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Electroadhesion is a very hot topic in tribology due to its implications for the science

of surface haptics. Building on theories of Persson, we develop a simpler theory for

electroadhesion between rough surfaces using the bearing area model of Ciavarella.

The theory is derived for the cases of conducting and insulating bodies and shows

that pull-off forces depend mostly on the applied voltage, the surface root mean square

(RMS) height, and the longest wavelength in the surface representation. However, the

real contact area and friction additionally depend on rms slopes and hence on truncation

of the roughness spectrum. Two stickiness criteria are derived based on the present

theory and on the energy balance proposed by Persson and Tosatti. The coefficient of

friction decays with the normal pressure, tending to a plateau in a manner consistent with

existing experiments.

Keywords: electroadhesion, JKR model, DMT model, soft matter, roughness models

1. INTRODUCTION

An electric voltage applied between two contacting rough elastic bodies leads to accumulation of
charges of opposite signs on the surfaces, which obviously produces electrostatic attraction. The
electrostatic load adds to the external repulsive loads and possibly to van der Waals adhesive
interactions. Also, it influences the intimate contact area and therefore the frictional force when the
solids are sliding, which is of great interest for new touch screen applications (Vardar et al., 2017).
It is therefore of utmost importance to understand the fundamentals of friction and adhesion,
particularly their relation with tactile perception. This is a very active field of research nowadays,
and electroadhesion is a promising technology in this area. The discovery of electroadhesion dates
back to 1923, when Johnsen and Rahbek (1923) described the physical phenomenon.

Persson (2018) has extended his theory of contact mechanics (Persson, 2001, 2007) and
developed a general mean-field theory that includes electroadhesion in a way similar to the Persson
and Scaraggi theory for van der Waals adhesion (Persson and Scaraggi, 2014). These theories use
the “Derjaguin-Muller-Toporov (DMT) assumption” (Derjaguin et al., 1975; Ciavarella et al., 2019),
namely that the contact can be considered similar to that in the absence of adhesion (repulsive
problem), and the effect of the adhesive forces is estimated based on the gap distribution by simply
convoluting the force-separation law. The theory of Persson (2018) is developed for two limiting
cases: (i) the case where an electric insulating film (actually two films in general) is interposed
between the two conducting bodies, and (ii) the case of two electric conducting solids, which results
in contact resistance and a voltage drop over a narrow region at the interface; in the latter case a
theorem of Barber (2003) on repulsive contact is used, which states that the contact conductance is
proportional to the mechanical contact stiffness. A simplified theory was also proposed by Popov
and Hess (2018).
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It is, however, unclear from the full Persson theories which
are the main parameters governing the problem, since Persson’s
theories were developed in very general settings, particularly
in terms of the full spectrum of roughness and the complex
details of the gap between the surfaces. This results in quite
elaborate theories which may not be easy to apply or interpret.
A simpler theory was proposed for van der Waals adhesion by
Ciavarella (2018) and Ciavarella and Papangelo (2019), called the
bearing area model (BAM) as it provides a simple estimate of the
adhesion forces between rough hard surfaces using an extremely
simple and therefore closed-form geometric estimate of the
adhesive area. The BAM is also loosely a DMT model similar to
that of Persson and Scaraggi (2014), but thanks to the geometrical
estimate for the bearing area, it is completely expressible in
simple closed-form equations in the case of a power-law power
spectrum density (PSD) of the roughness. The main goal of the
present paper is to generalize this theory to electroadhesion.

As suggested in a recent paper by Dalvi et al. (2019), surface
topography can easily have more than seven orders of magnitude
of almost-power-law spectrum, including down to the Ångström
scale (see Figure S2 in Dalvi et al., 2019, which gives the 2D
isotropic PSD). But in the end, as originally suggested by Persson
and Tosatti (2001), the effective adhesive force depends only
on the large-wavelength components of the PSD; see also the
stickiness criteria derived by Ciavarella (2019). We shall also
extend the stickiness criteria to electroadhesion, and we find
surprisingly universal results, despite the very different origins
of the various proposals we compare. However, the real contact
area, and therefore the friction force, depends crucially on the
truncation of the PSD spectrum, implying a rather difficult choice
which will ultimately require a best-fit exercise.

2. ELECTROADHESION

Let us consider the contact configuration shown in Figure 1.
We have an elastic rough solid which is brought into contact
with a rigid flat surface. Both solids are made of conducting
materials, but they are coated with electric insulating (and rigid)
films of thicknesses d1 and d2, respectively, and relative dielectric
constants ε1 and ε2 (see Figure 1). A (remote) electric voltage
difference V is applied at the two conducting solids. As the elastic
solid is rough, the local interfacial separation u = u(x) depends
on the in-plane coordinate x = (x, y).

By writing the variation of the electric potential through the
contact pair, Persson (2018) obtained the z component of the
electric field at the interface:

Ez(x) = −
V

u(x)+ h0
, (1)

where

h0 =
d1

ε1
+

d2

ε2
. (2)

The normal pressure acting at the solid-vacuum interface is given
by the zz component of the Maxwell stress tensor, σzz(x) =

FIGURE 1 | Sketch of the geometry considered: A rough elastic solid is

squeezed against a flat rigid solid. Both solids are made of conducting

materials, with insulating coatings of thicknesses d1 and d2 and dielectric

constants ε1 and ε2. An electric voltage difference V is applied at the two

solids. The interfacial separation u = u(x) depends on the in-plane coordinate

x = (x, y).

ε0
2 E

2
z , i.e.,

σzz(x) =
ε0

2

(
V

u(x)+ h0

)2

, (3)

where ε0 ≃ 8.8542 × 10−12N/V2 is the vacuum permittivity.
Hence, we have an adhesive mean pressure

pad =
ε0

2
V2
∫ ∞

0

(
1

u(x)+ h0

)2

P(p|u) du, (4)

where P(p|u) is the probability distribution of interfacial gaps at
pressure p for given u, including the contact area. For insulating
solids, the theory of Persson (2018) indeed accounts for the
adhesive interactions within the contact area [u(x) = 0 in
Equation 3] and for those exerted outside the contact patches.
The probability distribution of gaps is in fact

P(p|u) =
A

A0
δ(u)+ P1(p|u), (5)

where δ(u) is the delta function, A is the contact area, A0 is the
nominal contact area, and P1(p|u) is normalized so that

∫ ∞

0
P1(p|u) du = 1−

A

A0
. (6)

From the above analysis, the applied external pressure pext at
a given mean separation u can be obtained by summing the
repulsive p and the adhesive pressure pad (pressure is negative
when compressive), which results in

pext = p+ pad = p+
ε0

2

(
V

h0

)2 A

A0

+
ε0

2
V2
∫ ∞

0

(
1

u(x)+ h0

)2

P1(p|u) du, (7)

where the adhesive terms are estimated by following the
DMT method (Derjaguin et al., 1975; Ciavarella et al.,
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FIGURE 2 | Typical power-law PSD of a self-affine randomly rough surface. In

this figure, Z = 10−8 m0.6, with q0 = 102 1/m, q1 = 1010 1/m, and H = 0.7.

FIGURE 3 | Typical electrostatic attraction force law replaced by a Maugis

step function law, plotted in dimensionless form with p̃ad/σ̃0 vs. ũ = u/h0.

2019), i.e., neglecting the elastic deformations induced by the
adhesive interactions.

In what follows, we shall assume for simplicity self-affine
fractal rough surfaces that have a typical power-law PSD

C(q) = Zq−2(1+H), q0 < q < q1, (8)

where C(q) = 0 elsewhere,H = 3 − D is the Hurst exponent
with D being the fractal dimension of the surface, q = 2π

λ
is

the wavenumber associated with the wavelength λ, q1, and q0 are
respectively the largest and smallest wavenumbers in the surface

representation, and Z = H
π

( hrms
q0

)2( 1
q0

)−2(H+1)
is a constant

multiplier, with hrms being the root mean square (rms) amplitude
of roughness (see Figure 2).

3. BEARING AREA METHOD FOR
ELECTROADHESION

3.1. General Equations
Determining the external load pext by Equation (7) requires in
general that the probability distribution P1(p|u) of interfacial
separations be known, which can be achieved by using Persson’s
theories (see Almqvist et al., 2011). Instead, we propose here a
simpler theory, which builds on the previous BAM (Ciavarella,
2018; Ciavarella and Papangelo, 2019) and gives a very simple
estimate of the adhesion of hard rough solids based on a bearing
area estimation of the adhesive contact area (Ciavarella, 2018).
The theory is not an approximation of the DMT theory of
Persson, since it is based on a different approximation. We first
replace the electrostatic potential (3) with a Maugis–Dugdale
equivalent, for which the adhesive traction is defined as a function
of the gap u (see Figure 3):

pad(u) =

{
σ0, u ≤ h0,

0, u > h0.
(9)

Upon integration for nominally flat surfaces, the work of the
adhesion 1γ is given by

1γ =
ε0

2
V2
∫ ∞

0

(
1

u(x)+ h0

)2

du =
ε0

2h0
V2. (10)

For this to be equal to the surface energy in the Maugis-Dugdale

approximation, i.e., 1γ =
∫ h0
0 σ0 du = σ0h0, we need to have

σ0 =
ε0

2h20
V2, (11)

and hence the results in Ciavarella (2018) apply (BAM).
For a nominally flat surface with Gaussian distribution

of heights, the main idea is to estimate the adhesive area1

analogously to a bearing area estimate which works very well for
the sphere problem (see Ciavarella, 2018); for the nominally flat
Gaussian roughness this results in

Aad

A0
=

1

2

[
erfc

(
u− h0√
2 hrms

)
− erfc

(
u

√
2 hrms

)]
, (12)

where u is the mean separation of the surfaces and hrms is the rms
amplitude of roughness.

For intermediate mean separations, the repulsive pressure can
be obtained by using Persson’s theory (Persson, 2007; Papangelo
et al., 2017), which for self-affine fractal surfaces with power-
law PSD and fractal dimension D ≃ 2.2 gives (negative when
compressive)

p(u) ≃ −E∗q0hrms exp

(
−u

γ hrms

)
, (13)

where γ ≃ 0.5 is a constant parameter and E∗ is the composite
elastic modulus of the material.

1The adhesive area is defined as the portion of surface on which tensile stress
is applied.
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3.2. Insulating Solids
While for the spherical problem the bearing area estimate above
excludes the contact area itself, for Gaussian roughness the
expression (12) tends to 1 in the limit, so it would be inconsistent
to add separately the true contact area A/A0: hence, in our theory
there will be no effect of rms slopes, which in Persson’s (2018)
theory certainly enter the picture. Further, we sum the repulsive
(13) and attractive contributions to obtain an external applied
pressure (positive when tensile)

pext(u)

E∗
≃ −q0hrms exp

(
−u

γ hrms

)

+
υ2

2

[
erfc

(
u− h0√
2 hrms

)
− erfc

(
u

√
2 hrms

)]
, (14)

where we have defined an “electroadhesive”
dimensionless voltage

υ =
√

σ0

E∗
=
√

ε0

2E∗
V

h0
. (15)

For very low voltage the external load pext(u) coincides with the
repulsive load p, while for very high voltage the two surfaces will
stick together. By introducing the dimensionless parameters

p̃ext =
pext

E∗
, σ̃0 =

σ0

E∗
, ũ =

u

h0
,

h̃rms =
hrms

h0
, λ̃L =

λL

h0
, (16)

Equation (14) can be written as

p̃ext (̃u) ≃ −
2π

λ̃L
h̃rms exp

(
−ũ

γ h̃rms

)

+
υ2

2

[
erfc

(
ũ− 1

√
2 h̃rms

)
− erfc

(
ũ

√
2 h̃rms

)]
, (17)

where λL is the longest wavelength in the surface representation,
i.e., q0 = 2π/λL. Notice that in the standard case of van der
Waals forces, σ0

E∗ ≃ 1γ/ǫ
E∗ = la

ǫ
with la = 1γ/E∗ defines a

characteristic adhesion length, where ǫ is the characteristic length
of interaction of the order of the interatomic distance. In the
electroadhesion case, υ2 = ε0V

2

2E∗h20
replaces la/ǫ, and by changing

the voltage it can be varied by many orders of magnitude. Hence,
adhesion is favored at high applied voltageV , low elastic modulus
E∗, and thin insulating layer thickness. Clearly, if both the van
der Waals adhesion forces and the electroadhesive tractions are
present, they should be summed.

3.3. Conducting Solids
If an electric voltage is applied between two contacting solids
with certain electric conductivity, then one has to account for the
electric current flow through the contact patches; hence, there
would be attraction only outside of the contact areas. However,
the voltage drop V across the (non-)contacting interface will
depend on the electric conductivities κ1 and κ2 of the solids.
Barber’s (2003), using Persson (2018) theorem for the analogy

between electrical conduction and mechanical stiffness, finds
approximately that the actual voltage drop 1V(u) decreases with
the applied voltage V in a manner2 depending on the mean
separation u:

1V(u) =
V

1+ 4 d0
hrms

p(u)
E∗

, (18)

where

d0 =
(

κ1d2 + κ2d1

κ1 + κ2

)
. (19)

By Equation (11), for conducting materials the adhesive strength
will be dependent on the mean separation u. From Equation (11),
we define

σ0,cond(u) =
ε0V

2

2h20

1
(
1+ 4 d0

hrms

p(u)
E∗

)2 =
σ0(

1+ 4 d0
hrms

p(u)
E∗

)2 ,

(20)
where σ0,cond(u) ≤ σ0 and we recall that σ0 is the adhesive
strength for insulating bodies. Hence, for a fixed separation one
obtains

pext(u)

E∗
≃ −q0hrms exp

(
−u

γ hrms

)

+
σ0

2E∗

[
erfc

(
u−h0√
2 hrms

)
− erfc

(
u√

2 hrms

)]

(
1+ 4d0q0 exp

(
−u

γ hrms

))2 (21)

or, in dimensionless form,

p̃ext
(̃
u
)
≃ −

2π

λ̃L
h̃rms exp

(
−ũ

γ h̃rms

)

+
υ2

2

[
erfc

(
ũ−1√
2 h̃rms

)
− erfc

(
ũ√
2̃hrms

)]

(
1+ 8π

λ̃L
d̃0 exp

(
−ũ

γ h̃rms

))2 , (22)

where we have defined d̃0 = d0/h0.

4. VOLTAGE NEAR FULL CONTACT

As noted by Persson, adhesion increases very slowly as the voltage
increases, but above a certain threshold the increase becomes
very rapid as the surfaces approach each other. It may be useful
in certain applications to have an estimate of the voltage at
which the rough surfaces would be near full contact. Assuming
in our simplified theory that this occurs already at u

hrms
= 1, for

insulating bodies imposing a given pext results in the following
condition for υ :

υfull =

√
ε0V

2
full

2E∗h20
=

√√√√√2




p̃ext + 2π
λ̃L
h̃rms exp

(
− 1

γ

)

erfc
(

1√
2
− 1√

2̃hrms

)
− erfc

(
1√
2

)


,

(23)

2Notice that we are following a DMT-like approach, so from Equation (13) we have
written the contact stiffness K⊥ = p/(γ hrms); see Persson (2018).
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where we take γ = 0.5. For conducting solids, using Equation
(22) we obtain

υfull =

√
ε0V

2
full

2E∗h20

=

√√√√√√2




(
p̃ext + 2π

λ̃L
h̃rms exp

(
− 1

γ

)) (
1+ 8π

λ̃L
d̃0 exp

(
− 1

γ

))2

erfc
(

1√
2
− 1√

2 h̃rms

)
− erfc

(
1√
2

)


.

(24)

We see that the main parameters on which υfull depends are q0
and hrms.

5. NUMERICAL RESULTS

Figure 4 shows the external pressure p̃ext/σ̃0 as a function of
the mean separation ũ for λ̃L = 2, 048, h̃rms = 1, and varying
υ = [0.01, 0.02, 0.04, 0.08, 0.2]. In Figure 4 solid lines refer to
insulating solids, while dashed lines are used for conducting
solids with d̃0 = 1, 000. Upon increasing the applied voltage, the
mean load vs. mean separation curve becomes more and more
attractive so that macroscopic adhesion becomes important.
Clearly differences between the two cases of insulating and
conducting bodies are more evident at higher voltages υ (see
Equation 18).

If max[̃pext (̃u ∈ [0,+∞))] = p̃max
ext > 0, then the surfaces

are sticky and a positive external pressure is needed to separate
them. Figure 5 shows the abrupt decay in the pull-off pressure
p̃max
ext /σ̃0 with h̃rms, for a constant voltage υ = 0.08 and increasing

λ̃L = 2, 048 × [0.1, 1, 5, 10] for both insulating (solid lines) and
conducting (with d̃0 = 1, 000, dashed lines) solids. It can be
seen that for a given h̃rms, the pull-off pressure p̃max

ext increases
for surfaces with longer wavelengths λ̃L. In Figure 6, the decay
of the pull-off pressure with h̃rms is plotted for constant λ̃L =

FIGURE 4 | External pressure p̃ext/σ̃0 (>0 when tensile) as a function of the

mean separation ũ for λ̃L = 2, 048, h̃rms = 1, and varying

υ = [0.01, 0.02, 0.04, 0.08, 0.2]. Solid lines correspond to insulating solids and

dashed lines to conducting solids with d̃0 = 1, 000.

2, 048 and varying υ = [0.01, 0.02, 0.04, 0.08, 0.2]. Increasing the
dimensionless voltage υ increases the tensile traction needed to
separate the rough surfaces andmakes the surfaces more prone to
adhesion. We infer from Figures 4–6 that conducting solids are
less inclined to exhibit macroscopic adhesion due to the smaller
voltage drop experienced at the interface.

6. STICKINESS CRITERIA

The above results show that the pull-off traction is principally
determined by hrms, q0, and υ . Indeed, for a low contact area,
neither the repulsive nor the attractive tractions depend on
the surface “magnification” ζ = q1/q0 as in the adhesionless
load-separation relation (13). By adopting the BAM approach
to estimate the adhesive contact area and using the results in
Ciavarella (2019) for the case of van der Waals interactions, we

FIGURE 5 | Pull-off mean pressure p̃max
ext /σ̃0 vs. h̃rms (log-log scale), with a

constant voltage υ = 0.08 and increasing λ̃L = 2, 048× [0.1, 1, 5, 10] for both

insulating (solid lines) and conducting (with d̃0 = 1, 000, dashed lines) solids.

FIGURE 6 | Pull-off mean pressure p̃max
ext /σ̃0 vs. h̃rms (log-log scale) for

λ̃L = 2, 048 and varying υ = [0.01, 0.02, 0.04, 0.08, 0.2]. Solid lines

correspond to insulating solids and dashed lines to conducting solids with

d̃0 = 1, 000.
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easily obtain in our electroadhesion case that for stickiness,

hrms <

(
0.6

σ0h0

E∗
λL

)0.5

= 0.775υ
√
h0λL, (25)

where we recognize that in the electroadhesive case the adhesive
energy depends on the applied dimensionless voltage υ .

Alternatively, a stickiness criterion could be defined using
the energy balance proposed by Persson and Tosatti’s theory for
classical van der Waals adhesion. Persson and Tosatti (2001)
proposed that for a rough interface the effective adhesive energy
1γeff available at pull-off is

1γeff =
A

A0
1γ −

Uel

A0
, (26)

where the term A
A0
(> 1) is the ratio between the contact area A in

full contact and the nominal contact area A0 and is greater than 1
because of a roughness-induced effect, andUel is the elastic strain
energy stored to squeeze the roughness, with isotropic power
spectrum C(q) in full contact3 given by

Uel (ζ )

A0
=

πE∗

2

∫ q1

q0

q2C(q) dq, (27)

which depends on the magnification. With electroadhesion, we
replace 1γ with the term ε0

2h0
V2, resulting in (omitting the van

der Waals contribution and for A/A0 ≃ 1)

1γeff =
ε0

2h0
V2 −

Uel

A0
. (28)

Using the results in Ciavarella (2019), a new stickiness criterion,
akin to that of “Persson and Tosatti", is derived by imposing
1γeff = 0 in (28), which can be cast in terms of the roughness
rms amplitude as

hrms < υ

√
h0λL

2H − 1

πH
. (29)

For the typical Hurst exponent H = 0.8 (Persson, 2014),
this becomes

hrms < 0.5υ
√
h0λL, (30)

which, except for the threshold (0.5 instead of 0.775), compares
well with the other criteria obtained with BAM.

We can rewrite the stickiness criteria in dimensionless form:

h̃rms < 0.5υ
√

λ̃L (Persson-Tosatti), (31)

h̃rms < 0.775υ
√

λ̃L (BAM). (32)

Figure 7 shows two contour plots of the pull-off mean pressure
p̃max
ext /σ̃0 as a function of υ and h̃rms (log-log scale) with λ̃L =
2, 048, for insulating solids (Equation 17) in Figure 7A and for

3Notice that we use the original convention and notation for C(q) of Persson and
not the definition of Dalvi et al. (2019), which is Ciso(q) = 4π2C(q).

FIGURE 7 | Pull-off mean pressure p̃max
ext /σ̃0 as a function of υ and h̃rms

(log-log scale) for λ̃L = 2, 048: (A) insulating solids; (B) conducting solids with

d̃0 = 200. The thick black solid and dashed lines indicate the stickiness limits

obtained, respectively, with BAM (Equation 32) and by following the Persson

and Tosatti energy balance for H = 0.8 (Equation 31).

conducting solids (Equation 22, with d̃0 = 200) in Figure 7B.
The stickiness boundaries obtained with (32) and (31) for
H = 0.8 are represented by thick black solid and dashed lines,
respectively. Even though the two criteria have been obtained
from different arguments, it is noteworthy that they yield very
similar outcomes, which agree satisfactorily with the numerical
results obtained from Equations (17) and (22). In general the
pull-off force increases with increasing voltage υ and decreasing
amplitude roughness h̃rms. We have also distinguished a “no
sticky” region for p̃max

ext /σ̃0 < 10−4, which corresponds to very
rough hard solids and low voltage.

Finally, in Figure 8 we provide a qualitative estimate of
the friction coefficient µ/τ̃ as a function of the external
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FIGURE 8 | Friction coefficient µ/τ̃ = A/A0
(−p̃ext) as a function of the external

pressure −pext for h̃rms = 1, h′rms = 2.5 and dimensionless electrical voltage

υ = [0.01, 0.02, 0.03, 0.04].

pressure −̃pext:

µ/τ̃ =
A/A0(
−̃pext

) , (33)

where we have defined a dimensionless shear strength of the
interface, τ̃ = τ/E∗. The normalized contact area is computed
according to Persson’s (2001) theory as

A

A0
= erf

(√
π

h′rms

2π

λ̃L
h̃rms exp

(
−ũ

γ h̃rms

))
, (34)

where h′rms is the surface rms slope and A
A0

is corrected by a factor

of
√

π in the brackets to give it the correct slope at the origin
(see Putignano et al., 2012; Violano et al., 2019). In Figure 8, we
used λ̃L = 2, 048, h̃rms = 1 and h′rms = 2.5 and varied the
dimensionless electrical voltage as υ = [0.01, 0.02, 0.03, 0.04] for
both insulating (solid lines) and conducting (with d̃0 = 250,
dashed lines) solids. Figure 8 shows that the friction coefficient
increases with increasing voltage and gets very high for low
normal forces, as a finite contact area is possible under a
vanishing normal load. The curves are consistent with what has
been observed in experiments (Shultz et al., 2015; Ayyildiz et al.,
2018; Sirin et al., 2019).

7. FURTHER RESULTS

In this section we provide a possible example with dimensional
results based on a typical rough surface with the PSD shown in
Figure 2, for which Z = 10−8m0.6 with q0 = 102 1/m, q1 =
1010 1/m and H = 0.7, so that the surface rms height is hrms =
8.43µm and the surface rms slope is h′rms = 0.324. Figure 9A
shows the adhesive pressure pad = pext−p, in Figure 9B themean
separation u, and in Figure 9C the normalized contact area A/A0

as a function of the applied voltage for E∗ = [1, 10, 100] MPa
and for both insulating (solid lines) and conducting (with d0 =
10mm, dashed lines) solids. All the plots are for a constant

FIGURE 9 | (A) Adhesive pressure pad = pext − p, (B) mean separation u, and

(C) normalized contact area A/A0 as functions of the applied voltage V for

E* = [1, 10, 100] MPa and for both insulating (solid lines) and conducting (with

d0 = 10mm, dashed lines) solids. All plots are for a constant external pressure

pext = 100 Pa. In (A), the dot-dashed line represents the theoretical

electroadhesive strength σ0. In all panels the black circles and squares

represent estimates of the critical voltage υfull using Equations (23) and (24).

external pressure pext = 100 Pa, and the normalized contact
area is computed according to Equation (34). For harder solids
we get lower adhesive contact pressure, higher mean separation,
and smaller contact area. Figure 9C effectively shows that A/A0

remains very small over the entire range of applied voltage,
indicating that the approximation we used is correct. In general,
for a given voltage, conducting bodies show less adhesion, higher
average separation, and smaller contact area. As in Persson
(2018), a critical voltage can be identified above which a sharp
increase in pad is observed and which can be estimated using
Equations (23) and (24); see the black circles and squares in
Figure 9.
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8. DISCUSSION: ALTERNATING CURRENT

Electroadhesion with direct current is not as easy to detect as it
is when alternating current (AC) is applied. However, in terms of
the mathematical model, very few changes are needed to translate
the above results to the case of AC voltage. Indeed, when the
applied voltage oscillates in time, V(t), one should take into
account the variation of the dielectric properties of the media
with the applied frequency and replace h0 in Equation (2) with
a function

h0(ω) =
d1

ε1(ω)
+

d2

ε2(ω)
, (35)

where εi(ω) are the dielectric functions of the two media. In the
classical case of sinusoidal voltage, V(t) = V0 cos(ω0t), we have
to change (3) to

σzz(x, t) =
ε0

4

(
V0∣∣u(x)+ h0 (ω0)

∣∣

)2 (
1+ cos(2ω0t+ 2φ)

)
, (36)

where φ is defined by

u(x)+ h0(ω0) =
∣∣u(x)+ h0(ω0)

∣∣ exp(iφ). (37)

Notice that in this case we have that the adhesive traction σzz(x, t)
oscillates in time about its mean value

σzz(x) =

2π
ω0∫

0

σzz(x, t) dt =
ε0

4

(
V0∣∣u(x)+ h0 (ω0)

∣∣

)2

, (38)

which coincides with Equation (3) for constant voltage.

9. CONCLUSIONS

Using the bearing area model of Ciavarella, we have developed
a simple theory for electroadhesion between two hard rough

surfaces. The model is derived for the cases of insulating and
conducting bodies, where in the latter case the voltage drop
near the interface needs to be evaluated by taking into account
the current flowing through the asperity contact regions. We
have shown that the friction coefficient increases with increasing
voltage and can reach very high values for low normal forces,
in agreement with experimental results. We have introduced a
new dimensionless parameter for electroadhesion, which governs
the behavior of the proposed model. Pull-off forces depend
mostly on well-defined quantities, such as the applied voltage,
the surface rms height, and the longest wavelength in the surface
representation. In the limit of small contact area, two stickiness
criteria have been derived based on the present theory and on
the energy balance proposed by Persson and Tosatti, which
turns out to give very similar results (except for a prefactor) for
pure-power-law power spectral densities.
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