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The sliding friction of elastomers has been investigated numerically and theoretically

for the line contact between a cylindrical rigid indenter and a “frictionless” Kelvin–Voigt

foundation. The onset of sliding under an abrupt increase in the drive velocity has been

simulated with different boundary conditions of the rigid indenter. When the rigid indenter

is not allowed to move in any direction, just an abrupt change in the friction force

appears, which is not accompanied by any transient processes. However, when the rigid

indenter is able to move in the vertical direction, the transient sliding friction including

three different time constants appears, resembling the typical transition from the static

friction to the kinetic friction, in spite of no static friction considered in the simulation.

The aforementioned drastic difference is caused by the “vertical lift” of the rigid indenter,

which is induced by the damping of the Kelvin–Voigt foundation. In addition, the vertical

lift strongly affects the characteristics of the steady sliding friction, which is explained

well by using the critical velocity determined from the asymptotes in the master curve of

friction coefficient.

Keywords: tribology, dynamics, rheology, elastomers, Kelvin-Voigt foundation

INTRODUCTION

It has been well-known that sliding contact of elastomers involves various types of dynamics due
to friction. Physical phenomena such as wave propagations (Schallamach, 1971; Barquins, 1985;
Rubinstein et al., 2004; Maegawa and Nakano, 2010), wear pattern formations (Schallamach, 1957;
Fukahori and Yamazaki, 1994), and nonlinear vibrations (Nakano and Maegawa, 2009; Yamaguchi
et al., 2011; Nakano et al., 2019) have attracted the interest of many scientific and engineering
researchers. Among various elastomers, rubber is the material that has received the most attention
in various practical applications (e.g., tires, seals, and shoes). Since the study done by Grosch (1963)
showing the master curve of friction coefficient according toWilliams–Landel–Ferry (WLF) theory
(Williams et al., 1955), the importance of viscoelasticity has been recognized, and the dependence
of the friction coefficient on temperature and velocity has been investigated [e.g., Popov et al.
(2018)]. More recently, several swollen polymers showing high elasticity and ultra-low friction (e.g.,
hydrogels and polymer brushes) have been found (Gong et al., 2001; Nomura et al., 2011), some of
which are being developed toward practical applications (Belin et al., 2018; Tadokoro et al., 2020),
and their tribological properties have also been discussed in relation to their viscoelastic properties
(Mizukami et al., 2019).

To understand the sliding friction of elastomers, various types of modeling methods have been
proposed. Among them, those with “viscoelastic foundations” are known to have strong advantages
not only of avoiding the difficulties of elastic contact stress theory but also of providing intuitive
pictures of how the energy dissipation occurs inside the contact. The first was the extension of
the elastic foundation (i.e., the Winkler foundation) from stationary contact problems of thin
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films to steady sliding contact problems of elastomers (May et al.,
1959; Johnson, 1985). Then recently, in the novel framework
of the “Method of Dimensionality Reduction” invented by
Popov and his colleagues, the modeling method has progressed,
enabling us to analyze the true three-dimensional contact with
high accuracy (Popov, 2010; Popov and Heß, 2015; Kusche,
2017). For example, Li et al. (2015) numerically and theoretically
studied the kinetics of friction coefficient for the sliding contact
between a flat elastomer (modeled by a Kelvin–Voigt foundation)
and a rough rigid indenter (modeled by a self-affine fractal)
under abrupt change in the drive velocity. As a result, they found
interesting temporal changes (i.e., jumps and relaxations) of the
friction coefficient depending on the drive velocity and the Hurst
exponent of the self-affine fractal, under the consideration of
quasi-static processes.

Based on the foregoing background, the aim of this study
was to find the answer to the following question: What
is the minimum requirement for modeling with viscoelastic
foundations to describe the transient friction appearing in the
onset of sliding between an elastomer and an indenter? In this
article, to provide a possible answer in a minimal situation, we
consider a simple line contact between a flat elastomer and a
cylindrical rigid indenter, focusing on the boundary condition of
the rigid indenter in the vertical direction, under the restriction
that the elastomer is modeled by the conventional Kelvin–
Voigt foundation. Two types of models with different boundary
conditions reveal that the vertical dynamics of the rigid indenter
strongly affects not only the occurrence of the transient sliding
friction but also the characteristics of the steady sliding friction.

Note that the aforementioned idea on the boundary condition
in the vertical direction originates from the typical structure of
sliding systems under the fluid film lubrication, since when the
fluid film lubrication is considered theoretically, it is natural to
assume that the “slider” (corresponding to the “indenter” in this
study) shifts vertically to find the position to balance with the
applied normal load. Also note that in general, it has been known
that the friction of elastomers arises by two different mechanisms.
One is the “adhesion,” the energy dissipation of which occurs at
the contact interface between the elastomer and indenter [i.e., the
adhesive friction (e.g., Moore and Geyer (1972))], and the other
is the “viscoelasticity,” the energy dissipation of which occurs
inside the elastomers [i.e., the hysteresis friction (e.g., Moore and
Geyer (1974))]. Although both mechanisms are important and
should be interrelated, this study ignores the former and focuses
on the latter.

MODELS

Structures
Figure 1 shows the two types of models for sliding friction
of elastomers considered in this study. The left is termed
the “fixed indenter (FI) model,” and the right is termed the
“movable indenter (MI) model.” They are models describing
the two-dimensional sliding contact between a rigid indenter
and a viscoelastic foundation in the xz plane, where the
x and z axes are taken in the horizontal and vertical
directions, respectively.

The rigid indenter (mass per unit width: M) has a cylindrical
shape (curvature radius: R), the bottom surface of which contacts
with the viscoelastic foundation. In the FI model, the rigid
indenter is mounted on the rigid walls, not to be able to move
in any direction. In the MI model, on the other hand, the
rigid indenter is supported by a frictionless linear bearing, to
be able to move only in the vertical direction. Note that the
boundary condition of the rigid indenter is the single difference
between them.

The viscoelastic foundation consists of an infinite number
of viscoelastic elements mounted on a rigid base at regular
intervals in the horizontal direction. Every viscoelastic element
is a one-degree-of-freedom Kelvin–Voigt element consisting of a
vertical spring (stiffness per unit width: k) and a vertical damper
(damping coefficient per unit width: c) with the same natural
length; as a result, its non-disturbed surface is the horizontal
plane z = 0. Note that by using the stiffness per unit area (K)
and damping coefficient per unit area (C) of the viscoelastic
foundation, k and c are given by k = K/N and c = C/N,
respectively, where N is the number of viscoelastic elements per
unit length. Also note that here we assume that the upper end of
every viscoelastic element makes contact with the rigid indenter
surface with no adhesion and with no friction.

Owing to the aforementioned structures, the normal load per
unit width (W) of the FI model is determined by the indentation
depth δ [i.e., W = W(δ), where δ is constant], while that of the
MI model is determined by the gravity [i.e., W = Mg, where g is
the gravity constant]. In addition, in both models, the rigid base
is driven horizontally at the drive velocity V. Therefore, we can
say that the FI model represents a “constant-gap sliding system,”
while the MI model represents a “dead-weight sliding system.”
Or, we can also say that the FI and MI models represent the
two limiting cases corresponding to a “very stiff apparatus” and
a “very soft apparatus,” respectively.

Governing Equations
When the rigid indenter penetrates the viscoelastic foundation by
δ > 0, the indenter surfaces in the FI and MI models are given by

z = h (x) − δ (FI model) (1)

z = h (x) − δ (t) (MI model) (2)

respectively, where t is the time, and h(x) is the indenter
shape function:

h (x) =
x2

2R
(3)

Let us assume that the ith viscoelastic element at x = xi(t)
makes contact with the indenter surface (see Figure 2). The
compression and compression rate of the ith viscoelastic element
in the FI model are given by

ui (t) = −h (xi) + δ (FI model) (4)

u̇i (t) = −h′ (xi)V (FI model) (5)
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FIGURE 1 | Two types of models for sliding contact between cylindrical rigid indenter and flat elastomer (modeled by viscoelastic foundation). (Left) Fixed indenter (FI)

model. (Right) Movable indenter (MI) model.

FIGURE 2 | Local forces on the ith viscoelastic (Kelvin–Voigt) element. (Left)

Local forces acting on subelement PQR in the ith viscoelastic element. (Right)

Local force acting on rigid indenter from the ith viscoelastic element.

respectively, while in the MI model,

ui (t) = −h (xi) + δ (t) (MI model) (6)

u̇i (t) = −h′ (xi)V + δ̇ (t) (MI model) (7)

respectively, where (·) and (′) are the derivatives with respect to t
and x, respectively. Then, as shown in the left of Figure 2, there
are four types of local forces acting on the subelement PQR: the
normal force fNi at P (from the rigid indenter), the restoring force

kui at Q (from the spring), the damping force cu̇i at R (from the
damper), and the horizontal constraint force f Ci (from the spring
and damper). Considering that the subelement PQR is massless,
we obtain the following force balance equations in the vertical
and horizontal directions:

kui + cu̇i = fNi cos θi (8)

fCi = fNi sin θi (9)

respectively, where

tan θi = −h′ (xi) (10)

under –π /2 < θi < π /2, and from Equation (8),

fNi =
kui + cu̇i

cos θi
(11)

Now, as shown in the right of Figure 2, the normal force acts on
the rigid indenter at P from the ith viscoelastic element, which is
the reaction force of the normal force fNi on the left of Figure 2.
Therefore, the vertical and horizontal components of the normal
force are given by

fzi = fNi cos θi = kui + cu̇i (12)

fxi = fNi sin θi = −h′ (xi) fzi (13)

respectively. Note that from Equations (9) and (13), the
horizontal constraint force is determined as f Ci = fxi.
Consequently, the total vertical force Fz and total horizontal force
Fx acting on the rigid indenter from the viscoelastic foundation
are given by

Fz =
∑

i
fzi (14)

Fx =
∑

i
fxi (15)
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respectively. Finally, the vertical position of the indenter bottom
A in the FI model is given by

zA = −δ (FI model) (16)

while in the MI model, it is determined by the equation
of motion:

Mz̈A = Fz −Mg (MI model) (17)

which determines δ and δ̇ in Equations (6) and (7) as follows:

δ (t) = −zA (t) (MI model) (18)

δ̇ (t) = −żA (t) (MI model) (19)

Note that when the ith viscoelastic element is not making
contact with the indenter surface, it is obvious that fNi = 0
and therefore fzi = fxi = 0. Then, the compression rate of the
non-contacting element is given by

u̇i = −
ui

τ
(non-contact) (20)

where τ is the retardation time of the viscoelastic element,
defined as

τ =
c

k
(21)

or, by using the macroscopic properties of the
viscoelastic foundation,

τ =
C

K
(22)

Therefore, when the contacting element violates the
following condition:

ui ≥ h′ (xi)Vτ (FI model) (23)

ui ≥ h′ (xi)Vτ + żAτ (MI model) (24)

it detaches from the rigid indenter surface. Note that the first-
order differential equation (20) for the non-contacting element
has the following solution:

ui (t) = ui (t0) exp

(

−
t − t0

τ

)

(non-contact) (25)

where t0 is the constant.

METHODS

The sets of the governing equations in the previous section
were solved numerically for the FI and MI models. To solve
the second-order ordinary differential equation (17) for the MI
model, the Runge–Kutta method was used, where the time
discretization was determined by 1t = 21x/V = 2/NV.

Standard parameter values for the numerical simulations are
listed in Table 1. Note that both models include six independent
parameters (R, K, τ , N, δ, and V in the FI model; R, M, K,
τ , N, and V in the MI model). However, since N (= 1/ 1x)
is the parameter for the space discretization, the number of

TABLE 1 | Standard parameter values for numerical simulations.

Rigid indenter

Curvature radius R 10mm

Mass per unit width M (for MI model) 1 kg/mm

Viscoelastic foundation

Stiffness per unit area K 10 GN/m3

Retardation time τ (= C/K) 100 ms

Number of elements per unit length N 200 mm−1

Operation

Indentation depth δ (for FI model) 300µm

Drive velocity V 100 mm/s

essential parameters is five for each model. Also note that if
we imagine a “thin” elastic sheet of thickness h = 1mm as the
viscoelastic foundation, it is possible to say that the stiffness per
unit area K = 10 GN/m3 corresponds to the effective elastic
modulus E ∼ Kh = 10 MPa, although it depends strongly on the
boundary condition of mounting the elastomer on the rigid base
[e.g., Popov (2010)].

RESULTS

Figure 3 shows the numerical results of temporal changes
in representative variables for the FI model (left column)
and MI model (right column) under the standard conditions
(Table 1). Note that as shown by the blue lines in the top
row, the drive velocity was abruptly increased from V = 0 to
100 mm/s at t = 0.

First, from the results for the FI model, we find that the
indenter position provided the initial condition (zA = −0.3mm,
Fz ∼ 10 N/mm, and Fx = 0). Then, Fz and Fx were immediately
increased at t = 0 and maintained the increased values (zA =
−0.3mm, Fz ∼ 35 N/mm, and Fx ∼ 5 N/mm).

Then, from the results for the MI model, we find that the
gravity force provided the same initial condition as that of
the previous model. However, the responses were completely
different, showing distinct “transient sliding” toward “steady
sliding.” The rigid indenter started tomove “upward” at t= 0 and
then gradually approached zA ∼ −0.1mm with a time constant
in the order of “10 ms” (second row). The response of Fz was
spiky: it immediately increased to Fz ∼ 30 N/mm at t = 0, then
rapidly decreased to Fz ∼ 9 N/mm with a time constant in the
order of “1ms,” and gradually returned to Fz ∼ 10 N/mm (third
row). The response of Fx was also spiky: it immediately increased
to Fx ∼ 5 N/mm at t = 0, then rapidly decreased to Fx ∼ 2 N/mm
with the time constant “1ms,” and gradually approached Fx ∼ 1
N/mm with the time constant “10 ms” (bottom row). It should
be noted that the response of Fx resembles the typical transition
from the static friction to the kinetic friction, although no static
friction was considered. This transient behavior will be discussed
in the next section.

Figure 4 shows the numerical results of spatiotemporal
changes in the contact pressure p(x,t)= NfN(x,t) under the same
conditions as those of the previous figure, where the abscissa
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FIGURE 3 | Numerical results for fixed indenter model (Left) and movable indenter model (Right): temporal changes in drive velocity V (top row), indenter position zA
(second row), total vertical force Fz (third row), and total horizontal force Fx (bottom row) under standard conditions (see Table 1 for parameter values).

FIGURE 4 | Numerical results for fixed indenter model (Left) and movable indenter model (Right): spatiotemporal changes in contact pressure p(x,t) under standard

conditions (see Table 1 for parameter values). LE, leading edge of contact; TE, trailing edge of contact.
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is the horizontal position x, the ordinate is the time t, and the
magnitude of p is represented by the shade of the red color. The
blue lines show temporal changes in the horizontal positions of
the leading and trailing edges of the contact area, denoted by
xLE(t) and xTE(t), respectively.

First, from the results for the FI model, we again find that
the response was not accompanied by any transient processes.
Regarding the edges, they were located at xLE = −2.4mm and
xTE = 2.4mm as the initial state. After t = 0, the leading edge
maintained the position, while the trailing edge immediately
moved to the left to xTE = 0.3mm at t = 0 and maintained the
position for t > 0 (which is observed as the peeling of the contact
area in the outlet side). Regarding the contact pressure, it was
symmetric for t < 0, showing the maximum pmax ∼ 3 MPa at the
contact center and the minimum pmin = 0 at both edges. After t
= 0, it showed the maximum pmax > 20 MPa at the leading edge
and the minimum pmin = 0 at the trailing edge.

Then, from the results for the MI model, we again find that
the response was accompanied by distinct transient processes.
Regarding the edges, they were located at the same positions as
those of the previous model. However, after t = 0, not only the
trailing edge but also the leading edge moved (which is observed
as the simultaneous peeling of the contact area in both sides).
The leading edge started to move to the right at t = 0 and then
gradually approached xLE = −1.3mm with the time constant
“10ms.” Meanwhile, the trailing edge immediately moved to the
left to xTE ∼ 0 at t = 0, then continued to move to the left to
xTE ∼ −1mm with the time constant “1ms,” and then gradually
approached a limiting value of xTE = 0.1mm with the time
constant “10ms.” Regarding the contact pressure, starting from
the same initial state as that of the previous model, after t = 0, it
showed the maximum at the leading edge and the minimum at
the trailing edge. For example, in the steady sliding, pmax ∼ 14
MPa at the leading edge and pmin = 0 at the trailing edge.

DISCUSSION

Transient Sliding Friction
Through direct comparison of the numerical results for the two
types of models (Figure 1), we have found that the boundary
condition of the rigid indenter is critical for the occurrence of
transient sliding. Letting the rigid indenter be vertically movable
causes its upward motion (termed the “vertical lift” of the rigid
indenter) when the drive velocity is applied (Figure 3), leading to
a drastic spatiotemporal change in the area and pressure of the
contact (Figure 4).

First, in the FI model, the horizontal positions of the leading
and trailing edges are given by

xLE = −a (FI model) (26)

xTE =
√

a2 + lr
2 − lr (FI model) (27)

respectively, where a is the half length of the stationary contact,
and lr is the retardation length, defined as

a =
√
2Rδ (28)

lr = Vτ (29)

respectively. Note that xLE is constant, while xTE is a function
of lr. From Equations (26) and (27), we find that there are two
limiting cases:

(xLE, xTE) = (−a, a) for lr ≪ a (FI model) (30)

(xLE, xTE) = (−a, 0) for lr ≫ a (FI model) (31)

where the former means the “non-peeling” of the entire contact
area, and the latter means the “complete peeling” of the contact
area in the outlet side. Therefore, for example, as the drive
velocity is increased, the contact area changes from “symmetric”
[Equation (30)] to “asymmetric” [Equation (31)]. Note that xTE
given by Equation (27) is immedeately determined when the
drive velocity is applied, which is the reason why the response
of the FI model is not accompanied by any transient processes.

Then, in the MI model, the horizontal positions of the leading
and trailing edges are given by

xLE = −a (MI model) (32)

xTE =

√

a2
(

1+ τ
δ̇

δ

)

+ lr
2 − lr (MI model) (33)

respectively, where δ = δ(t) and therefore a= a(δ)= a(t), which
is the reason why the MI model creates transient processes. In
Equations (32) and (33), we find two sources creating temporal
changes. One is a ∼ δ1/2, which shrinks the contact area
symmetrically by the vertical lift of the rigid indenter. From
the temporal change in xLE in the right of Figure 4, we can
say that under the standard condition, the time constant “10
ms” was caused by this effect. (In addition, the temporal change
in zA on the right of Figure 3 supports this conclusion.) The
other is δ̇/δ located under the square-root sign in Equation (33),
working only for the trailing edge, which deforms the contact
area asymmetrically. From the temporal change in xTE on the
right of Figure 4, we can say that under the standard condition,
the time constant “1 ms” was caused by this effect.

Based on the foregoing, let us consider the spiky response of
Fx on the right of Figure 3. As we saw in the previous section,
the temporal change in Fx in the MI model is quite similar
to the typical transition from the static friction to the kinetic
friction, in spite of no static friction considered in the simulation.
If we saw this type of response in experiments, we probably
believed that this was caused by the typical adhesive friction
consisting of two types of friction. In fact, the spiky response
consists of the following three parts. The first is the immediate
increase responding to the abrupt increase in the drive velocity
at t = 0. This is obviously caused by the damping C of the
Kelvin–Voigt foundation, which is essentially identical to the
response observed in the FI model at t = 0. The second is the
rapid decrease with the time constant “1ms.” Considering the
discussion in the previous paragraph, we can conclude that the
rapid decrease is caused by the rapid motion of the trailing edge
to reduce the contact area. The third is the gradual decrease
with the time constant “10ms.” Considering the discussion in the
previous paragraph, it is natural to say that the gradual decrease
in Fx is caused by the gradual motion of both edges. However,
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also considering that the contact pressure takes the maximum
pmax at the leading edge and theminimum pmin = 0 at the trailing
edge (Figure 4), we can conclude that the gradual decrease in Fx
is mainly caused by the gradual motion of the leading edge. Again
note that the second and third parts of Fx in the MI model never
appear in the FI model, which tells us that the vertical lift of the
rigid indenter is essential to the spiky response.

Steady Sliding Friction
Through the numerical simulations to examine the response
to the abrupt increase in the drive velocity, we have found
that the response of the FI model is not accompanied by any
transient processes (which means that the steady sliding friction
appears immediately), while the response of the MI model is
accompanied by distinct transient processes followed by the
steady sliding friction. In this section, we focus on the steady
sliding friction.

The situation of steady sliding is given by

δ̇ = 0 (steady sliding) (34)

which makes the governing equations for theMImodel reduce to
those for the FI model. For example,

ui (t) = −h (xi) + δ (steady sliding) (35)

u̇i (t) = −h′ (xi)V (steady sliding) (36)

However, as seen in the numerical results for t > 100ms in
Figure 3, the normal loadW (= Fz in steady sliding) and friction
force F (= Fx in steady sliding) for theMImodel are considerably
different from those for the FI model (i.e., W ∼ 35 N/mm and
F ∼ 5 N/mm for the FI model, while W ∼ 10 N/mm and
F ∼ 1 N/mm for the MI model). Note that the difference is
caused by the boundary condition of the rigid indenter: the FI
model represents a “constant-gap sliding system” in which the
indentation depth δ is controlled, while the MI model represents
a “dead-weight sliding system” in which the normal load W
(= Mg) is controlled. Therefore, when one tries to measure
the sliding friction of elastomers, it is mandatory to pay much
attention to the boundary condition of the counter surface:
otherwise, measured values could lose their meaning.

The foregoing discussion is supported by Figure 5, which
shows numerical results in the steady sliding for the FImodel (left
column) and the MI model (right column). The dependences of
δ (top row),W (second row), F (third row), and µ (bottom row)
onV in the steady sliding are summarized, whereµ is the friction
coefficient in steady sliding, defined as

µ =
F

W
(steady sliding) (37)

The τ -values are 10−2 s (black), 10−1 s (blue), and 100 s
(red), and the other parameter values are the same as those
of the standard condition (Table 1). Owing to the difference
of boundary conditions, the velocity dependences of µ for the
FI and MI models are different from each other: under high-
V conditions, the FI model shows the limiting value µ ∼ 0.2,

while the MI model shows a negative dependence of µ on V
with a slope of −0.5. In addition, the three curves in every graph
in Figure 5 are found to be located at regular intervals, which
means that the product of V and τ (i.e., lr = Vτ ) is an essential
parameter for both models.

Through a series of numerical simulations under various sets
of parameters, master curves on µ in the steady sliding for the
two types of models were obtained (see Figure 6). The red curve
in the left graph is the master curve for the FI model, the ordinate
and abscissa of which areµ(R/δ)1/2 andVτ (Rδ)−1/2, respectively,
while the red curve in the right graph is the master curve for the
MI model, the ordinate and abscissa of which are µ(KR2/W)1/3

and Vτ (K/RW)1/3, respectively. It should be stressed that every
quantity assigned to the axes in Figure 6 is dimensionless.

To examine the asymptotes of the master curves, we again
consider the two limiting cases:

(xLE, xTE) = (−a, a) for lr ≪ a (steady sliding) (38)

(xLE, xTE) = (−a, 0) for lr ≫ a (steady sliding) (39)

where again, the former means the “non-peeling” of the entire
contact area, and the latter means the “complete peeling” of the
contact area in the outlet side. First, when lr≪ a,W and F can be
estimated by

W ∼
∫ a

−a
Ku (x) dx = 2αR1/2Kδ3/2 (40)

F ∼
∫ a

−a
−h′ (x)Cu̇ (x) dx = 2αR−1/2CVδ3/2 (41)

respectively, where α = 2
√
2/3. Therefore,µ for the first limiting

case [Equation (38)] is given by

µ =
CV

RK
(asymptotes L1-FI and L1-MI) (42)

Then, when lr ≫ a,W and F can be estimated by

W ∼
∫ 0

−a
Cu̇ (x) dx = CVδ (43)

F ∼
∫ 0

−a
−h′ (x)Cu̇ (x) dx = αR−1/2CVδ3/2 (44)

respectively. Therefore, µ for the second limiting case [Equation
(39)] is given by

µ = α

√

δ

R
(asymptote L2-FI) (45)

or, by using Equation (43),

µ = α

√

W

RCV
(asymptote L2-MI) (46)

The black broken lines in Figure 6 are the above asymptotes.
Now we find that excellent agreement of the asymptotes with the
master curves. Note that Equations (42) and (46) are the same as
those shown by Popov (2010).
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FIGURE 5 | Numerical results in steady sliding for fixed indenter model (Left) and movable indenter model (Right): effects of retardation time τ on velocity

dependences of indentation depth δ (Top), normal load W (second row), friction force F (third row), and friction coefficient µ (bottom row). Black lines, τ = 10−2 s;

blue lines, τ = 10−1 s; red lines, τ = 100 s (see Table 1 for other parameter values).

FIGURE 6 | Master curves on friction coefficient µ in steady sliding for fixed indenter model (Left) and movable indenter model (Right). Red solid lines: master curves

obtained numerically, black broken lines: asymptotes obtained theoretically.
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TABLE 2 | Velocity dependences of friction coefficient in steady sliding

(α = 2
√
2/3 ).

FI model MI model

Critical velocity V* V∗ ∼ K
√
Rδ
C

V∗ ∼
3√
RK2W
C

Friction coefficient µ for V ≪ V∗ µ = CV
RK

∼ V1 µ = CV
RK

∼ V1

Friction coefficient µ for V ≫ V∗ µ = α

√

δ
R
∼ V0 µ = α

√

W
RCV

∼ V−1/2

Velocity Dependences of Friction
Coefficient
In this section, based on Figure 6, let us consider the velocity
dependences of the friction coefficient. In Figure 6, the drive
velocity V is included only on the abscissa. Therefore, from
the intersection of the two asymptotes, we introduce the critical
velocity V∗ defined as

V∗ ∼
K
√
Rδ

C
(FI model) (47)

V∗ ∼
3
√
RK2W

C
(MI model) (48)

By using V∗, the formulas for estimating friction coefficient are
summarized in Table 2.

First, we consider the case of V ≪ V∗. From the third row
of Table 2, we find that the formulas for both models are the
same, which means that when V ≪ V∗, the vertical lift effect is
negligible, although the rigid indenter could move vertically in
the MI model. In addition, considering the assumption given by
Equation (38), we find that when V ≪ V∗, the peeling of the
contact area in the outlet side is also negligible in both models.
The velocity dependence of µ is µ ∼ V1, which means that it is
caused by the damping of the Kelvin–Voigt foundation.

Then, we consider the case ofV≫V∗. From the bottom row of
Table 2, we find that the formulas for the two types of models are
different, which means that when V ≫ V∗, the vertical lift effect
strongly appears in the MI model. From Equation (43), we find
that the vertical lift effect appears according to

δ ∼ V−1 for V ≫ V∗ (MI model) (49)

which is confirmed by the numerical results shown in the upper
right graph of Figure 5, where a decrease in δ means an increase
in zA (= –δ): that is, the vertical lift of the rigid indenter. In
addition, considering the assumption given by Equation (39), we
find that when V ≫ V∗, the complete peeling of the contact area
in the outlet side occurs in both models. Regarding the velocity
dependence ofµ in the FI model, it isµ∼V0 (i.e.,µ is constant).
This is because when V ≫ V∗, the damping becomes dominant,
and therefore the restoring becomes negligible, which leads to the
situation that both of W and F are proportional to V, as shown
in Equations (43) and (44). Regarding the velocity dependence
of µ in the MI model, on the other hand, it shows the negative
dependence µ ∼ V−1/2, which is caused by the vertical lift of the
rigid indenter.

As a result, we find that in the MI model, the function
µ = µ(V) has a local maximum at V ∼V∗. Note that for
many decades, this type of velocity dependence has been
observed and discussed by a number of researchers for the
sliding friction of elastomers, which seems to be basically
understood as the frequency dependence of viscoelasticity
(Persson, 2001; Momozono et al., 2010; Carbone and Putignano,
2013). However, the MI model produces a qualitatively similar
dependence, although the frequency dependence of the Kelvin–
Voigt foundation has no local maximum, where it is caused by
the vertical lift of the rigid indenter.

Also note that the negative dependence µ ∼ V−1/2 means

µ → 0 for
V

V∗ → ∞ (MI model) (50)

which gives us an idea of the ultra-low friction. If we try to
embody the situation of Equation (50) in real systems, not only
increasing V but also decreasing V∗ is promising, the method
of which is shown by Equation (48). Probably, the most effective
parameter is the damping C (or the retardation time τ = C/K).
According to the equation, increasing C leads to decreasing V∗,
which leads to approaching the situation of Equation (50). It
should be noted that the concept can never be embodied in the
FI model, because increasing C under a constant δ just linearly
increases F, as shown in Equation (44). Therefore, the key is the
vertical lift effect arising with the movable boundary condition of
the rigid indenter.

Recently, several swollen polymers showing ultra-low friction
(e.g., hydrogels and polymer brushes) have attracted attention,
with inspirations from natural tribosystems in human bodies
(e.g., eyes and joints) (Klein et al., 1994; Lee and Spencer, 2008).
An important aspect is obviously the low-adhesive properties of
surfaces caused by their “microscopic” structures. However, as
another important aspect, proper “macroscopic” structures are
also needed to utilize them properly under various conditions. At
least, recalling the results on the transient sliding (Figure 3), we
can say that in the lubricated sliding of elastomers, macroscopic
structures utilizing the vertical lift effect by viscoelasticity seem
to have strong advantages for smooth transition to the fluid film
lubrication regime, especially at the onset of sliding.

CONCLUSIONS

In this study, the sliding friction of elastomers was investigated
numerically and theoretically for the line contact between
a cylindrical rigid indenter and a “frictionless” Kelvin–Voigt
foundation. The onset of sliding under an abrupt increase
in the drive velocity was simulated with different boundary
conditions of the rigid indenter. The main conclusions are
as follows:

1. When the rigid indenter is not allowed to move in any
direction, just an abrupt change in the friction force appears,
which is not accompanied by any transient processes.
However, when the rigid indenter is able to move in the
vertical direction, the transient sliding friction including
three different time constants appears, resembling the typical
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transition from the static friction to the kinetic friction, in
spite of no static friction considered in the simulation. The
aforementioned drastic difference is caused by the “vertical
lift” of the rigid indenter induced by the damping of the
Kelvin–Voigt foundation.

2. When the drive velocity is sufficiently low, the vertical lift
effect is negligible, where the restoring is more dominant
than the damping, which leads to little peeling of the entire
contact area and the friction coefficient proportional to the
drive velocity. On the other hand, when the drive velocity
is sufficiently high, the vertical lift effect becomes strong,
where the damping is more dominant than the restoring,
leading to the complete peeling of the contact area in the
outlet side. The vertical lift of the rigid indenter strongly
affects the characteristics of the steady sliding friction, which
is explained well by using the critical velocity determined from
the asymptotes in the master curve of friction coefficient.

At the end, it is noted again that the foregoing conclusions are
obtained for the Kelvin–Voigt foundation against a cylindrical
rigid indenter. In general, since behaviors are greatly affected
by the rheology of the viscoelastic foundation or the shape of
the rigid indenter (Popov and Heß, 2015), further investigations
are needed.
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