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Calculation of the BEM Integrals on a
Variable Grid With the FFT
Justus Benad*

Department of System Dynamics and Friction Physics, Technische Universität Berlin, Berlin, Germany

In this study, an exemplary application of the pFFT is shown for the 2D Navier equation

for a linear elastic continuum. Using this example, it is illustrated how the pFFT might

be extended in order to decrease the computational complexity of the method. In

the standard pFFT approach, all panel influences which are not calculated directly are

obtained using a single regular grid. In the present study, a variable gird is suggested to

obtain these influences. It is outlined how it is possible to apply the FFT on each level

of this variable grid by rearranging segments of the shape boundary. A brief example is

presented which indicates feasibility of the concept.
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INTRODUCTION

The Boundary Element Method (BEM) is used in countless engineering disciplines. Among
them is the field of Contact Mechanics where the approach has been applied with great success
in recent years (Putignano et al., 2012; Müser et al., 2017; Popov et al., 2017; Li et al., 2018;
Paggi and Hills, 2020). Another, yet much older example for a very successful application of the
Boundary Element Method is the Aerodynamic Panel Method. Conceived by Hess and Smith
at Douglas Aircraft in the early 1960s (for details, see Smith, 1990), the Aerodynamic Panel
Method was among the first numerical implementations of the Boundary Element Method when
electronic computers became available (for details, see Cheng and Cheng, 2005). Today, more
than 60 years later, the method is still an essential tool in the aircraft industry for initial design
studies (Anderson, 2017; Raymer, 2018). An example is the investigation of entirely new airplane
designs, such as the Flying V (Benad, 2015; Faggiano et al., 2017; Palermo and Vos, 2020;
Rubio Pascual and Vos, 2020). In the very first conceptual design stage of this project, panel
methods were used to assess the aircrafts aerodynamics. While they describe only potential flow
(for details, see Katz and Plotkin, 2001), the two main advantages of such methods are their
ease of use and their computational speed. From a numerical perspective, only the boundary
of the domain needs to be discretized which leads to simple meshing. When no measures
are taken to accelerate the calculation, the computational complexity of a problem with N
surface discretization points is O

(

N3
)

when direct solvers are used, and O
(

N2
)

using iterative
solvers. While an O

(

N2
)

complexity is by current standards considered as expensive, it is still
practical for initial design studies with a low number of surface panels. However, if a high
number of discretization elements is required, or large parameter studies shall be conducted,
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one should consider accelerating the panel method. Several
approaches exist for the reduction of the computational
complexity of the Boundary Element Method (Phillips and
White, 1997; Masters and Ye, 2004; Benedetti et al., 2008;
Lim et al., 2008). An approach which has recently gained
a lot of attention and has been very successful in the area
of Contact Mechanics is to accelerate the calculation of the
boundary integrals using the Fast Fourier Transformation (FFT)
(Putignano et al., 2012; Pohrt and Li, 2014; Popov, 2017). It
is natural perhaps, that this particular success should occur in
the area of Contact Mechanics as one often considers a half-
space surface in this field of research. A half-space surface
aligns perfectly with a two-dimensional FFT-grid. Therefore,
the calculation of the boundary integrals over the half-space
can easily be performed with the FFT which reduces the
computational complexity toO

(

N logN0.5
)

. For arbitrary shapes
however, this process is not as simple because the surface of an
arbitrary shape does not align with a plane FFT-grid. In 1997,
Philips and White developed a method for utilizing the Fast
Fourier Transformation even for the calculation of boundary
integrals on arbitrary shapes (Phillips, 1997). As it is illustrated
in Benad (2018), the boundary integrals can be regarded as
convolutions over a space which is one dimension higher than
that of the boundary of an arbitrary shape. However, there are
two main challenges when this realization is put into practice:
First, even a three-dimensional regular FFT-grid which fully
encloses the surface of an arbitrary shape never cuts through
this surface precisely at its discretization points. Instead, the
nodes of the regular grid lie either outside of the arbitrary
shape, or inside the shape, but in general never directly on the
surface, as it is the case for the half-space in the area of Contact
Mechanics. Second, the computational complexity rises, when
compared to the half-space. While the half-space fully aligns with
a two-dimensional FFT-grid, an arbitrary shape requires a fully
enclosing FFT-grid, that is, a three-dimensional convolution.
This results in a complexity of O

(

N1.5 logN0.75
)

, which is lower
than the O

(

N2
)

complexity of the standard boundary element
procedure, but higher than the desiredO

(

N logN0.5
)

complexity.
Philips and White addressed both these issues in 1997 with their
precorrected FFT method, which has often been referred to as
pFFT. Therein, nearby panel interactions are calculated directly
as in the standard boundary element procedure, and the far field

FIGURE 1 | Left: A rectangular body with uniformly distributed loads. Right: A rectangular beam with an end load.

is computed using the three-dimensional FFT-grid which fully
encloses the surface. This FFT-grid may be much coarser than
the surface mesh since higher order interpolation techniques are
used to project the boundary values of the surface mesh points
onto the nodes of the FFT-grid. This approach further reduces
the O

(

N1.5 logN0.75
)

complexity. At best, it is an O
(

N logN
)

algorithm (Phillips and White, 1997).
It is remarkable how different the fields of application

are, in which the pFFT approach can be used. When it was
introduced by Philips and White, it was applied in the field
of electrostatic analysis. But of course, the method can also be
regarded as amore general FFT-based BEM in the area of Contact
Mechanics which enables not only the calculation displacements
and stresses of a half-space with the FFT, but of any arbitrary
shape: (Masters and Ye, 2004) used the pFFT approach for
the calculation of displacements and stresses in linear elastic
solids of arbitrary shape with the Navier equation achieving
O
(

N logN
)

complexity. This makes the pFFT approach very
appealing in the area of Contact Mechanics since the Boundary
Element Method has proved to be a very robust tool in this
area (Paggi and Hills, 2020), but is in its efficient practical
application still somewhat restricted to the half-space. The
pFFT may provide an opportunity to accelerate Boundary
Element calculations of contact problems with a more difficult
geometry. An exemplary application may be turbine blade fir-
tree connections, a contact problem where the half-space theory
is pushed to its limits (Benad, 2019). Naturally, the pFFT
approach is not restricted to geometries where the domain of
interest is the inner region which is enclosed by the boundary.
Instead, it is also possible to consider the outer region. In 2006,
Willis, Peraire and White utilized the pFFT to accelerate the
Aerodynamic Panel Method achieving O

(

N logN
)

complexity
(Willis et al., 2006). The study investigated complicated shapes,
and even unsteady applications with varying geometries such as
flapping wings.

It seems that many fields of research may benefit from fast
Boundary Element solvers. In the present study, an exemplary
application of the pFFT will be shown for the 2DNavier equation.
Using this example, it is illustrated how the pFFT might be
extended to allow the application of the FFT with multiple
discretization levels. This may lead to a further reduction in
computational complexity to obtain the boundary integrals.
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FIGURE 2 | Raw results for the displacements of an arbitrary shape. The shape is cut out of a rectangular body (see left graph in Figure 1) with uniformly distributed

loads σA = −0.8, σB = 0.1, and σC = 0.7. For the elastic parameters it was chosen ν = 0.3 and µ = 1. The stress distribution on the boundary of the shape is shown

with the red arrows in the left image. The blue circles show the weights which result from the Lagrange polynomials used for the bilinear interpolations necessary for

the convolution (for details see the main text of this section). The colored images on the right show the raw results for the displacements u and v obtained with the

convolution. The red line represents the analytical solution for the displacements on the boundary of the shape. Note that the resolution of both the boundary and the

FFT grid is chosen lower in the image on the left than in the results on the right merely for the purpose of a better visualization.

FIGURE 3 | Raw results for the displacements of an arbitrary shape. The results are displayed as in Figure 2, here however the shape is cut out of a rectangular

beam (see right graph in Figure 1) with an end load F = 0.2 and dimensions a = 1 and b = 0.5. For the elastic parameters it was chosen ν = 0.3 and µ = 1.
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FIGURE 4 | Results for the boundary displacements of three different cutouts from a rectangular body (see left graph in Figure 1) with a uniformly distributed load

σA = 1, σB = 0, and σC = 0. For the elastic parameters it was chosen ν = 0.3 and µ = 1. The given stress distribution on the boundary is displayed with red arrows

(left images), and the numerical results for the displacements on the boundary are shown in the diagrams on the right with black dots plotted over the analytical

solution. l denotes the number of the equally spaced boundary nodes.
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GOVERNING EQUATION AND ANALYTICAL
SAMPLE SOLUTIONS

Navier’s equation is:

1

1− 2ν
uj,ji + ui,jj +

1

µ
bi = 0 (1)

where i, j ∈ {1, 2, 3}, ui are the displacements, ν is the Poisson’s
ratio, µ is the shear modulus, and bi is the force density field
(Hahn, 1985). Note that we choose to denote partial derivatives
with ∂

∂xi
(. . .) = (. . .),i. For simplicity, we will in this work

only consider the case of plane displacements where the Navier
equation simply remains as in (1), but with i, j ∈ {1, 2} (Irgens,
2008). This case can be transformed to the case of plane stress
by replacing ν with ν

(1+ν)
and leaving the value for µ unchanged

(Irgens, 2008), see also (Galin, 2008) and (Kelly, 2013). Before we
proceed, let us introduce analytical solutions for (1) which can
later be used to validate the numerical results.

Uniformly Distributed Loads on
Rectangular Body
A solution of (1) is

u =
1− ν

2µ
σAx−

ν

2µ
σBx+

1

2µ
σCy ,

v =
1− ν

2µ
σBy−

ν

2µ
σAy+

1

2µ
σCx . (2)

(Note that we choose to denote ui=1 = u, ui=2 = v, xi=1 = x
and xi=2 = y.) For plane displacements, the corresponding stress
field is simply:

σxx = σA , σyy = σB , σxy = σC , (3)

which belongs, for example, to a rectangular body with
uniformly distributed loads on the sides, see the left image
in Figure 1. This simple problem, as well as arbitrarily
shaped cut-outs (see the blue dashed line), can be used for
validation purposes.

Bending of a Rectangular Beam by
an End Load
We now turn to another exact solution of (1), which is often used
to approximate the solution for a system as shown in the right
image in Figure 1. A stress field for this problem with boundary
conditions imposed for the stresses in the weak form reads (see
Barber, 2004):

σxx =
3Fxy

2b3
, σyy = 0 , σxy =

3F
(

b2 − y2
)

4b3
. (4)

With the material law of a linearly elastic isotropic solid (Gross
et al., 2014), one obtains:

εxx =
1− ν

2µ

3Fxy

2b3
, εyy = −

ν

2µ

3Fxy

2b3
, εxy =

1

2µ

3F
(

b2 − y2
)

4b3
(5)

for the strains which belong to (4) for the case of plane
displacements. Integration yields:

u =
Fy

8µb

(

6+ (1− ν)
3x2

b2
+ (ν − 2)

y2

b2

)

− C1y+ C3

v =
Fx

8µb

(

− (1− ν)
x2

b2
− ν

3y2

b2

)

+ C1x+ C2 . (6)

Setting u
(

x = a, y = 0
)

= 0 yields C3 = 0. With
u
(

x = a, y = b
)

= 0 one further obtains C1 =

F
8µb

(

4+ (1− ν) 3a2

b2
+ ν

)

and v
(

x = a, y = 0
)

= 0 yields

C2 = − Fa
8µb

(

4+ (1− ν) 2a2

b2
+ ν

)

.

The result (6) for the displacements is an exact solution

of (1) and may thus be used together with the corresponding

stress field (4) as an analytical reference for comparison with the

numerical results.
Note that at the boundary x = a the strains εyy in

(5) are not zero as we would expect them to be for the
beam which is displayed in the right image of Figure 1.
Imposing the boundary conditions merely for the stresses in
the weak form (see Barber, 2004) only gives an approximate
solution for this set-up. The solution is fully accurate for
a beam which is supported not by a solid wall, but a
parabolic traction.

FIGURE 5 | An arbitrary shape fully enclosed with a grid which is refined in

close proximity to the boundary of the shape. The blue dots represent the

weights of the Lagrange polynomials used for the bilinear interpolation of the

boundary values with the coarse grid.
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BOUNDARY INTEGRAL FORMULATION

For the governing equation (1), Somigliana’s identity (Gaul and
Fiedler, 2013) relates the displacements uj

(

x
)

and stress vector
tj
(

x
)

= σjk
(

x
)

nk
(

x
)

on the boundary S (outward normal vector

nk) to the displacement ui
(

x0
)

at a particular inner point x0. For
bi = 0, it is:

ui
(

x0
)

=

∫

S
u
∗

ij

(

x, x0
)

tj
(

x
)

dS−

∫

S
t
∗

ij

(

x, x0
)

uj
(

x
)

dS (7)

For the case of plane displacements which we consider in this
study, u

∗

ij and t
∗

ij read:

u
∗

ij =
− (3− 4ν) ln (r) δij + (xi − x0i)

(

xj − x0j
)

/r2

8πµ (1− ν)
(8)

and

t
∗

ij = −
1

4π (1− ν) r

((

(1− 2ν) δij + 2
(xi − x0i)

(

xj − x0j
)

r2

)

xk − x0k

r
nk

)

+

(

(1− 2ν)

(

xj − x0j

r
ni −

xi − x0i

r
nj

))

(9)

where r =

√

(x− x0)
2 +

(

y− y0
)2
. Note that we choose to

denote xi=1 as x and xi=2 as y. Relations (8) and (9) can be
obtained from the fundamental solution of (1). For details see
(Benad, 2019).

CALCULATION OF THE BOUNDARY
INTEGRALS WITH THE FFT ON A
SINGLE GRID

We now perform exemplary calculations of the boundary
integrals (7) with the FFT on a single regular grid. Therein, we
follow the procedure described in Phillips and White (1997).
Additional information on the numerical implementation can be
found in Benad (2018). The numerical results are then compared
with the analytical sample solutions which were introduced in
Section Governing Equation and Analytical Sample solutions.

Let us first examine the raw data which is obtained with the
method right after the application of the convolutions. Figures 2,
3 show this data for an arbitrary cut out from the rectangular
body with uniformly distributed loads, and for an arbitrary cut
out from the rectangular beam with an end load. The analytical
solutions for these problems given with (2–4, 6) set the boundary
values on the chosen shape. These are then distributed to the

FIGURE 6 | Segments of the arbitrary shape displayed in Figure 5 aligned one after the other. Each segment (fine bright grid) is chosen with some additional space

around it (fine dark grid) so as to assure that the segments do not influence each other upon convolution with the kernels.

FIGURE 7 | Exemplary raw results for the displacement component u obtained on a grid with two discretization levels for the same problem as it is displayed in

Figure 2 with a single regular grid. The results on the fine grid level close to the boundary (the analytical solution is displayed with the red line) appear similar to the

results which were obtained with the significantly more expensive technique used in Figure 2. The white borders between the two discretization levels are displayed

for the purpose of a better visualization of the two discretization levels.
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FFT grid via bilinear interpolation. The corresponding weights
of the Lagrange polynomials are shown with the blue dots in
Figures 2, 3. The right side of (7) can then be evaluated with
a two dimensional convolution which is performed with the
FFT. This operation then returns the left side of (7), that is the
values ui

(

x0
)

at all points of the regular two-dimensional grid.
This raw data is plotted in the colored diagrams on the right in
Figures 2, 3. Therein, the analytical solution for u and v directly
on the boundary is shown with the red line. While the raw
results are highly accurate at a distance to the boundary, they
begin to oscillate in close proximity to the boundary. For this
reason, nearby panel interactions are evaluated directly in the
pFFT technique.

So far we have used the analytical values of both the tractions
and displacements on the boundary in order to obtain the FFT
raw results. Let us now consider a problem where we only set
the tractions on the boundary and seek a numerical solution for
the displacements on the boundary. Figure 4 shows the results of
such a procedure for different cutouts from the uniformly loaded
rectangular body. A conjugate gradient method with 10 iterations
is used to solve for the displacements on the boundary. Therein,
the projection of the FFT results onto the actual boundary is
performed via bilinear interpolation. Furthermore, nearby panel
interactions were calculated directly in a radius of 7 panels
in order to eliminate oscillations. It can be observed that the
method converges well to the analytical results for all three
exemplary shapes.

VARIABLE FFT GRID

As we have observed in the previous section, the raw FFT data
is highly accurate at a distance to the boundary but begins to
oscillate in close proximity to the boundary. Consequently, the
small number of nearby panel interactions is calculated directly
in the pFFT technique and the larger number of all remaining
panel interactions is computed with the FFT. Let us stress the
point of having these two levels of accuracy. Then the question
arises, why one does not use a hierarchy with even more levels of
accuracy. Examining Figures 2–4, it seems obvious that the large
number of unused discretization points of the FFT grid where
no interpolation weights are placed are a waste of computational
power. There are no numerical values at these points except
zeros, and we have no interest in the results at these points
after the convolution was applied. Philips and White addressed
this by using an FFT grid which is coarser than the actual
discretization of the boundary. This is enabled by using higher
order interpolation techniques. A different or even additional
approach might be a refinement of the grid at the boundary,
see Figure 5. The main question which arises with a variable
grid is how to apply the FFT which requires a regular grid.
In the following, we illustrate that an O

(

N logN
)

algorithm
seems technically feasible with this approach. Consider cutting
the arbitrary shape shown in Figure 5 into segments and aligning
them one after the other as shown in Figure 6. Repositioning
the segments in such a way creates an almost “one-dimensional”
arrangement when compared to the original two-dimensional

shape. It is this reduction in dimension which we seek in order to
lower the computational complexity. This new line of segments
is longer than the circumference of the original shape because
for each segment, we include some additional space around it
(see Figure 6 and compare with Figure 5). This way, it is ensured
that while we convolute the kernels over the line of segments,
the influence of the segments among each other is excluded.
Exemplary raw results from this technique are shown in Figure 7.
First, the convolutions are obtained on the rough grid level. From
these results, we then subtract the influence obtained with the
convolutions on the line of segments using also the rough grid
level. Then, we add the influence of the convolutions over the
line of segments using the fine grid level to our results using
bilinear interpolation. Qualitatively, it can be observed that the
results on the fine grid close to the boundary appear similar to the
results which were obtained with the significantlymore expensive
technique used in Figure 2. This brief example can be regarded as
a first sketch to indicate feasibility of the concept.

CONCLUSION

In this work, the pFFT was applied to solve the 2D Navier
equation on arbitrary two-dimensional shapes. Furthermore, it
was illustrated how the pFFT technique might be extended in
order to decrease its computational complexity. In the standard
pFFT approach, all panel influences which are not calculated
directly are obtained on a single regular grid. In the present
study, a variable gird was suggested to obtain these influences.
It was outlined how it is possible to apply the FFT on each
level of this variable grid by rearranging segments of the shape.
A brief example was presented which indicates feasibility of
the concept. However, more studies will be needed to research
this concept further. Open questions include how to choose the
grid size and number of levels of the variable grid, how high
the order of the interpolation techniques used for projection
onto the variable grid should be, how best to realize the
interpolation between the grid levels, how the variable grid will
influence iterative the solvers, and finally how the computational
complexity and accuracy of the method compare to the standard
pFFT technique and other methods designed to accelerate the
Boundary Element Method.
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