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Analysis of Elastic Normal Contact of
Surfaces With Regular
Microgeometry Based on the
Localization Principle
Irina G. Goryacheva and Ivan Y. Tsukanov*

Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia

Formulations of periodic contact problems for an elastic half-plane and an elastic

half-space interacting with a rigid body, having regular microgeometry, and a method

for their approximate solution based on the localization principle are proposed.

General relations, connecting contact characteristics of the interface (contact pressure

distribution and dependence of the real contact area on the nominal pressure) with a

single asperity shape and the distance between them, are obtained. The examples,

illustrating the use of the obtained approximate relations for the contact characteristics

analysis in the case of wavy and wedged profiles, are presented. The comparison of the

obtained results with the available exact solutions is carried out. It was established that

the approximate dependences coincide with the exact solution up to high values of the

nominal pressures. New approximate solutions of 2D contact problems for a periodic

system of parabolic asperities with single and double contact segments within a period

are derived. It is also shown that the ratio of the contact zone size to the distance between

asperities, at which the interaction effect becomes significant, only slightly depends on

asperities shape.

Keywords: regular microgeometry, elastic contact, asperities interaction effect, localization principle, contact

characteristics

INTRODUCTION

In general case, a surface topography is represented by a combination of deterministic and random
functions (Whitehouse, 1994) determined by natural factors or technological treatment of the
surface. Deterministic components are formed either as a result of imperfections in the operation of
technological equipment or in stationary operating conditions (for example, the steady shape of a
worn surface Goryacheva, 1997). In addition, a regularmicrogeometry on the surface can be created
to control the operational properties of friction pairs, in particular their tribological characteristics.
The geometric structure of surfaces has a great significance on the friction processes in an elastic
contact under the condition of minimal wear. Prediction of the contact characteristics of surfaces
with a given regular microgeometry, as well as the control of its optimal microgeometry are the
urgent problems for micro- and nanotribology (Myshkin and Goryacheva, 2016).

The term “regular microgeometry” suggests that on the surface there is a periodic or a
non-periodic system of asperities (or grooves) of a certain shape, mathematically described
by a continuous or a piecewise function. The most common types of microgeometry used in
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tribological applications include isotropic (created in the
transverse and longitudinal directions) and anisotropic (created
in one direction only) ones.

Many operational characteristics of joints, such as stiffness,
thermal and electrical conductivity, tightness, adhesion strength,
etc. are determined by characteristics of normal contact such as
the contact pressure distribution, the real contact area and the
additional compliance caused by the existence of microgeometry.
For their correct calculation, it is necessary to formulate and
to solve a periodic contact problem that takes into account the
density of contact spots and the interaction of asperities. Such
problems and methods for solving them have been extensively
investigated. Most of the results obtained relate to the solution
of the plane periodic problem of the linear elasticity theory,
corresponding to the anisotropic (two-dimensional) geometric
texture. The approaches for solving this class of problems are well
developed. The main analytical ones are based on the methods
using complex potentials (Westergaard, 1939; Kuznetsov, 1976;
Krishtafovich et al., 1994; Manners, 1998; Soldatenkov, 2013;
Xu and Jackson, 2018), the method of superposition of Flamant
solutions (Schmueser and Comninou, 1979; Block and Keer,
2008; Tsukanov, 2018a,b), the dual series equations method
(Dundurs et al., 1973; Carbone and Mangialardi, 2004), and also
their modifications. Based on these methods, problems were also
solved with more complex boundary conditions, for example,
taking friction into consideration, or the influence of adhesion
forces (e.g., see the review of Goryacheva and Martynyak, 2014).
The two-dimensional (2D) periodic problems including ones,
having several segments of integration within one period can be
also effectively solved numerically, e.g., with the use of iterative
methods (Chekina and Keer, 1999; Manners, 2003). Boundary
elementmethod (BEM) (Ciavarella et al., 2005) and finite element
method (FEM) (Paggi and Reinoso, 2018) are also successfully
applied for solving problems of that type. Unlike the problems
for a single contact zone, the close-form solution of a 2D periodic
contact problem commonly contains trigonometric functions
and it can be cumbersome for engineering analysis, particular if
the shape of asperities is not simple.

In contrast to the case of 2D problem, the three-dimensional
(3D) problem corresponding to an isotropic microgeometry was
solved only by using semi-analytical and numerical methods
(e.g., BEM, FEM) due to the lack of a direct inverse of the
corresponding integral equations. The non-periodic contact
problems for a system of asperities, having various shape, location
and height distribution were solved by semi-analytical iteration
methods (Goryacheva, 1997; Shen et al., 2018). The significant
influence of contact spots density, depending on the number
of asperities and relative distance between them, is emphasized.
The numerical methods for 3D periodic contact problems in
linear elasticity are well developed now (Müser et al., 2017).
They usually include the Fast Fourier transform (FFT) technique
to meet the periodic boundary conditions and to reduce the
calculation costs (Stanley and Kato, 1997; Yastrebov et al., 2015).
A rather effective approximate approach for estimating the
distribution of contact pressures on the real contact spots for
the surfaces with regular microgeometry, taking into account
the asperities interaction, is the use of the localization principle

(Goryacheva, 2006). It allows calculating the real contact areas
and pressure distribution on them for periodic systems of
asperities, having equal or different heights. This method was
further developed to analyze the contact pressure distribution
during the indentation of a multilevel periodic system of
spherical asperities into a two-layer half-space and to analyze the
influence of asperities density on the surface layer stress state
and the additional compliance due to the existence of surface
microgeometry (Goryacheva and Torskaya, 2019).

The main purpose of this study is the development of the
approximate analytical method of solution for periodic contact
problems, involving regular surface microgeometry on the basis
of localization principle. This class of contact problems is widely
used in modeling of artificial texture; however, the close-form
solutions are rarely available, especially for 3D problems. In
this paper, the unified approximate method to solve 3D and
2D contact problems for a periodic system of asperities of
equal height is analytically developed. The accuracy of the
method is estimated based on the known exact solutions of the
corresponding contact problems. New approximate solutions of
2D contact problems for a periodic system of parabolic asperities
with single and double contact segments within a period are
obtained. Also, new features of the dependences of contact
characteristics (pressure distribution, contact zone size) on load
are revealed.

LOCALIZATION PRINCIPLE IN SOLVING
THE DISCRETE CONTACT PROBLEMS

In general case, the problem of discrete contact of a nominally
flat surface, having regular microgeometry, with an elastic half-
space can be formulated as follows. There is a finite or an
infinite system of punches with a given shape, loaded with a
constant nominal pressure, which is penetrated into the elastic
half-space. For solving the problem it is necessary to determine
the contact pressure distribution on the real contact spots,
taking into account the curvature of the deformed half-space
surface due to the interaction of punches (asperities). The main
point of the localization principle (Goryacheva, 2006) is that the
real contact pressure on a single contact spot with a sufficient
accuracy is determined by setting the exact contact conditions
only on the fixed spot under consideration and adjacent to
it. The influence of the remaining spots is replaced by the
action of the nominal (averaged over the remaining part of the
surface) pressure. With this approach, the normal displacements
of the half-space surface under an arbitrary fixed asperity from
the action of the remaining asperities are taken into account.
They are approximately calculated from the distributed nominal
pressure acting outside the certain region which depends on the
contact density.

The general formulation of the linear elastic 3D periodic
contact problem for a system of asperities (with equal or different
heights) and its solution using the localization principle are given
in Goryacheva (1998). In particular, the results of a numerical
analysis of the integral relations obtained (Goryacheva, 1998)
show that for a system of periodically arranged axisymmetric
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asperities with equal height, the pressure distribution p(r) on the
real contact spot (for not very intimate contact) with sufficient
accuracy is determined by the expression:

p(r) =
E∗

4π2

a
∫

0

1f (ρ)H1(r, ρ)dρ +
2

π
NPsarctan

( √
a2 − r2

√
A2 − a2

)

(1)

where f (r) is the function describing the shape of the punch
contact surface, 1f (r) is the Laplacian of the function f (r); N̄
is the average number of contact spots per unit area, Psis the
load acting on a single contact spot, a is the contact spot radius,

A = (πN̄)
−1

is the radius of circle outside which the value of
nominal pressure acting on the elastic half-space is taken into
account (Figure 1), E∗ is the reduced modulus of elasticity of the
contacting bodies, determined by the following expression

1

E∗
=

1− ν21

E1
+

1− ν22

E2
, (2)

where E1, ν1 and E2, ν2 are the Young’s moduli and Poisson’s
ratios of the materials of contacting bodies, respectively.

FIGURE 1 | Representation of contact interaction of a system of axisymmetric

asperities with an elastic half-space according to the localization principle.

The kernel of the integral operator in Equation (1) is
determined for the circular contact region in the case of bounded
contact pressure as Goryacheva (1998):

H1 (r, ρ) =
2π
∫

0

2ρ

π
√

r2 − 2rρ cos θ + ρ2
arctan

( √
a2 − r2

√

a2 − ρ2

a
√

r2 − 2rρ cos θ + ρ2

)

dθ . (3)

The total load acting on a single contact spot is determined by the
equilibrium equation

Ps = 2π

a
∫

0

p(r)rdr. (4)

To increase the accuracy of contact characteristics calculation,
especially at high contact density, it is necessary to solve the
inhomogeneous integral equation of the second kind when
determining the contact pressure (Goryacheva, 1998).

This approach was used (Goryacheva and Torskaya, 1995;
Goryacheva, 1998) for calculation of contact pressures and
internal stresses at indentation of a periodic system of
equally high asperities into an elastic homogeneous and an
inhomogeneous (coated) half-space. The calculation results show
a significant effect of the asperities density on the distribution
of contact pressures under a single asperity (Figure 2A) and on
the dependence of radius of a single contact spot on the nominal
pressure p̄ = PN̄ (Figure 2B).

In the case of indentation of periodic system of asperities with
different heights into an elastic homogeneous or layered half-
space the penetration of the highest asperities is calculated firstly.
Then the curvature of the half-space boundary between asperities
is calculated, and the nominal pressure at which the asperities
of the next height level come into contact is determined. The
described method for 3D problems with several height levels of
asperities is suggested by Goryacheva (1997, 1998).

FIGURE 2 | Pressure distribution under a single asperity (A) at p̄ = πP/2E∗R2 = 0.0044; l/R = 1 (1), l/R = 0.25 (2), l/R = 0.2 (3) and dependence of the radius of a

contact spot on dimensionless nominal pressure (B) for l/R = 1 (1,1/), l/R = 0.5 (2, 2/), l/R = 0.2 (3, 3/); curves 1, 2, 3 are calculated from Equations (1–4) and 1/, 2/,

3/—from the Hertz theory.
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DETERMINATION OF THE CONTACT
CHARACTERISTICS OF SURFACES WITH
A MICRORELIEF IN THE CONDITIONS OF
A PLANE ELASTICITY PROBLEM

In the general case, a plane-strain periodic contact problem
without friction involves solving the following integral equation
having a Hilbert kernel (Schtaierman, 1949; Barber, 2018):

E∗

2
h′(x) =

1

2π

a
∫

−a

p(ξ) cot
x−ξ

2
dξ, (5)

here h
′
(x) is the derivative of the initial gap function between

surfaces, p(x) is the contact pressure distribution; a is the half-
width of the contact zone.

In the absence of a direct inversion of Equation (5) on
an arbitrary segment [–a, a] a closed form expression for
determining the distribution of contact pressure is possible only
for certain initial gap functions.

The method to solve the contact problems based on the
localization principle, in the simplest formulation, involves the
contact problem solution for a single asperity (determination of
contact pressure distribution) taking into account the normal
displacements of a half-plane boundary inside the considered
single contact zone from action of the averaged pressure, applied
outside the certain region (see section Localization Principle in
Solving the Discrete Contact Problems).

The contact problem for a single contact segment is
described by the integral equation with the Cauchy kernel
(Muskhelishvili, 1953):

E∗

2
h′(x) =

1

2π

a
∫

−a

p(ξ)

x−ξ
dξ, (6)

having for a symmetric initial gap function and bounded
pressure on both ends of contact segment the following inversion
(Muskhelishvili, 1953):

p(x) =
E∗

2π

√

a2 − x2

a
∫

−a

h′(ξ )
1

√

a2 − ξ 2

1

ξ − x
dξ . (7)

The initial gap function within the contact zone is determined by
the following condition:

h(x) = δ −
(

f (x)+ f2(x)
)

, (8)

where f (x) is the asperity shape function, δ is the contact
approach, f 2(x) is the function, describing curvature of the half-
plane boundary caused by the action of the remaining asperities
except for the one under consideration.

According to the localization principle, the action of the
remaining asperities is replaced by a uniform pressure acting
outside a strip of width 2b. The value of 2b is determined from the
condition of equality of the mean pressure inside and outside of

this strip. The mean pressure in a plane periodic contact problem
is determined as p̄ = Ps/L, where Ps is the total load on a single
contact segment, L is the distance between the peaks of asperities
(period); therefore 2b= L. To determine the total load on a single
contact zone Ps, the equilibrium equation is used

Ps =
a
∫

−a

p(x)dx. (9)

The function f 2(x) can be represented as a difference between
displacements from a uniform load distributed over the entire
half-plane and displacements from the same load inside a strip
of width L (Johnson, 1985):

f2(x) = −
2

πE∗
Ps

L



C −
x
∫

−a

ln

[

L/2+ ξ

L/2− ξ

]

dξ



 . (10)

Displacements from a uniform load distributed over the all half-
plane are constant. This statement can be justified as follows. If
one represents the uniform pressure distributed over a strip of
arbitrary width 2b in the form of Fourier series with a period L as

p(x) = p̄
2b

L
+

2

π
p̄

∞
∑

n=1

1

n
sin

(

2πnb

L

)

cos

(

2πnx

L

)

, (11)

then the derivative of vertical displacements of the half-plane
boundary from the pressure distribution (11) is determined by
the Hilbert transform (Srivastava and Lowengrub, 1970):

ū′z(x) = H
{

p(x)
}

=
4

π
p̄

∞
∑

n=1

1

n
sin

(

2πnb

L

)

sin

(

2πnx

L

)

.

(12)

Taking into account that 2b = L, the right-hand side of Equation
(12) becomes zero, and the half-plane displacements are constant.
After differentiating Equation (10) and substitution the result in
Equation (8), we obtain the expression for the derivative of the
gap function inside the single contact zone:

h′(x) = f ′(x)+
2

πE∗
Ps

L

(

ln

[

L/2+ x

L/2− x

])

= f ′(x)+
4

πE∗
Ps

L
artanh

(

2x

L

)

, (13)

Using Equation (7), one can determine the contact pressure
taking into account the elastic interaction of asperities.

p(x) =
E∗

2π

√

a2 − x2

a
∫

−a

[

f ′(ξ )+
4

πE∗
Ps

L
artanh

(

2ξ

L

)]

1
√

a2 − ξ 2

1

ξ − x
dξ . (14)
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The total load on the asperity, taking into account the symmetry
of the function f (x), is determined directly using Equation (13)
(Schtaierman, 1949; Barber, 2018):

P =
E∗

2

a
∫

−a

f ′(ξ )ξdξ
√

a2 − ξ 2
+

2

π

Ps

L

a
∫

−a

ξ
√

a2 − ξ 2
artanh

(

2ξ

L

)

dξ .

(15)

Calculation of the integral in the second term of Equation (15)
with condition of 2a < L gives the following expression for
the load:

P =
E∗

2

a
∫

−a

f ′(ξ )ξdξ
√

a2 − ξ 2
+

Ps

L

(

L−
√

L2 − 4a2
)

. (16)

Using Equation (16), it is possible to simplify the integration of
the second term in square brackets in Equation (14). For this
purpose the method based on the Abel transform of the function
∂P/∂a (Barber, 2018) was used. Then Equation (14) is reduced to
the following form

p(x) =
1

π

a
∫

x

P′a(ξ )dξ
√

ξ 2 − x2
=

E∗

2π

√

a2 − x2

a
∫

−a

f ′(ξ )dξ
√

a2 − ξ 2 (ξ − x)

+
2Ps

πL
arctan

(

2
√
a2 − x2

√
L2 − 4a2

)

, (17)

where P′a = ∂P/∂a.
It should be noted that in the 2D periodic problem the effect

of elastic interaction on the contact pressure under the central
asperity is characterized by a function similar to the 3D case for
axisymmetric asperities arranged at the nodes of hexagonal lattice
(see Equation 1).

Let us consider some examples of using the localization
principle in 2D periodic contact problems for specific types of
microgeometry, common in engineering applications.

Sinusoidal Profile
A two-dimensional profile described by the function f (x) =
1
(

1− cos(2πx/L)
)

, where 1, L are the amplitude and the
period, is the simplest way to describe waviness or roughness of a
surface formed along one direction (longitudinal or transverse).
Expressions for determining the contact pressure distribution
and the dependence of mean pressure p̄ on a contact zone
half-width were first obtained by Westergaard (1939):

p(x) =
√
2πE∗1

L
cos (πx/L)

√

cos (2πx/L) − cos (2πa/L);

(18)

p̄ = p∗sin2 (πa/L) . (19)

Here p∗ = πE∗1/L is the pressure required to achieve complete
contact between surfaces.

FIGURE 3 | Contact of a wavy surface with an elastic half-plane (A) and the

equivalent scheme in accordance with the localization principle (B).

Consider the solution of this problem using the localization
principle. The initial and the equivalent schemes of the problem
are shown in Figure 3.

An analytical expression for contact pressure distribution
under a single sinusoidal asperity, which is a solution of Equation
(6), was obtained by Tsukanov (2018a) in the form of an infinite
series of Chebyshev polynomials:

ps(x) =
2π1E∗

L

√

1− (x/a)2

∞
∑

k=0

(−1)kJ2k+1 (2πa/L)U2k (x/a), (20)

where Ui(x) is the Chebyshev polynomial of the second kind of
degree i; Jk(x) is the Bessel function of the first kind of integer
order k.

Equations for determining the total force, applied to a single
asperity and the maximum pressure are obtained in closed form
Tsukanov (2018a):

Ps =
π21E∗

L
aJ1 (2πa/L) ; (21)

psmax = ps(x) |x=0 =
π1E∗

L

2πa/L
∫

0

J0(t)dt. (22)

Using Equations (16–17) and (20–22), the approximate
expressions can be obtained to determine the contact
characteristics of a wavy surface indenting into an elastic
half-plane. The expressions for the mean and the maximum
pressure have the following form
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FIGURE 4 | Contact of a wedged profile with an elastic half-plane.

p̄ =
π21E∗

L2
aJ1 (2πa/L)

(

2−
√
L2 − 4a2

L

)

; (23)

pmax =
π1E∗

L

2πa/L
∫

0

J0(t)dt +
2π1E∗

L2
aJ1 (2πa/L)

(

arctan

(

2a
√
L2 − 4a2

))

. (24)

Wedged Profile
This type of microrelief can be found on surfaces after very rough
edge machining. The radius of curvature of asperities is much
smaller than their height, and it can be considered as negligible.
The scheme of the problem is shown in Figure 4. The equivalent
scheme according to localization principle is similar to Figure 3.

For the possibility of applying the methods of the linear theory
of elasticity, the angleβ = arctan(41/L) should be small.

The exact solution of this problem was obtained by Block and
Keer (2008):

p(x) =
E∗ tanβ

π
arcosh

(

tan (πa/L)

tan (π |x| /L)

)

. (25)

In accordance with the localization principle (see Equations 16,
17) and using well-known expressions for determining contact
pressure and total load on a single blunt wedge (Johnson, 1985),
the following approximate equations for determining the contact
characteristics have been reduced:

p(x) =
E∗ tanβ

π
arcosh

(a

x

)

+
2E∗a tanβ

πL
arctan

(

2
√
a2 − x2

√
L2 − 4a2

)

; (26)

p̄ =
E∗a tanβ

L

(

2−
√
L2 − 4a2

L

)

. (27)

Periodic System of Parabolic Asperities
With a Single Contact Segment Within
a Period
A common in practical applications type of texture (e.g., after
laser surfacing) is a periodic system of cylindrical (parabolic)

FIGURE 5 | Contact of a system of parabolic asperities and an elastic

half-plane with a single contact segment within a period.

asperities in which the radius of curvature significantly exceeds
their height. The scheme of the problem is shown in Figure 5.

This problem was previously considered by Kuznetsov (1978).
An exact expression to calculate the contact pressure distribution
in a closed form has not been derived, however the relation
between the half-width a of a contact zone and the total load per
one asperity Ps was found (Kuznetsov, 1978):

a =
L

π
arccos

(

exp

(

−
2πPsR

L2E∗

))

. (28)

Using the well-known equations for determining the contact
characteristics of a single smooth indenter (Johnson, 1985) and
Equations (16, 17), the following expressions for the pressure
distribution and the total load on a single asperity, taking into
account elastic interaction are derived:

p(x) =
E∗

2R

√

a2 − x2 +
E∗a2

2RL
arctan

(

2
√
a2 − x2

√
L2 − 4a2

)

; (29)

Ps =
πE∗a2

4R

(

2−
√
L2 − 4a2

L

)

. (30)

Periodic System of Asperities With Two
Contact Segments Within a Period
The more complicated problem arises, if there are multiple
contact segments within one period. Without significant loss of
generality let us consider the contact problem for a periodic non-
uniform system of parabolic asperities and an elastic half-plane,
with two interacting asperities within a single period. This type of
contact problem has no exact solution, but can be approximately
solved in a close-form using the localization principle.

The problem scheme is shown in Figure 6. Pairs of parabolic
asperities form a periodic system with a period L. The shape of
two interconnected asperities (see Figure 6) can be expressed by
a biquadratic function:

f (x) =
x4

8Rc2
−

x2

4R
. (31)

Here R is a curvature radius of each asperity and 2c is a distance
between asperity centers. The system of asperities is under the
action of the nominal pressure p̄.

For the two contact segments and asperities shape, defined by
Equation (31), the contact pressure and the total load on one
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contact segment are determined by the following expressions
(Gladwell, 1980):

p0(x) =
E∗
√

x2
(

x2 − b0
2
)

(

a02 − x2
)

4Rc2
, a0 ≤ |x| ≤ b0; (32)

Ps =
πE∗

(

b0
2 − a0

2
)2

64Rc2
, (33)

where 2c =
√

2(b0
2 + a02).

The contact pressure in a general case of multizone 2D contact
problem is determined by the following expression (Schtaierman,
1949; Muskhelishvili, 1953):

p(x) =
E∗

2πX(x)

n
∑

k=1

bk
∫

ak

h′(ξ )X(ξ )dξ

ξ − x
+

2iQn−1(x)

X(x)
. (34)

Here h(x) is an initial gap function; n is a number of contact
segments, k= 1. . .n; ak, bk are the coordinates of the k-th contact

segment; X(x) =
√

(x− a1)
(

x− b1
)

. . . (x− an)
(

x− bn
)

;

Qn−1(x) = D0x
n−1+D1x

n−2+. . .+Dn−1; coefficientsD0. . .Dn−1

are determined from the system of equations taking into account
continuity and boundary conditions at the contact segment ends
(Ghanati and Adibnazari, 2019).

According to the localization principle, to obtain a solution of
a periodic problem we must consider the contact of the asperities
at one period taking into account an additional curvature f2(x)of
the half-plane boundary within the contact zones due to the
influence of the other asperities. It follows from Equation (13),
that the derivative of the initial gap function within each contact
zone, can be expressed as:

h′(x) = f ′(x)+ f ′2(x) =
x3

2Rc2
−

x

2R
+

4p̄

πE∗
artanh

(

2x

L

)

.

(35)

Taking into account the boundary conditions within one
period and approximating the hyperbolic arctangent function in
Equation (35) by the cubic polynomial under the assumption that

FIGURE 6 | Contact of a system of parabolic asperities and an elastic

half-plane with two contact segments within a period.

2c< L, from Equation (34) we obtain the following expression for
the contact pressure in periodic problem:

p(x) =
E∗

√
Z(x)

2π

b
∫

a

h′(ξ )dξ

(ξ − x)
√

Z(ξ )
, (36)

Here Z(x) =
(

x2 − b2
) (

a2 − x2
)

(a and b are the ends of
the contact zones in periodic contact problem) and h′(x) is
approximated by the following expression:

h′(x) =
(

1

2Rc2
+

32p̄

3πE∗L3

)

x3 +
(

8p̄

πE∗L
−

1

2R

)

x. (37)

Substituting Equations (35) and (37) in Equation (36) and
following Gladwell (1980), we derive the following expression for
the contact pressure in the periodic contact problem with two
parabolic asperities within the period:

p(x) = E∗
(

1

4Rc2
+

16p̄

3πE∗L3

)

√

x2
(

x2 − b2
) (

a2 − x2
)

.a ≤ |x| ≤ b, (38)

where the ends of the contact zones follow the
relation b2 + a2 = 2c2.

A more general problem, involving multiple contact zones,
can be treated similarly using numerical methods for solution of
Equation (34).

For comparison of the results obtained in the periodic contact
problem with the contact pressure distribution (32) for two
asperities we assume that the distance between asperities 2c and
the nominal (mean) pressure p̄ are the same; the value of the
nominal pressure is calculated from the relation

p̄ =
2Ps

L
, (39)

where Ps is given by Equation (33).

FIGURE 7 | Pressure distribution for sinusoidal waviness contacting with an

elastic half-plane at 2a/L = 0.5 (1) and 2a/L = 0.8 (2): exact solution (solid

line), localization principle solution (dashed line).
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FIGURE 8 | The dependence of the mean (A) and the maximum (B) pressures on a contact zone width: exact solution (solid line), approximate solution (dashed line).

FIGURE 9 | Contact pressure distribution for the wedged profile at 2a/L = 0.5

(1) and 2a/L = 0.8 (2): exact solution (solid line), localization principle solution

(dashed line).

RESULTS AND DISCUSSION

The analytical solutions derived from the method of localization
were used for the analysis of the contact characteristics in the
periodic contact problems and for comparison with the available
exact solutions. The dimensionless pressure distributions for the
contact of a sinusoidal wavy surface and an elastic half-plane
at two values of a dimensionless contact zone width are shown
in Figure 7. The results indicate that the solution based on the
localization principle allows predicting the distribution of contact
pressures with sufficient accuracy up to high loads (high contact
density, characterizing by the ratio 2a/L). The comparison of
the dependencies of the dimensionless mean and maximum
contact pressures vs. contact zone width 2a for the exact and
the approximate solutions is presented in Figure 8. The results
indicate that a significant discrepancy between the exact and the
approximate values of contact characteristics begins only at high
contact density (2a/L ≈ 0.7). Note, that for such high values of
contact density the solution for almost complete contact can be
applied (Johnson, 1985).

The distributions of contact pressure for a wedged profile
indented into an elastic half-plane at two values of dimensionless
contact zone width are shown in Figure 9. Comparison of the
results calculated based on the exact solution and the localization
principle makes it possible to conclude that the approximate

FIGURE 10 | Dependencies of the contact width on the mean pressure for a

wedged profile: numerical integration of Equation (25) (solid line), approximate

solution (dashed line).

pressure distribution is close to the exact one even for the case
with infinite peaks due to angle point in the wedged profile. The
dependences of the dimensionless contact zone width on the
dimensionless mean pressure for the wedged profile, indenting
into an elastic half-plane are shown in Figure 10. For the wedged
profile, as well as for the wavy one, the discrepancy of the
dependencies of the contact width on the mean contact pressure
begins at 2a/L ≈ 0.7. At further increase of the applied pressure
the approximate solution gives overestimated values of contact
zone width.

The pressure distributions calculated for a periodic system
of cylindrical (parabolic) asperities with use of Equation (29)
in comparison with the Hertz theory (in a two-dimensional
formulation) are shown in Figure 11. The asperity interaction
effect is revealed in a decrease in the contact zone size and
an increase in the peak pressure. With a further increase in
load or asperities density, the pressure profile is significantly
different from the Hertzian one. This result is in good agreement
with the 3D case for spherical asperities (see Figure 2). The
comparative graphs of a/L ratio on the dimensionless load for
a periodic system of parabolic asperities with a single contact
segment within a period are shown in Figure 12. The curve
corresponding to the localization principle solution is close to the
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FIGURE 11 | The contact pressure distribution under the cylindrical asperity

for the periodic system (1, 2) and from the Hertz solution (1/, 2/) at p̄/E∗ =
0.05 (1, 1/) and [[Inline Image]] = 0.15 (2, 2/).

FIGURE 12 | The dependence of a/L ratio on the dimensionless load for a

periodic system of cylindrical asperities: exact solution (solid line), localization

principle solution (dashed line), the Hertz theory (dash-dot line).

exact solution up to the value a/L ≈ 0.35 (2a/L ≈ 0.7), as well as
for other considered profiles. The discrepancy with the Hertzian
curve corresponding to non-interacting asperities begins at a/L
≈ 0.125. For the values of a/L < 0.125 the error of calculation
using the Hertz theory is <3%. The last result is similar to the
case of a 3D system of spherical asperities (see Figure 2).
At the large values of load the approximate solution
overestimates the contact zone size in comparison with the exact
Equation (28), however the discrepancy is smaller than for a
wedged profile.

Contact pressure distributions for a periodic system of
parabolic asperities with two contact segments within a period
(L = 2.4c) are shown in Figure 13 in comparison with the
non-periodic double asperity contact. The graphs show, that
as well as for a single contact segment within a period (see
Figure 11) the increase in the density of asperities leads to an
increase in the peak pressure, and also to the reduction of
contact width (b–a) at fixed nominal pressure. The considered
case can be used in the analysis of a short-range and a long-
range elastic interaction between asperities. The short-range
elastic interaction, depending mainly on the distance between

FIGURE 13 | Distribution of contact pressures for a periodic system of

asperities with two contact segments within a period (solid lines) in

comparison with a non-periodic double asperity contact (dashed lines): p̄/E∗

= 0.05; 2c = 0.6.

two asperities, leads to asymmetry of the contact pressure
distribution between the adjacent sides of the asperities. The
long-range interaction is determined by the number and the
shape of asperities within one period and the value of L. Effect
of the long-range interaction is smaller than of the short-
range; approximately it can be considered on the basis of
localization principle. The maximum effect of the long-range
elastic interaction is reached at merging of contact zones between
the asperities (a= 0).

CONCLUSIONS

The unified approximate analytical method to solve 3D and
2D contact problems for a regular surface microgeometry
penetrating the elastic half-space (half-plane) is developed.
The equations derived for 3D and 2D cases, using the
localization principle, show the identical structure for
different dimensionality of the problem. The accuracy of
the obtained method for two-dimensional problems was
estimated for wavy and wedged profiles, by comparison
with the exact solutions. New approximate solutions of 2D
contact problems for a periodic system of parabolic asperities
with single and double contact segments within a period
are obtained.

The results obtained show that the application of the
presented method in a plane contact problem for bodies
with a periodic regular microrelief allows to calculate the
contact characteristics with high accuracy up to large contact
densities (2a/L ≈ 0.7). Further increasing of the applied load
or contact density leads to moderate overestimation of contact
characteristics in comparison with the exact solutions. For all
considered cases the increase in asperities density leads to an
increase in the peak pressure, and also to the reduction of the
contact half-width at a fixed load. Qualitatively, the form of
contact pressure distribution is generally defined by the shape
of asperities.

The advantage of the developed approach is the ability to
separately consider the effects associated with the shape of
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asperities and the relative distance between them. The method
allows to simplify the calculation of contact characteristics for
a complex-shaped regular texture, for which a straightforward
analytical solution does not exist, including more general
multizone contact problems. The approach developed can be also
used for the solution of the 2D and 3D periodic contact problems
with complicated boundary conditions (e.g., with adhesion of
different nature at the interface Makhovskaya, 2003).
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