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If an incompressible elastic layer bonded to a rigid plane is placed close to a second

rigid plane, adhesive interactions between the surfaces can cause elastic instabilities.

These lead to spatially non-uniform traction and gap distributions which exhibit a regular

pattern with a characteristic wavenumber. However, real surfaces are never completely

plane. In this paper, we consider the influence of surface roughness on the instability, with

particular reference to the force-displacement relation. With random roughness profiles,

the traction distributions are always spatially irregular, so the onset of instability is more

difficult to define. One approach is to monitor the amplitude of the power spectrum of

the distribution near the characteristic wavenumber. Since surface roughness generally

reduces the mean adhesive traction, we might expect it to exert a stabilizing effect.

Numerical results confirm this for moderate to large RMS amplitudes, but show that low

RMS roughness can actually trigger the instability in ranges where the uniform layer would

be stable. The resulting traction-displacement relation is then found to be approximately

linear with a slope close to that at the point where the uniform solution loses stability.

Keywords: contact mechanics, surface roughness, adhesion, elastic layers, patterning

INTRODUCTION

If two bodies with plane surfaces are placed close together, they may experience attractive [e.g.,
van der Waals’] forces, or forces involving both attractive and repulsive ranges (Jones, 1924;
Maugis, 2013). Since the attractive forces must eventually decay with increasing separation, they
have the character of a “negative spring,” which can trigger an elastic instability. If the bodies are
incompressible [Poisson’s ratio ν = 0.5], or if a body comprising a thin elastic layer bonded to a
rigid plane surface is attracted to another rigid plane surface, the instability may result in a non-
uniform [typically periodic] pattern of alternating regions of contact and separation. Patterns of
this kind have been observed experimentally (Mönch and Herminghaus, 2001; Gonuguntla et al.,
2006a), and predicted theoretically, based on energetic arguments (Shenoy and Sharma, 2001;
Sarkar et al., 2004). In particular, the characteristic length scale of the pattern correlates with the
unstable wavelength in a linear perturbation of the uniform state. The patterning instability also
modifies the mean traction-separation characteristic for the layered system, generally leading to
different behavior during approach and separation and consequent hysteresis losses (Ciavarella
et al., 2019).

The instability permits self-assembly processes such as elastic contact lithography [ECL], where
the pattern in a polymer film is fixed by UV curing or by lowering the temperature (Sarkar and
Sharma, 2010; Ghosh et al., 2016, 2017). In ECL, the periodicity and size of the pattern are critical
parameters and various methods have been proposed to control them, including the use of a curved
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FIGURE 1 | A rigid body with a plane surface that may contain some surface

roughness is placed near to an elastic layer bonded to a rigid foundation. The

mean gap is ḡ and u(ξ , η) is the local elastic displacement of the layer surface.

substrate (Ghosh et al., 2018), an imprinted stamp (Gonuguntla
et al., 2006b; Mukherjee et al., 2007; Bhandaru et al., 2017), or a
pre-strained substrate (Davis-Purcell et al., 2018). Also, electric
fields can be used to extend the range of attraction relative to van
der Waals’ forces and to provide greater control of the process,
whilst retaining a similar morphology (Arun et al., 2006; Sarkar
et al., 2008; Sahoo et al., 2019).

Real surfaces are of course never perfectly smooth, and
surface roughness generally reduces both the maximum pull-
off traction, and the maximum negative slope of the effective
traction-separation law (Joe et al., 2018). This should reduce
the tendency for patterning in the contact of layered bodies.
However, sufficiently small amplitude roughness might also serve
as an initial perturbation to trigger an instability. In this paper,
we shall therefore use a numerical solution to examine the effect
of roughness on both the generation of patterns and the mean
traction-separation relation. In particular, we shall examine the
extent to which the effect of roughness can be captured by using a
modified adhesive traction law developed for the contact of rough
elastic half spaces.

DEFORMATION OF A THIN LAYER

We consider an elastic layer of thickness h bonded to a rigid
plane, and define Cartesian coordinates (x, y) in the plane of
the layer surface and corresponding dimensionless coordinates
ξ = x/h, η = y/h. If a second rigid plane is placed a distance
ḡ away from the undeformed surface of the layer as shown in
Figure 1, the local gap between the surfaces will then be

g(ξ , η) = ḡ − u(ξ , η) (1)

where u(ξ , η) is the local outward normal elastic displacement of
the layer surface.

Interface Energy
We assume that the adhesive tractions between the surfaces can
be described by a traction law σ (g), where g is the local value of
the gap. We can then also define the mean interface energy per
unit area as

Ŵ =
〈

γ (g(ξ , η))
〉

where γ (g) = −
∫ ∞

g
σ (s)ds (2)

and a stable final configuration will be one that minimizes the
total potential energy 5 = U + Ŵ, where U is the mean elastic
strain energy per unit area.

Elastic Strain Energy
The normal traction σ (ξ , η) at the free surface of the layer needed
to produce a sinusoidal normal elastic displacement u(ξ , η) =
uζ cos(ζ ξ ) is

σ (ξ , η) =
Ef (ζ )uζ

h
cos(ζ ξ ) (3)

where

f (ζ ) =
ζ

[

(3− 4ν) cosh(2ζ )+ 2ζ 2 + 5− 12ν + 8ν2
]

2(1− ν2)
[

(3− 4ν) sinh(2ζ )− 2ζ
] (4)

(Hannah, 1951), and we recall that ξ = x/h, so ζ is a
dimensionless wavenumber.

In this paper, we shall restrict attention to incompressible
layers [ν = 0.5], for which the corresponding dimensionless
compliance 1/f (ζ ) is shown as a function of dimensionless
wavenumber ζ in Figure 2. The curve exhibits a maximum of
∼0.482 at a wavenumber ζ ≈ 2.1, and zero compliance for
uniform loading

[

f (ζ ) → ∞ as ζ → 0]. One consequence of
this is that with general loading σ (ξ , η), the mean value of u is
zero and hence ḡ is determined by the rigid-body approach which
is a controlled parameter.

The mean elastic strain energy per unit area associated with
the deformation (3) is

U(ζ ) =
1

2

〈

σ (ξ , η)uζ (ξ , η)
〉

=
Ef (ζ )u2ζ

4h
(5)

The elastic strain energy for more general displacement
distributions can be obtained by writing u(ξ , η) as a double
Fourier series or Fourier transform and convoluting the resulting
transform with (5).

Stability Criterion
If both surfaces are plane [i.e., smooth], the state u(ξ , η) =
0, g(ξ , η) = ḡ, σ (ξ , η) = σ (ḡ) is clearly an equilibrium state,
but it will be unstable to small sinusoidal perturbations of
dimensionless wavenumber ζ if there exists any ζ such that

−
(

∂σ

∂g

)

g=ḡ

>
Ef (ζ )

h
(6)

The critical wavenumber is defined by the maximum of the curve
in Figure 2, from which we deduce that the uniform solution will
be unstable if and only if−σ ′(ḡ) > E/0.482h.
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FIGURE 2 | Dimensionless layer compliance as a function of wavenumber for an incompressible elastic layer bonded to arigid foundation. For a given value of

E/h[−σ ′(ḡ)] satisfying condition (6), wavenumbers in the range ζA < ζ < ζB are unstable.}.

Solution Method
More general displacement distributions for a square domain
0 < x < L, 0 < y < L can be written in the form

u(x, y) = ℜ
N

∑

m=−N

N
∑

n=−N

Amn exp

[

2π ı(mx+ ny)

L

]

, (7)

and equation (5) can then be used to obtain the mean strain
energy per unit area U as

U =
N

∑

m=−N

N
∑

n=−N

E|Amn|2f (ζmn)

4h
(8)

where

ζmn =
2πh

√
m2 + n2

L
(9)

Adding the corresponding interface energy from equation (2), we
obtain the total potential energy5, which must be a minimum at
a stable equilibrium state. We used the gradient descent method
to identify the values of the Fourier coefficients Amn for a local
energy minimum. Notice that the upper limit N must be chosen
so as to provide an adequate number of integration points in the
evaluation of Ŵ.

RESULTS FOR SMOOTH SURFACES

If the two surfaces are smooth, the uniform state is always an
equilibrium solution at which energy gradients are zero, and since
the material is incompressible [ν = 0.5], this corresponds to
u(ξ , η) = 0. Even when the criterion (6) is satisfied, the numerical
solution may remain at the uniform state unless some small
perturbation is introduced.

We used the traction law

σ (g) =
81γ

3ε

[

(

ε

g

)3

−
(

ε

g

)9
]

(10)

(Maugis, 2013) derived from Lennard-Jones molecular force law
(Jones, 1924), where ε is an interatomic length scale and 1γ =
γ (ε) is the interface energy per unit volume at the equilibrium
spacing g = ε. The maximum tensile traction occurs at g = 31/6ε
and is of magnitude σ0 ≈ 1.061γε.

If the maximum negative slope [−σ ′(g)]max satisfies
the condition

h

E

[

−σ ′(g)
]

max
>

1

0.482
(11)

there will exist a bounded range g1 < ḡ < g2 in which the
uniform solution is unstable. Also, for a value of ḡ strictly within
this range, there will exist a range of unstable wavenumbers ζA <

ζ < ζB, including but not limited to ζ ≈ 2.1. This range can be
identified by drawing a horizontal line at the height E/h[−σ ′(ḡ)]
in Figure 2 as shown, and finding its intersection with the curve.

We start the solution procedure with a value of ḡ outside the
unstable range and then change ḡ by small increments, using the
solution at the previous step as an initial guess for the gradient
descent solution. This is expected to mimic the behavior of
the physical system under controlled displacement conditions.
Numerical noise might also be expected to emulate the effect of
noise [e.g., vibration] in an experimental system.

We characterize the inverse thickness of the layer by the
dimensionless parameter

β =
Eε2

h1γ
(12)
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Figure 3 compares a typical relation between the mean traction
σ̄ =

〈

σ (x, y)
〉

and the mean gap [approach] ḡ with the local
traction law (1) for the case where β = 0.25. The domain

FIGURE 3 | Mean traction σ̄ as a function of mean gap ḡ for a smooth layer

for β = 0.25 and domain size L = 8πh, showing instabilities during approach

and separation. The Lennard-Jones law (1) is shown in black. The dashed

lines A, B define the region in which the uniform traction solution is unstable.

size was chosen so as to define a fundamental wavenumber
[e.g., ζ01] equal to 0.25, so that L = 8πh. Results are shown
for both separation dḡ/dt > 0 and approach dḡ/dt < 0. In
each case, the uniform state is preserved up to the appropriate
stability boundary [denoted by A and B, respectively], but the
non-uniform solution then persists significantly beyond the point
at which the uniform solution reverts to stability. We deduce
that even in the stable range there exist local energy minima
corresponding to non-uniform states, and that these states are
separated from the lower energy uniform state by energy barriers.

Notice that both the approach and separation curves in
Figure 3 are approximately straight lines with slope close to the
critical slope defined by (6).

The non-uniform deformation states are characterized by the

development of regular patterns. Figures 4A–C shows contours

of local gap g(x, y) corresponding to the points on the approach
curve labeled (a), (b) and (c) in Figure 3. A “labyrinth” [i.e., a

connected system of passageways (high g) separated by walls of
“contact” (low g)] develops at the onset of instability (a) and

FIGURE 4 | Contour plot of the gap g(x, y) during approach at points (A–C) in Figure 3.

FIGURE 5 | Fourier transform of g(x, y) from Figures 4A–C.
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then morphs into an inverse labyrinth at (b) and into an array
of isolated regions of separation [“holes”] at (c).

Figures 5A–C shows the same results in Fourier transform
space. In all cases we see high values clustered near the
most unstable wavenumber ζ = 2.1 and the distribution is
axisymmetric within the limits of statistical variance, indicating
that the pattern is statistically isotropic.

EFFECT OF SURFACE ROUGHNESS

We assume that the surface is rough with a power spectral density
[PSD] of the form

P(ζ ) = Bζ−2−2H ; ζ1 < ζ < ζ2, (13)

where B is a constant,H is the Hurst exponent, here taken asH =
0.2, and ζ1, ζ2 define the range of dimensionless wavenumbers in

FIGURE 6 | Mean traction σ̄ as a function of mean gap ḡ for a layer with

fine-scale roughness defined by equation (14) with

β = 0.35, ζ1 = 6.5, ζ2 = 8.0 and m0 = 10−1.8ε2. The solid lines correspond to

a direct numerical solution for the rough surface using the Lennard-Jones

traction law, whilst the circles were obtained by approximating the effect of

roughness through a modified traction law σM (g) (Joe et al., 2018). [shown

here as a dashed line].

the spectrum, outside which the spectral content is zero. For the
finite domain L× L, a realization of this PSD can be written as

u0(x, y) = ℜ
∑

m

∑

n

Bmn exp

[

2π ı(mx+ ny)

L

]

(14)

where u0(x, y) describes the deviation of the surface from the
mean plane in the undeformed state, and

ζ1L

2πh
<

√

m2 + n2 <
ζ2L

2πh
(15)

The magnitudes of the coefficients |Bmn| were chosen so as to
ensure that the resulting surface PSD was of the form (13) and
the corresponding arguments [phases] were chosen randomly.

With this definition, the gap can be written

g(x, y) = ḡ + u0(x, y)+ u(x, y), (16)

where u(x, y) is given by (7). Notice that we arbitrarily assign the
value B00 = 0, so that the roughness makes no contribution to
the mean gap. The interface energy is then determined from (2)
and the constants Amn are chosen so as to minimize 5 as in the
smooth surface case.

A Two-Scale Approximation
We anticipate that the wavelengths in the roughness spectrum
will generally be significantly smaller than the layer thickness,
and this suggests the possibility of a scale-separation approach.
Compared with the roughness scale, the thickness of the layer
is large, so local effects can be approximated by those in
a corresponding half space. The effect of the roughness, as
compared with a corresponding smooth surface, can therefore be
described in terms of a modified traction law.

An inductive method for estimating this law is described in
(Joe et al., 2018). If the modified traction law σM(g, ζ0) is known

FIGURE 7 | (A) Contour plot of gap g(x, y) at a point in the unstable range for β = 0.5 and roughness defined by ζ1 = 6, ζ2 = 8 and m0 = 10−2.5ε2. (B) The

corresponding plot for a smooth surface using the modified traction law.
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for a surface with spectral content only in ζ0 < ζ < ζ2, where
ζ0 > ζ1, the corresponding law for σM(g, ζ0−δζ ) can be obtained
by convoluting σM(g, ζ0) with the additional roughness tranche
ζ0 − δζ < ζ < ζ0. Successive applications of this technique
allow us to determine themodified law for the entire spectrum. In
Joe et al. (2018), this procedure was implemented using discrete
tranches of the spectrum, but the same approach can be used to
develop a partial differential equation for σM(g, ζ ), following the
methodology of Persson (2001). The modified traction law for
the complete roughness spectrum is then defined by σM(g) =
σM(g, ζ1).

On the scale of the layer thickness, the effect of the surface
roughness can then be approximated by using σM(g) in place of
equation (1), and treating the layer surface as smooth.

Results

The two-scale approximation is likely to be most accurate when
the most unstable wavenumber ζ ≈ 2.1 is much smaller than
the smallest wavenumber ζ1 in the PSD [recall that wavenumbers
are normalized by the layer thickness h]. However, this degree
of scale separation is difficult to achieve in a direct numerical
simulation. Figure 6 shows the relation between mean traction
and mean gap for an incompressible elastic half space with
roughness of the form (13) with ζ1 = 6.5, ζ2 = 8.0 and
height variance

m0 = 2π

∫ ζ2

ζ1

ζP(ζ )dζ = 10−1.8ε2 (17)

FIGURE 8 | (A) Contour plots of gap g(x, y) in the unstable range for β = 0.5 and roughness defined by ζ1 = 4.5, ζ2 = 8 and m0 = 10−2ε2. (B) Fourier domain plot for

the gap distribution g(x, y) from (A).

FIGURE 9 | Normalized spectral content [mu
0/ε

2 ]
max

for the gap g(x, y) in the unstable wavenumber range as a function of the maximum negative slope of the modified

traction law [−σ ′
M (ḡ)]max. Consistency between several roughness spectra shows that [−σ ′

M (ḡ)]max is a good indicator of the effect of roughness on instability. The point

at the top right defines [mu
0/ε

2 ]
max

for a smooth layer.
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Barber (2018). In this figure, we compare two methods of
solution: (i) a direct numerical solution of the problem [solid
line] by minimizing the total energy for a gap defined by (16)
using the Lennard-Jones traction law and (ii) a solution in which
the layer is smooth [u0(x, y) = 0], but the traction law is modified
to describe the effect of roughness [circles]. The agreement is
clearly extremely good. The advantage of using the modified
traction law is that the deformation of the layer can then be
adequately described on a much coarser grid, or equivalently, by
a more severely truncated Fourier series, and this is particularly
useful if the spectral range [ζ1, ζ2] is broad.

Identifying Instability Effects
The argument of the previous section suggests that pattern
instabilities should occur if and only if the maximum slope of the
modified traction law [σM(ḡ)] satisfies the condition (11) — i.e.,

h

E

[

−σ ′
M(g)

]

max
>

1

0.482
(18)

The modified traction law σM(ḡ) is independent of h, so
instabilities are more likely for thicker layers, always assuming
the finite linear dimensions of the interface are sufficient to
accommodate a wavelength in the unstable range.

In some cases, pattern instabilities can be detected by
examining the corresponding contour plots for g(x, y). For
example, Figure 7A shows the contour plot for the actual rough
surface during separation at a mean gap ḡ = 1.4, and Figure 7B

shows the corresponding pattern predicted for a smooth surface
with the modified traction law. There is some blurring of the
observed patterns, but the overall morphology is clearly similar.

However, if the roughness amplitude is larger, patterns
become more blurred, a typical example being shown in
Figure 8A. In this case, detection of instability from gap contours
is more difficult, but the corresponding Fourier plot of Figure 8B
clearly shows substantial spectral content in the unstable range
near ζ = 2.1. This suggests that we might quantify the extent
of pattern formation in the numerical solution for the rough
surface using the dimensionless parameter mu

0/ε
2, where mu

0 is
the variance of that part of the gap PSD that lies in the unstable
range in the “smooth” solution, identified in Figure 2. We assume
here that the roughness PSD has no content in this wavenumber
range, since otherwise it would be difficult to distinguish the
separate effects of instability and roughness.

In Figure 9 we plot [mu
0/ε

2]max, obtained from the numerical
solution, as a function of the maximum negative slope of
the modified traction law [−σ ′

M(ḡ)]max, normalized by the
corresponding expression for the Lennard-Jones law. Each set of
points corresponds to a different value of the lower wavenumber
of the roughness ζ1 = 4.5 : 0.5 : 6.5 and a range of roughness
variances −2.7 < log10(m0/ε

2) < −1.6. Results were

obtained under both approach and separation conditions, but no
significant difference was observed. The vertical dashed line in
Figure 9 corresponds to the criterion (18), below which the two-
scale approximation would predict mu

0 = 0, though the direct
numerical results exhibit a level of noise as one might expect.
However, the results exhibit a remarkable level of consistency,
showing that [−σ ′

M(ḡ)]max is a very good indicator of the
effect of roughness on the instability, and more generally that
the two-scale approach to the layer problem defines a good
approximation to important features of the system behavior.

CONCLUSIONS

If a smooth elastic layer is placed close to a plane surface, elastic
instabilities due to adhesive tractions lead to the development of
patterns, and to a modification of the traction-separation law.
However, roughness with RMS amplitude comparable with the
range of the adhesive force law can have a significant effect
on this process. Here we have described a model for analyzing
the contact of both rough and smooth surfaces using a double
Fourier series.

We also developed a two-scale approximation to the rough
contact behavior, by (i) estimating the effect of roughness on
the mean traction between two half spaces, using a previously
published method (Joe et al., 2018), and then (ii) using this
modified traction law in the analysis of a smooth elastic layer.
Results show that this gives a very good approximation to the
traction-separation law obtained by direct numerical simulation.
In particular, the development of patterns is predicted if the
maximum slope of the modified traction law satisfies the
inequality (18) and the corresponding results correlate extremely
well with a criterion based on the spectral content in the unstable
range from the numerical solution.

Local layer deformations decay spatially at a rate linked
to the layer thickness, so this method is expected to give
good predictions for bodies of finite size sufficient to support
wavelengths in the unstable range.
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