular-weight paraffins at elevated pressures (Sjöberg et al.,
2007; Anderlohr et al., 2010).

OXIDATION PROCESS OF SIMPLE
HYDROCARBONS UNDER DILUTED
CONDITION

MILD oxidation configures as a chemically controlled process
with characteristic kinetic times relatively longer than the
ones involved in traditional flames. Within this slow oxidation
regime, system exchange phenomena can drastically endorse
the establishment of instabilities if coupled with complex
heat reaction release rates, given the high non-linearity of
exothermic/endothermic reactions. The direct experimental
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evidence is the insurgence of peculiar oxidation phenomena, as
reported in the following.

Figure 1 is relative to the experimental combustion regimes
detected for methane/oxygen mixtures diluted in nitrogen at d=
90% at environmental pressure in a jet stirred flow reactor (JSFR)
(de Joannon et al., 2005) and in a tubular flow reactor (TFR)
(Sabia et al., 2014).

Figures 1A,B are relative to the JSFR. The mixture averaged
residence time (τ ) is 0.5 s. The characteristic combustion regimes
were summarized in a carbon/oxygen feed ratio/mixture inlet
temperature (C/O-Tin) map. Steady combustion and dynamic
behaviors were identified. The widest region corresponds to
steady stationary combustion conditions. For C/O< 0.55 and for

1,150<Tin < 1,200K, the system showsmore complex behaviors
with the establishment of temperature oscillations in time. As it
can be seen from Figure 1A, this area is divided into several zones
on the basis of different temperature waveforms (Figure 1B).
This range of behavior reflects the richness of oxidation kinetics
promoted under MILD conditions.

Numerical investigations devoted to the delineation of the
controlling kinetics of these phenomenologies revealed that
methane oxidation at low temperatures (<1,000K) is sustained
by this set of reactions H + O2 + M = HO2 + M, HO2 +

HO2 = H2O2 + O2, and H2O2 + M = OH + OH + M
coupled with HCO + O2 = CO + HO2 for HO2 production,
whereas methane converts to CO through the following chemical

FIGURE 1 | (A,B) Dynamic behaviors and temperature oscillation shapes for a methane/oxygen mixture in a JSFR, from de Joannon et al. (2005). (C,D) Combustion

regimes, and NTC-like behavior of autoignition delay times for propane/oxygen mixtures in a TFR, from Sabia et al. (2014).
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route CH3 + HO2→ CH3O→ CH2O→ HCO→ CO) (de
Joannon et al., 2005; Glarborg and Bentzen, 2007; Le Cong and
Dagaut, 2008, 2009a,b;Mendiara andGlarborg, 2009;Wang et al.,
2013; Sabia et al., 2014, 2015; Xie et al., 2014a; Song et al.,
2015; Lubrano Lavadera et al., 2016, 2018a). For the conditions
where temperature oscillations were detected, methyl radicals
are directly oxidized to CH2O (CH3 + OH→ CH2O + H2)
by OH radicals produced by the high-temperature branching
mechanism of the subsystem H2/O2. At the same time, methyl
radicals recombine to ethane (CH3 + CH3 + M = C2H6

+ M), followed by C2 dehydrogenation/pyrolytic routes. The
competition between oxidation/recombination–pyrolytic routes,
coupled with system heat exchange phenomena, promotes
instabilities (de Joannon et al., 2005; Sabia et al., 2014; Lubrano
Lavadera et al., 2018b). The enhanced role of the methyl
recombination routes for these temperatures is emphasized also
in other works (Zhukov et al., 2005; Li et al., 2014).

For higher Tin (>1,250K), the activation of further oxidative
routes (CH3 + OH + M→CH3OH→CH2OH→CH2O)
followed by CH2O→HCO→CO→CO2, or CH3 +

OH→CH2(s)→CH2→CH→CO, relieves the system from
the inhibiting effect of methyl radicals conversion to ethane;
thus, the system reaches a steady stationary state (Lubrano
Lavadera et al., 2018b).

Figures 1C,D are relative to experimental tests in a TFR
(Sabia et al., 2014). It is equipped with thermocouples equi-
displaced along the axial coordinate of the system, to detect
ignition/oxidation states. Following the same methodology used
for the JSFR data, the characteristic combustion regimes were
summarized in a C/O-Tin map.

For low Tin (850–975K), no combustion was detected for C/O
<0.3 (stoichiometric condition), whereas for rich mixtures, a
pyrolytic behavior was identified (temperature values lower than
the isothermal inlet profiles). As Tin is increased, for C/O = 0.3,
the operative conditions lead to ignition, defined as a temperature
increase of 10K (Mardani et al., 2010, 2013) with respect to the
inlet axial one (Tin). When Tin is increased up to 1,080K, the
ignition region extends to fuel leaner conditions, while remaining
almost constant for the fuel-rich side. For Tin >1,120K, the
ignition region extends up to C/O= 0.5. Between the ignition and
the pyrolysis–no combustion regions, a low reactivity behavior
occurs with a temperature increase lower than 10K with respect
to Tin, thus not satisfying the ignition criterion (de Joannon et al.,
2002; Evans et al., 2017).

Conditions included within the dynamic line show oscillatory
behaviors, for which two temperature profiles are recorded,
downstream of a steady ignition point, periodically switching
from one to the other in time. The last region, indicated as
transient (enclosed by the dotted line), identifies conditions
where mixtures temporarily ignite, leading to a temporarily first
steady state, followed by a second final one.

Figure 1D reports the autoignition delay times (t) with
respect to mixture inlet temperature (Tin) for the stoichiometric
condition in the Arrhenius plot diagram. The autoignition
delay time is defined as the ratio between the axial positions
where the temperature increase is equal to 10K and the flow
mean velocity (Sabia et al., 2014). The autoignition delay time
curve shows two different slopes with respect to Tin: for

Tin lower than about 1,100K, t is almost independent from
Tin, whereas for 1,000/Tin <0.9, t linearly diminishes with
temperature. Such a trend was identified for 0.15 < C/O < 0.3.
Congruently with the methane dynamic behavior in the JSFR,
the negative temperature coefficient (NTC)-like phenomenology
and the oscillatory regimes detected in the TFR emerge from the
competing methyl radicals oxidative/recombination–pyrolytic
routes at intermediate temperatures (1,000 < T < 1,100K),
whereas the H2/O2 system is passing from the low- to the high-
temperature branching mechanism.

In similar operative conditions, NTC-like and oscillatory
behaviors were detected in other systems for simple
hydrocarbons (Cadman et al., 2000; Penyazkov et al., 2005;
Zhukov et al., 2005; Gallagher et al., 2008; Sabia et al., 2013;
Lubrano Lavadera et al., 2016, 2018a; Hashemi et al., 2017).

As evident, the nature of such behaviors is very different
from conventional “cool” flame or “NTC” phenomena observed
for low-molecular-weight paraffins at high pressures (Herzler
et al., 2004; Gallagher et al., 2008; Hashemi et al., 2016,
2017, 2019) or high-molecular-weight paraffins (Sokolov et al.,
1996; Basevich and Frolov, 2007; Ju et al., 2019; Wang
et al., 2019), where the oxidation chemistry of alkyl-peroxide
radicals is fundamental. In particular, for high-molecular-weight
paraffins, a double O2 addition to alkyl-radicals and internal
isomerization to ketohydroperoxy radicals, ruled by equilibrium
reactions, determine temperature oscillations in time or the NTC
behavior (if referred to ignition delay times), coupled with heat
exchange mechanisms.

OXIDATION PROCESS OF SIMPLE
HYDROCARBONS UNDER DILUTED
CONDITION IN PRESENCE OF
H2O AND CO2

As examples of the chemical effects of H2O and CO2

on combustion processes, Figure 2 reports some recent
experimental data, adapted from Sabia et al. (2015), Lubrano
Lavadera et al. (2016, 2018a). In Figure 2, round symbols
are relative to the N2- diluted mixtures, triangles to the
CO2-diluted mixtures, and squares to the H2O–partially
diluted one. Figure 2A shows the experimental 1T =

(Treactor – Tinlet) obtained for the stoichiometric condition
obtained in a JSFR (de Joannon et al., 2005; Sabia et al.,
2014) for these three cases. The residence time (τ ) is
equal to 0.5 s, and the overall mixture dilution level (d)
is 90%.

For the N2-diluted mixture, the oxidation onset occurs for Tin

= 880K. The system temperature increases monotonously up
to Tin = 940K, and then the oxidation occurs throughout
temperature oscillatory regimes, likewise the methane
(Figures 1A,B). For this oxidation regime, the maximum
and minimum values detected during the oscillatory behavior
(full symbols) are reported. Afterward, for Tin = 1,100K, a
stationary steady condition is identified.

The experimental 1T for the CO2-diluted mixture and the
system partially diluted in H2O (45% H2O−55% N2) are similar
to the ones relative to the N2-diluted one. Nonetheless, the
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FIGURE 2 | Effects of H2O and CO2 on the oxidation process of stoichiometric C3H8/O2 mixtures in a JSFR (A), adapted from Lubrano Lavadera et al. (2018a) and

Lubrano Lavadera et al. (2016), and the autoignition delay times of stoichiometric C3H8/O2 mixtures in a TFR (B), adapted from Sabia et al. (2015).

oxidation onset occurs, respectively, for Tin = 820K and for Tin

= 850K, thus slightly anticipating the reactivity with respect to
the reference system. For CO2, oscillation occurs for 1,030K <

Tin < 1,100K, whereas for the system diluted in H2O for 980K
< Tin < 1,100K. Afterward, a stationary steady state regime is
detected for both the mixtures. At high temperatures, the system
diluted in N2 shows a higher temperature increment.

Along with the experimental data, Figure 2A reports the
numerical simulations obtained with a detailed kinetic model
PoliMi (Cadman et al., 2000; Faravelli et al., 2003; Frassoldati
et al., 2003), as reported in Lubrano Lavadera et al. (2018a) and
Lubrano Lavadera et al. (2016). In general, it well-predicts both

the anticipating effect of CO2 and H2O at low temperatures
and the temperature oscillatory behaviors (dashed lines), even
though overestimates system reactivities at low temperatures,
considering 1T as the reference parameter.

Figure 2B shows the experimental autoignition delay times (t)
for a stoichiometric propane/oxygen mixture diluted at d = 90%
in N2, CO2, and H2O along with numerical predictions (lines)
(Sabia et al., 2015).

For the system diluted in CO2 and H2O, the experimental
autoignition delay times (t) are longer of almost one order
of magnitude with respect to the ones obtained for the
N2-diluted mixture.
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The autoignition delay times obtained for N2 are predicted
with a good approximation, but this consistency fails
for the other two diluents. Because MILD combustion
configures as a continuous autoignition states, the fine
comprehension of the chemical effect of CO2 and H2O
is mandatory.

DISCUSSION AND CONCLUSION

There are different main aspects that should be considered
in the development of detailed oxidation chemistry for MILD
combustion processes.

The first point concerns the complexity of the oxidation
process at low (T < 1,000K) to intermediate (1,000K < T <

1,200K) temperatures. In fact, under these operative conditions,
the numbers of species and consequently of elementary reactions
are meaningfully larger with respect to the ones necessary
to describe the high-temperature flame oxidation processes.
This implies high computational cost for computational fluid
dynamics (CFD) calculations, because detailed chemistries are
required. As previously shown, the light hydrocarbons chemistry
under these operating conditions is governed by a delicate
balance between slow oxidation and recombination/pyrolytic
channels. Uncertainties of the Arrhenius parameters (Konnov,
2008; Varga et al., 2015) of elementary reactions and of
thermodynamic data have a stronger impact on the predictive
performance of kinetic models with respect to conventional
flame conditions. In fact, at high temperatures, the performance
of kinetic schemes relies on the proper description of the
high-temperature branching reactions of the subsystem H2/O2.
The fast chemistry promoted by such reactions may hide the
elementary reaction constants uncertainties of slow reactions,
reducing the impact of their relative weight in the prediction of
combustion features.

The presence of H2O and CO2 ab initio poses several
problems. First, their interaction on fuel oxidation kinetics
process is an aspect not contemplated for traditional systems,
where H2O and CO2 are present as combustion products in
the postoxidation phase, thus acting only on a subset of kinetic
reactions that involve few species close to equilibrium conditions.
On the contrary, CO2 and H2O can drastically alter the ignition
process in dependence of operating conditions with a twofold
interaction. They increase system reactivity at low temperatures
(Sabia et al., 2007, 2015; Sjöberg et al., 2007; Anderlohr et al.,
2010; Lubrano Lavadera et al., 2016), but delay it at intermediate–
high temperatures (Mueller et al., 1999; Cadman et al., 2000; de
Joannon et al., 2002; Park et al., 2003; Wang et al., 2003, 2013;
Herzler et al., 2004; Penyazkov et al., 2005; Zabetta et al., 2005;
Basevich and Frolov, 2007; Glarborg and Bentzen, 2007; Sjöberg
et al., 2007; Gallagher et al., 2008; Le Cong and Dagaut, 2009a,b;
Mendiara and Glarborg, 2009; Mardani et al., 2010, 2013; Lee
et al., 2012; Sabia et al., 2013, 2015; Chen and Ghoniem, 2014;
Xie et al., 2014a; Song et al., 2015; Zou et al., 2015; Hashemi et al.,
2016, 2017, 2019; Lubrano Lavadera et al., 2016, 2018a; Evans
et al., 2017; He et al., 2017; Fedyaeva et al., 2018; Sorrentino et al.,
2018; Zhang et al., 2019).

These effects mainly depend on the interaction that such
species have on the branching mechanisms, related to the
H2/O2 subsystem. At low temperatures, the ignition–oxidation
chemistry is sustained by hydrogen peroxides molecule
formation and decomposition to OH radicals, namely, H + O2

+ M = HO2 + M, HO2 + HO2 = H2O2 + O2, and H2O2 +

M = OH + OH + M. At intermediate–high temperatures, the
branching mechanism relies on the following set of reaction H+

O2 = OH+ O, O+H2 = OH+H, and OH+H2 =H2O+H.
Literature works, relative to H2O and CO2 effects on H2

oxidation (Mueller et al., 1999; Park et al., 2003;Wang et al., 2003;
Lee et al., 2012; Xie et al., 2014b), suggest that they act on the low-
temperature mechanism due to their high third-body collisional
efficiencies, enhancing the reaction H + O2 + M = HO2 + M
to the detriment of H + O2 = OH + O2 at low temperatures.
At high temperatures, H2O delays reaction H2 + OH = H2O
+ H, by shifting its equilibrium state, and O + H2 = OH +

H as O radicals is consumed by reaction O + H2O = OH +

OH. In general, H2O leads to a change of radicals distribution,
decreasing H and O while promoting OH concentration. At high
temperatures, CO2 further inhibits reaction H + O2 = OH +

O by consuming H radicals throughout decomposition reactions
(CO2 + H = CO + OH) (Glarborg and Bentzen, 2007; Le Cong
and Dagaut, 2008, 2009a,b; Mendiara and Glarborg, 2009; Song
et al., 2015).

Fuel oxidation chemistry in presence of H2O and CO2 is
further complicated by their possibility to interact with the C1-
C2 reactions directly in bimolecular reactions or indirectly as
third-body species in third-molecular reactions.

Such species can sensibly alter the intermediate temperature
consumption of CH3 rates by promoting methyl recombination
routes to C2 species, as high collisional efficiency third-body
species. Steam can partially reconvert methyl radicals back to
methane (CH3 + H2O = CH4 + OH), thus inhibiting system
reactivity (Sabia et al., 2015). At the same time, CO2 can
strongly interact in the C1 high-temperature chemistry through
the reaction CH2(S)/CH2 + CO2 = CH2O + CO (Glarborg
and Bentzen, 2007; Le Cong and Dagaut, 2009a,b; Mendiara and
Glarborg, 2009; Sabia et al., 2015; He et al., 2017). Recently, He
et al. (He et al., 2017) have introduced a new methyl radical
conversion channel (CH3 →CH3OCO→CH2O and CH3→

CH3OCO→ CO) exclusive in O2/CO2 atmospheres formethane
oxidation chemistry at high temperatures.

As it has emerged within this brief description, kinetic
mechanisms involve a set of third-molecular reactions whose role
is emphasized by third-molecular species with high collisional
efficiencies (such CO2 and H2O). In this context, the reaction
H + O2 + M = HO2 + M plays a crucial role for HO2

radical production. In this regard, it is worth mentioning that
big uncertainties on kinetic parameters still remain (Konnov,
2008; Varga et al., 2015). All these works highlight that for
such a reaction there are considerable scattered data especially
for the low-pressure limit with big uncertainties for third-
bodies collisional efficiencies. Some recent efforts to calculate
these values were made by Jasper et al. (2015) for monoatomic
and biatomic species, whereas Shao et al. (2019) have recently
proposed new values for H2O and CO2.
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The problem relative to third-body collisional efficiency
uncertainties is even more relevant if it is considered that they
may exhibit temperature dependence. For instance, Baulch et al.
(1988) suggested a temperature dependence k(H2O)/k(N2) =

1.36T0.4 for water in the reaction H + O2 + M = HO2 + M,
whereas Davis et al. (2005) suggested a temperature dependence
k(H2O)/k(MN2) = 60T0.25 for water in the elementary reaction
H + H + M = H2 + M. Also, for the reaction CH4 + H = CH3

+ H2, Jasper et al. (2013) suggested (H2O)/k(Arr) should be 3 at
300K and 7 at 2,000 K.

The definition itself of third-body species with third-
molecular efficiencies different from 1 is ambiguous. Several
authors have proposed third-body collisional efficiencies also for
H2O2 and HO2, with collisional efficiencies similar to the ones
declared for steam (Gerasimov and Shatalov, 2013).

In addition, the basic chemistry of the H2/O2 mechanism
would require a right description of H + HO2 reactions (i.e.,
H + HO2 = OH + OH, H + HO2 = H2 + O2, and HO2 +

OH = H2O + O2, H + HO2 = H2O + O) (Conaire et al.,
2004; Mousavipour and Saheb, 2007; Burke et al., 2010, 2012;
Shimizu et al., 2011), whereas for high-pressure conditions,
the inclusion of reaction H + OH + M = H2O + M would
be fundamental for the description of laminar flame speeds
(Conaire et al., 2004; Konnov, 2008; Burke et al., 2012). Konnov

(2008) also suggested the inclusion of the termolecular reaction
HO2 + HO2 + M = H2O2 + O2 + M for laminar flame
speed prediction.

Burke et al. (2010) have recently suggested that the pressure
dependence description should be described separately for
different bath gases, with center broadening factors from 0.5 to
0.7 for Ar, 0.5 to 0.7 for N2, and 0.6 to 0.8 for H2O. Burke
et al. (2010) have also discussed the necessity to include “non-
linear mixing rules” for the reaction H + O2 + M = HO2 +

M in presence of multicomponent bath gases, in agreement with
Li et al. (2004).

In this perspective, at low–intermediate temperatures and
in presence of conspicuous amount of non-inert species,
the chemical kinetic validation procedure suffers the lack of
experimental results in simple and controlled facilities.
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