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In many engineering fields surface topography is of crucial importance solving problems

of friction and other problems of tribology. A review of mathematical approaches for

description of topography of engineering surfaces is presented. Firstly, we give a brief

introduction to some of statistical parameters used for description of surface roughness.

It is argued that although some of these parameters may be quite useful for specific

engineering problems, a set of finite numbers of parameters cannot describe contact

properties of rough surfaces. Then we discuss various models of surface roughness

based on Gaussian models of the asperity heights. The results of application of various

modern tests of normality for checking whether the distribution of the asperity heights is

Gaussian, are presented. Further fractal models of roughness are discussed. Using fractal

parametric-homogeneous (PH) surfaces, it is demonstrated that tribological properties of

a rough surface cannot be characterized just by the fractal dimension of the surface. It is

also shown that models based solely on the power-spectral density function (PSDF) are

quite similar to fractal models and these models do not reflect tribological properties of

surfaces. In particular, it is demonstrated that different profiles may have the same PSDF.

Keywords: roughness, power-spectral density, fractal, statistics, parametric homogeneity, contact problems

1. INTRODUCTION

The paper deals mainly with surfaces used in engineering practice that will be referred to as
engineering surfaces. It is known that all engineering surfaces are rough (see e.g., Archard et al.,
1975; Whitehouse, 2011) and therefore, contact between engineering surfaces is realized by a
number of contact spots (see e.g., Zhuravlev, 1940, 2007; Holm, 1941; Goryacheva, 1998; Borodich,
2007). If the surface profile z(x) is studied using Fourier decomposition, and the term ’roughness’
is attributed to the short wavelength shapes, while the long wavelength shapes are referred to as
“waviness” of the surface (see e.g., Morales-Espejel et al., 2000; Borodich and Bianchi, 2013). If
the waviness is extracted from the surface profile then the rough surface may be considered as
nominally flat (see e.g., Greenwood and Williamson, 1966). Roughness of engineering surfaces is a
crucial factor for performance of tribological components. The energy dissipation during sliding of
dry engineering surfaces and correspondingly, the friction are enormously influenced by the surface
profile (see e.g., Borodich and Savencu, 2017). Here we present a critical review of some popular
statistical, fractal and related techniques for modeling and analysis of the surface roughness.

One of the first attempts to employ statistical methods for description of surface roughness was
presented by Abbott and Firestone (1933) who calculated the cumulative distribution function of

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2020.00064
http://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2020.00064&domain=pdf&date_stamp=2020-08-28
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pepelyshevan@cardiff.ac.uk
https://doi.org/10.3389/fmech.2020.00064
https://www.frontiersin.org/articles/10.3389/fmech.2020.00064/full


Borodich et al. Probabilistic, Fractal, and Related Techniques

the surface heights. In tribology this parameter is called the
Abbott-Firestone curve or the bearing area curve. Independently,
Zhuravlev (1940) employed this parameter in his statistical model
of contact between rough surfaces that were represented as
collection of spherical protuberances having identical radii. He
explained that the number of contacting spheres a specific height
increases as the surfaces approach each other. In the English
language literature this model is usually attributed to Greenwood
and Williamson (1966).

After the bearing area curve parameter was introduced, there
was a period that can be referred to as “the parameter rash”
because a huge number of statistical parameters of roughness
were introduced (Whitehouse, 1982). These characteristics were
related to both the vertical distribution of heights and the
horizontal distribution of the rough profiles (Nowicki, 1985).

The next step in surface roughness characterization was the
idea that it may be modeled using theory of random processes.
In 1953 Linnik and Khusu presented a seminar talk where they
suggested to use graphs of a stationary Gaussian random process
in order to describe surface roughness, see Linnik and Khusu
(1954a) for detail, as well as Linnik andKhusu (1954b) andKhusu
et al. (1975). Linnik and Khusu (1954a) suggested to study the
following correlation function for the Gaussian random process

K(x) = K(0) · e−α|x|, (1)

where K(0) and α are some parameters of the roughness.
Independently, the same idea was introduced later by
Whitehouse and Archard (1970). They presented an absolutely
correct statement that if a profile z(x) of a random rough surface
is Gaussian then it can be fully described by a distribution of
asperity heights and the correlation (auto-correlation) function
of the process R. The auto-correlation is defined as

R(δ) = lim
T→∞

1

2T

∫ T

−T
[z(x+ δ)− z̄][z(x)− z̄]dx

= 〈[z(x+ δ)− z̄][z(x)− z̄]〉 (2)

If one takes the Fourier transform of R(δ) then the power
spectrum G(ω) or the power-spectral density function (PSDF) is
obtained. If the signal frequency is denoted as ω then the PSDF is
defined as

G(ω) =
2

π

∫ ∞

0
R(δ) cos ωδ dδ and

z̄ = lim
T→∞

1

2T

∫ T

−T
z(x) dx.

Developing the random signal approach, Sayles and Thomas
(1978) presented experimental relations between wavelength and
the scaled power spectral density for many different surfaces.
They argued that the scaled spectral density functions of many
surface profiles can be approximately presented as G(ω) =
2π3/ω2. Sayles and Thomas (1978) referred to 3 as the surface
topothesy. As Dr. Sayles said to one of the authors (FB), they
never claimed that the real surfaces are fractal; in fact the fractal
terminology to surface roughness description was triggered by

Berry and Hannay (1978) who presented a comment to Sayles
and Thomas (1978) paper where they claimed that geometric
properties of rough surfaces can be characterized by a new
concept ’fractal’ that was described in detail by Mandelbrot
(1977).

Another important step in the promotion of the fractal
approach to surface roughness description was the studies of
the Weierstrass-Mandelbrot fractal function by Berry and Lewis
(1980). Later the Weierstrass type functions were used by many
researchers as a model of rough surfaces (see e.g., Roques-
Carmes et al., 1988; Majumdar and Bhushan, 1990). For some
period of time, the fractal models became very popular, there
were even statements that “fractals are everywhere.” Fractal
approach to surface topography were so popular that one could
say that it became an “emperor” of many research areas. Speaking
about fractal approaches in fracture mechanics Borodich (1999)
argued that instead of careful presentations of the state-of-the-
art, the papers dedicated to fractal analysis are often based on
repetition of common myths about fractals (we call this as vulgar
fractal approaches). Hence, in most of the papers dedicated
to fractal approaches to fracture and surface topography, the
state-of-the-street is ruling. Borodich (2002) listed examples
introduced earlier by Borodich and Onishchenko (1993) and
Borodich (1993) and reminded that “the fractal dimensions
alone cannot characterize the features of contact.” The same
situation is related to the papers dedicated to fractal approaches
to surface topography, nevertheless there is still a stream of
papers based on vulgar interpretation of the fractal approaches.
One could mention here a statement by Mandelbrot (1998) that
“fractals are not a panacea; they are not everywhere.” Using
examples introduced by Borodich and his co-authors, we will
show that quite often there is no meaning in fractal analysis of
surface roughness.

Nowadays another tendency is quite popular, namely to
describe rough surfaces using solely the PSDFs of surface
topography. We argue that these papers are in essence an attempt
to resurrect the fractal approach. Indeed, these papers contain
usually a mixture of correct statements related to Gaussian
processes and wrong statements based on attempts to extend the
power-spectral analysis to non-Gaussian surfaces. In addition,
these papers suffer often by employment of the ill-defined terms,
such as the Hurst exponent, non-accurate statements about self-
affinity of surface roughness and vulgar interpretation of fractal
models. We will show that the power-spectral analysis applied to
non-Gaussian surfaces is a kind of reformulation of the vulgar
fractal approach. Using an analogy to Andersen’s tail about new
clothes produced by cunning weavers, we can say that attempts
to model surfaces solely by the use of the PSDF of its roughness
are “the emperor’s new clothes.”

The paper is organized as follows. In section 2 probabilistic
characteristics of rough surfaces are discussed. In section 3 we
consider some approaches to modeling of surface roughness
using graphs of random processes that in turn, assume that
the asperity heights are normally distributed or they employ
similar assumptions that involve normal distributions. We give
a brief description of statistical methods employed for checking
normality of distributions and some results of application of
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these tests to roughness of engineering surfaces. In section 4
we discuss briefly the fractal approaches to surface roughness,
in particular using a kind of parametric-homogeneous functions
having fractal graphs, e.g., theWeierstrass-Mandelbrot functions,
we clarify some common misinterpretations of statements by
Berry and Lewis (1980). Finally in section 5 we discuss themodels
of surface roughness based solely on properties of the auto-
correlation function or its Fourier transform (the PDSF). We
argue that these models do not reflect tribological properties of
surfaces. In particular, it is demonstrated that rather different
profiles may have the same inclination of the PSDF in logarithmic
coordinates, or they may have even the same PSDF. Thus, there
is very small scientific value (if any) of a number of papers that
model surface roughness only by its PSDF.

2. PROBABILISTIC CHARACTERISTICS OF
SURFACE ROUGHNESS

If one considers a nominally flat surface and a plane
perpendicular to the surface, then the surface profile is the cross-
section between the plane and the rough surface. The rough
profile may be presented as graph of a function z(x). Let z̄
denote the mean profile line. If the origin level of the height
measurements is taken at z̄ then

1

2L

∫ L

−L
[z(x)− z̄]dx = 0.

Let us mention here several popular height parameters: Rmax is
the maximum height of the profile z(x) defined on an interval
[−L, L], Ra is the arithmetical mean deviation of the surface, and
the root mean square (rms) height Rq or σ 2 that is the square root
of the mean square deviation with respect to the mean profile line
z̄ = 0. The mathematical expressions for these parameters are
given by

Rmax = max
x∈[−L,L]

z(x),

Ra =
1

2L

∫ L

−L
|z(x)| dx ≈

∑n
i=1 |z(xi)|

n
,

Rq = σ =
[

1

2L

∫ L

−L
[z(x)]2 dx

]1/2

, (3)

where n is the number of points of measurements on the interval
and z(xi) is the measured height at the interval point xi. In
addition, the arithmetic mean height Rz is often used for practical
applications. This parameter may be calculated as the average
distance between the five highest picks and the five lowest points
of the profile, i.e.,

Rz =
1

5

[

5
∑

i=1

(zi)max −
5

∑

i=1

(zi)min

]

. (4)

One can introduce the density probability function φ(z). This
function shows the probability that the height z(x) at a surface

point x is between z and z+ dz. Then, the expressions for Ra and
σ 2 in (3) is written as

Ra =
∫ ∞

−∞
|z|φ(z) dz, σ 2 =

∫ ∞

−∞
z2φ(z) dz. (5)

It is natural that the roughness parameters depend on the scale
of considerations. For example, if zi = z(xi) are measured with a
stylus steps h then one can calculate the curvature of the profile
peaks κ(xi)

κ(xi) = −(zi−1 − 2zi + zi+1)/h
2.

However, it was found that the mean curvature varies depending
on the sampling intervals (Greenwood, 1992). There was a hope
that the fractal dimension could provide a scale independent
parameter of surface roughness. It will be discussed later that
actually this assumption was not justified.

Kragelsky (1948) published one of the first papers where
he claimed that the roughness heights distribution is Gaussian
(normal). Although Zhuravlev (1940) presented the general
expressions of his model for arbitrary bearing area curve, his
example that employed linear dependence as an approximation
of the bearing area curve was criticized by Kragelsky (1948) who
wrote that the normal distribution of heights should be used.

We will not list here a number of parameters used in
literature on tribology to describe the surface roughness. Various
attempts to describe surface topography using several statistical
parameters of surface roughness are described in detail in many
books and papers, see e.g., Khusu et al. (1975), Nowicki (1985),
and Whitehouse (2011). Some of these parameters are useful but
most are not (Whitehouse, 1982).

An example of a very useful parameter is the Abbott-
Firestone curve of the surface heights (bearing area curve) or the
cumulative distribution function 8(z)

8(z) =
∫ ∞

z
φ(t) dt. (6)

For example, the 8(z) was used by Zhuravlev (1940).
Let us demonstrate that for rough surfaces their contact

properties are correlated with 8(z) that is equal to the length of a
horizontal slice of the surface profile at the level h. Sometimes
this curve can be used to estimate the force acting of a rough
solid penetrating into an elastic foundation. Indeed, it if the
characteristic size of contact region between a blunt punch and
a thin elastic layer is larger than the layer thickness then the
leading term of the asymptotic solution may be modeled as the
Fuss-Winkler foundation (see e.g., Aleksandrov, 1963; Borodich
et al., 2019b; Erbaş et al., 2019; and references therein). The Fuss
foundation can be represented by a collection of independent
springs attached to a rigid flat or as an elastic “mattress” (Winkler,
1867; Johnson, 1985) or as a punch acting on a liquid layer
(Fus, 1801). Of course, there are restrictions on the use of the
Fuss-Winkler foundation (Johnson, 1985; Popov, 2010). As Fus
(more often his surname is written as Fuss) noted himself:
“when a crumbly surface has a rigid substrate and does not
have such depth as it should be for penetration of wheels into
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it by laws of hydrostatic, therefore the angle GOR” (the angle
between the wheel and the surface flat) “should not be determined
just by actual penetration depth but rather by the depth of the
rigid support” (Fus, 1801). The Fuss-Winkler foundation was
employed to model contact between an elastic foundation and
(i) a nominally flat CB profile (Borodich and Mosolov, 1991,
1992); (ii) the rough hierarchical multi-level profile (Borodich
and Onishchenko, 1993, 1999), and (iii) both nominally concave
and convex fractal parametric-homogeneous punches (Borodich,
1998b).

The roughness parameters used may be formally divided in
the following groups (Nowicki, 1985): (i) various parameters
related to the shape of asperities, e.g., the rms curvature of
the asperities; (ii) various parameters related to the asperity
heights; (iii) horizontal parameters; (iv) parameters connected
with amplitude of the asperities and their spatial extend, like the
high spot count.

3. GAUSSIAN RANDOM PROCESSES AS
MODELS OF ROUGH SURFACES

As it has been mentioned above, the surface roughness may be
considered as graphs of random processes. The question if the
process is Gaussian (normal) or not is crucial for estimation of
validity of the models. Indeed, the overwhelming majority of
papers on surface topography use statistical models of surface
roughness based on explicit or implicit assumption of normality
of roughness heights, see e.g., Fuller and Tabor (1975), Galanov
(2011), and a discussion by Borodich et al. (2016).

3.1. Tests for Normality of Surface
Roughness
There are many tests of normality (Thode, 2002). Each of
these tests provides a quantitative estimation of proximity
between the theoretical Gaussian distribution and an observed
sample of measurements by producing the so-called p-value. The
estimations are based on a particular test statistic. Borodich et al.
(2016, 2019a) and Pepelyshev et al. (2018) used the most popular
tests of normality to check normality of roughness of various
surfaces. The afollowing tests were employed: Kolmogorov-
Smirnov (KS), Anderson-Darling (AD), Cramer-von Mises
(CVM), Shapiro-Wilk (SW), Shapiro-Francia (SF), Lilliefors
(LF), and the Pearson. The p-value is a number that characterizes
for the observed measurements, the significance at the scale
[0, 1] that the normality hypothesis is true. It is possible to
nominate the acceptable significance level. In our tests it was
5%. If the p-value is more than this level then the hypothesis
should be accepted. This subject is a current challenging task
in contact mechanics description and comprehension of nano-
related phenomena as highlighted by Carpick (2018).

Let us mention here a model of dry friction developed by
Borodich and Savencu (2017). In this model molecular and
chemical interactions are mainly connected to the nano-scale
asperities, while mechanical interlocking between surfaces are
connected to the micro-scale asperities. According to this model,
for proper modeling of friction, one needs to get data about
the surface roughness at both atomic/nano and at micro-scales.

Using the abovementioned tests of normality some data obtained
for grinding surfaces was tested and results of the normality tests
were negative at both nano and microscales (Borodich et al.,
2016).

Then the test of normality were applied to surfaces of the
epoxy resin replicas of polishing papers of various nominal
asperity sizes. A white light interferometer (Zygo NewView 6000;
Zygo Corporation, Middlefield, CT, USA) at a magnification
of 50 was used for characterization of the surface roughness.
The normality tests showed that the height distribution of the
surfaces of nominal 0.3 and 1 µm are Gaussian (Pepelyshev
et al., 2018). Finally, normality of roughness of carbon-based
coatings deposited by direct current pulsedmagnetron sputtering
at two different substrate bias voltages was checked. The same
as in the case of grinding surfaces, the roughness was measured
at atomic/nano scales by AFM (Atomic Force Microscopy),
while a profilometer was used for measuring of micro-asperity
heights (Borodich et al., 2019b). It was found that surfaces
at micrometer scale are normal. It is interesting to note
that the AFM measurements with the 117 nm steps showed
that the roughness of surfaces was Gaussian, while the AFM
measurements with the 10 nm steps showed that the assumption
of normality of roughness is not satisfied. This means that the
use of the above mentioned statistical models of contact between
nominally flat surfaces are justified only up to nanoscale, while
their applicability at atomic and few nanometers scales may
be questionable.

3.2. Stochastic Models of Surface
Roughness
The normality of roughness is related to vertical distribution of
profile heights. However, it is also very important to consider
the horizontal distribution of the asperities. As it has been noted
by Maugis (2000), two profiles may have the same peak height
(local extrema) distributions, but the roughness may be rather
different in the horizontal extension. If process is Gaussian then
the horizontal properties may be fully described by the auto-
correlation (correlation) function R of the process (2). Instead of
R, one can use the PSDF (3), its Fourier transform G(ω).

Khusu et al. (1975) presented results of very detailed studies
of Gaussian processes in applications to surface roughness. In
addition to (1), they considered three other correlation functions.
An extended list of various correlation functions was presented
by Dette et al. (2015). However, we would like to emphasize again
that the above results are effective if the roughness is Gaussian. If
the roughness is not normal then the properties of the sample
paths are not fully determined by the mean and covariance
functions (see e.g., Ghosal and Van der Vaart, 2017).

It is known (see e.g., Aldous, 1989 and Bibby et al., 2005) that a
non-Gaussian processes can be generated by the mean-reversing
stochastic differential equation

dX(x) = −θ(X(x)− µ)dx+ σ (X(x))dWB(x), (7)

where x ≥ 0 and WB(x) is the standard Brownian motion
(Wiener process). Choosing the appropriate value of the
parameter µ and the function σ (·), we obtain a certain height
distribution of the process X(x), while the auto-correlation
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FIGURE 1 | The simulated profiles X (x): (A) θ = 1, µ = 0, σ (X ) = 2, and the height distribution of X (x) is the Gaussian distribution; (B) θ = 1, µ = 0.5,

σ (X ) = 2X (1− X ), the height distribution of X (x) is the uniform distribution; (C) θ = 1, a = 2.2, b = 1.2, µ = a/(a+ b), σ (X ) = 2X (1− X )/(a+ b), the height distribution

of X (x) is the beta distribution with parameters a and b.

function is ρ(x) = e−θ |x| and the power spectra is G(ω) =
2
π
θ/(θ2 + ω2) for any choice of µ and σ (·). For example,

the height distribution of X(x) has the gamma density with
parameters λ and β if µ = β/λ and σ (X) =

√
2θX/λ and

the beta density with parameters α and β if µ = α/(α + β)
and σ (X) =

√

2θX(1− X)/(α + β). Figure 1 shows simulated
profiles with various height distributions and the same auto-
correlation function R(x) = e−θ |x|.

In general, using (7), one can construct non-Gaussian
processes with flexible auto-correlation function as the sum

h(x) =
m

∑

i=1

Xi(x),

where X1(x), . . . ,Xm(x) are independent and each Xi(x) is the
solution of the stochastic differential equation

dXi(x) = −θi(X(x)− φiµi)dx+ σi(X(x))dWi(x),

φi > 0 and
∑m

i=1 φi = 1, see Bibby et al. (2005). Such the process
h(x) has the auto-correlation function and the power spectra

R(x) =
m

∑

i=1

φie
−θi|x|, G(ω) =

2

π

m
∑

i=1

φiθi

θ2i + ω2
.

The above examples support the statement that the mean and
covariance functions of a random non-Gaussian process do
not determine the finite-dimensional distributions of a random
process (Gusak et al., 2012).

4. FRACTALS APPROACHES TO SURFACE
TOPOGRAPHY

Concepts of fractal, fractal geometry and fractal dimension (FD)

were introduced by Mandelbrot (1975). However, he did not
give any definition of fractals. Later he defined fractal sets in

a metric space saying “a fractal will be defined as a set for

which the Hausdorff-Besicovitch dimension strictly exceeds the
topological dimension” (Mandelbrot, 1977). Finally he withdrew
the definition and suggested to use the term “without a

pedantic definition” (Mandelbrot, 1983). This was the reason
for a comment by Greenwood (1992): “Mandelbrot is somewhat

reluctant to define ‘fractals’ or ‘fractal dimension’ preferring to

offer examples.” A popular description of many self-similar sets
studied by fractal geometry, such as the Cantor staircase, von

Koch snowflake, Sierpinski carpet, Menger sponge, along with
Peano curve and other sets may be found in the book for school

children published by Vilenkin (1968). Definitely Mandelbrot

(1975) wrote his book under influence of Vilenkin’s book. Indeed,
at least 20% of Figures presented by Mandelbrot (1975) had

analogs in the book byVilenkin (1968). The abovementioned sets
are out the scope of mathematical programmes for schools and

for non-mathematical specializations of universities because the
sets are more irregular than sets considered in common courses

on Euclidean geometry. To encourage children for studies of
set theory, Vilenkin used many funny stories and terms, e.g.,
he used the term the Devil staircase to describe the Cantor
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staircase. The Devil staircase term was later used and popularized
by Mandelbrot (1983).

Because there is no generally accepted definition, we will
define fractals as objects with a non-integer FD. Evidently,
the term FD must be defined separately. One of the authors
(FB) and his co-authors have already published several reviews
related to fractals, in particular a review related to the use of
fractal concepts in fracture mechanics (Borodich, 1999). There
are reviews of application of fractal ideas in contact problems
(Borodich and Onishchenko, 1999; Borodich, 2013c) and several
articles about the use of fractal concepts in tribology (Borodich,
2013a,b; Borodich and Evans, 2013). Borodich introduced the CB

profile that is also known as the Cantor set model (Warren and
Krajcinovic, 1996), and as the Cantor-Borodich profile, structure
or fractal, see e.g., Abuzeid and Eberhard (2007), Soldatenkov
(2015), and Thielen et al. (2016). At least two kind of contact
problems can be solved for a punch described by the CB profile
(Borodich and Mosolov, 1991, 1992). The model was developed
further by Borodich and Onishchenko (1993), Warren and
Krajcinovic (1996), Plesha and Ni (2001), and others. Although
Archard (1957) introduced the idea of hierarchical structure of
roughness, there were no papers developing the idea of “bump on
bump” structure of roughness until Borodich and Onishchenko
(1993, 1999) introduced the multilevel hierarchical model of
roughness. Now this idea of hierarchy of surface structures is
quite popular due to discoveries of Gorb and his co-workers
along with other experts in biological objects. In particular,
the hierarchical structures were discovered in adhesive setae of
geckos (Gao et al., 2005) and spiders (Schaber et al., 2019); water-
repellent coatings of whip-spiders (Wolff et al., 2016); attachment
discs of spiders (Wolff et al., 2015), and super-black snake skin
(Spinner et al., 2013). Applications of fractal concepts to surface
roughness were also discussed by Borodich and Galanov (2002)
and by Borodich et al. (2016). Thus, here wewill just remind some
basic features of the fractal approach to surface roughness.

4.1. Mathematical and Physical Fractals
Unfortunately, many papers dedicated to applications of fractals
do not provide definitions of used terminology. Often such
papers are just a mess of vague discussions and non-
justified statements. To clarify the subject, we split fractals
into mathematical and physical (natural) fractals (see e.g.,
Borodich, 1997). Both mathematical and physical fractals use
the concepts of a cover. This means that the object (set)
is covered by cubes of size at most or equal to δ. Fractal
geometry deals with mathematical fractals. The mathematical
methods of fractal geometry are described in many books and
papers (see e.g., Falconer, 1990; Tricot, 1995) where various
FD are studied in application to mathematical objects. Various
FDs are used in the studies, mainly the Hausdorff dimension
and box-counting dimensions usually attributed to Minkowski,
Bouligand, Pontrjagin, Schnirelman, and Kolmogorov. These
FDs can be calculated by taking the limits when δ → 0.
In addition, fractal geometry term is also quite often applied
loosely to a collection of semi-empirical or empirical methods for
estimations of the FDs of objects.

If real world or numerically simulated objects demonstrate the
power-law of the number-radius relation then these objects are
physical fractals. The power-law of the number-radius relation is

N(δ) ∼ δ−D, δ∗ ≤ δ ≤ 1∗, N(R) ∼ (R/δ)D, r∗ ≤ R ≤ R∗
(8)

where N(δ) is the number of cubes of size δ used to cover the
object, D is a FD of the object, 1∗ and δ∗ are the upper and
lower cut-offs of the physical fractal law, respectively. The former
relation of (8) is used when the cover size δ is varied and the
object size R is fixed, while in the latter relation is used when
the cover size δ is fixed and the object size R is varied. In this
latter case R∗ and r∗ are the upper and lower cut-offs. The the
slope of linear approximation of ln(N(δ∗)) against ln(R) is used
to estimate the value of D. The main distinction between these
kinds of fractals is the following: the physical fractal behavior
(8) is observed on a bounded region of scales only, while to
study mathematical fractals one has to scale of consideration to
zero limit.

4.1.1. Self-Similar Sets
Introduction to fractals starts often by presenting self-similar
sets mentioned above (see examples given by Vilenkin (1968)
and Mandelbrot, 1975). Due to such examples, there is a myth
that all fractals are self-similar. However, self-similar sets are a
very specific kind fractals. In general, self-similarity is not related
to mathematical fractals. Their scaling properties are based on
scaling of fractal measure or quasi-measure (see a discussion by
Borodich and Feng, 2010, and Borodich, 2019), while for physical
fractals their scaling properties are reflected by the relation (8).

4.1.2. Some Specific Features of Mathematical

Fractals
Speaking about mathematical fractals, one has to specify the FD
used. It is wrong to say that all FDs are equal to each other.
For example, the Hausdorff dimension dimH S of a set S may be
not equal to its box-counting dimension dimB S. However it is
known that dimH S ≤ dimB S.

The statement that all nowhere differentiable curves are
fractals is wrong. For example, Borodich (1998a) introduced the
Moscow University function UM that is nowhere differentiable,
while it is a non-fractal curve and each finite subinterval of
[1, 2] contains an infinite number of reduced copies of the whole
function, i.e., it is a self-similar curve.

A mathematical fractal curve has an infinite length. Borodich
(1997) formulated the following paradox in application to fractal
fracture: if the crack surface is modeled as a mathematical fractal
and the concept of the Griffith surface energy is used, then the
propagation of the fractal crack is impossible.

If a surface is smooth then it is not a mathematical
fractal (see e.g., Falconer, 1990). Even if a mathematical fractal
curve is continuous everywhere, it is nowherehas differentiable.
Therefore, it is often very difficult to formulate a boundary-
value problem for solids having fractal boundary (see a discussion
by Borodich and Volovikov, 2000). Indeed, such nowhere
differentiable profile do not have even normal vector.
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4.1.3. Some Specific Features of Physical Fractals
If the FD is specified then it is convenient to use the fractional
part of the FD D∗. Then the FDs of fractal profiles and surfaces
are 1+ D∗ and 2+ D∗, respectively.

Sayles and Thomas (1978) presented the experimental
relations between normalized PSDF and wavelength in
logarithmic coordinates as a very impressive united line for
many different surfaces. One could think that the relation spans
from micrometers to many meters. However, Berry and Hannay
(1978) noted that for each individual type of topography the
span was over much smaller ranges. They argued that these
experimental results could be represented as a united line
lg(G) ∼ lg(ω) due to a specific normalization of the results.
Further, researchers from Jerusalem presented results of an
analysis of data published by Physical reviews journals and
showed that in average the physical fractals span about 1.5
orders of magnitude (Avnir et al., 1998). Mandelbrot (1998)
argued that the published limited-range examples of power
law correlations may be explained as unfortunate side effects of
enthusiasm, imperfectly controlled by refereeing. However, the
Jerusalem group disagreed with his arguments and believed that
the limited-range relations for natural fractal are the dominant
fractals observed in Nature (Biham et al., 1998). However, if
the value of the FD is stable for less than two or three decades
then fractal concept is not useful, as it was stated by Whitehouse
(2001).

In general, the FD values obtained by various practical
methods are not reliable (see a discussion by Borodich and
Evans, 2013). For example, the power spectrum method is often
employed for estimation of FD values of self-similar or self-affine
fractals, in particular rough profiles (see e.g., Dubuc et al., 1989;
Schmittbuhl et al., 1995). The method is based on a not very
accurate statement when the power spectrum obeys a power law
G(ω) ∼ c/ωα ... it is reasonable to expect a signal with aω−α power
spectrum to have a graph of dimension (5 − α)/2 (see Falconer,
1990). Normally the exponent α is in the range 1 < α ≤ 3.

As Whitehouse (2001) noted there is a very small spread
of the FD values obtained for surfaces produced by different
manufacturing processes. In addition, there is no well-established
algorithm for estimations of the fractal law cut-offs. Thus, the
physical significance of the fractal approach is very limited. We
can add that if one can attribute the fractal scaling for a small
range that spans for just 1.5 or 2 decades then fractals do not
provide a scale-independent description of surface roughness.

4.2. Parametric-Homogeneity
One of the authors (FB) and his co-authors introduced different
types of fractal profiles that allowed to handle rough fractal
surfaces rigorously. There were introduced : (i) the CB profile
(Borodich and Mosolov, 1991, 1992), (ii) multilevel Hierarchical
profile (Borodich and Onishchenko, 1993, 1999), and (iii)
graphs of parametric-homogeneous functions (Borodich, 1993,
1998a,b). The first two profiles were based on an iterative
procedure and they has been already mentioned above, while
PH-functions will be described below. Note that the general
statements obtained by Borodich and his co-authors about the
contact problems for all these three types of surfaces do not

depend on the statements about their FDs, i.e., they are valid for
both fractal and non-fractal cases.

The same author (FB) introduced also the concept of
parametric-homogeneity. The concept includes parametric
quasi-homogeneous (PQH) transformations (in particular
parametric-homogeneous (PH) transformations), corresponding
functions, and PH- and PQH-sets. The PH and PQH-functions
can be considered as a natural generalization of concepts of
homogeneous and quasi-homogeneous functions. If the latter
kind of functions is based on the use of the classical scaling
with arbitrary positive scaling factor λ, PH-functions and
PQH-functions are based on the use of discrete self-similarity
with a fixed rescaling parameter p. Let Z be the set of integer
numbers. Then one can employ the discrete group of coordinate
dilations (Ŵpαk ) apply the following PH-transformation

Ŵpαkx = (pkα1x1, ..., p
kαnxn), p > 0, k ∈ Z.

4.2.1. Parametric Quasi-Homogeneous Functions
The parametric-quasi-homogeneous function of degree d and
parameter p with weights α = (α1, . . . ,αl) is denoted by
Bd :R

l → R and it obeys the following scaling law for a positive
parameter p, p 6= 1 and any k ∈ Z

Bd(Ŵpαkx; p) = Bd(p
kα1x1, ..., p

kαlxl; p) = pkdBd(x; p),

The parameter should be unique in some domain (Borodich,
1998a,b). I α1 = ... = αl then PQH-functions is called a
PH-functions. It is clear that if p is a parameter of the PH-
transformation then pk can be also used as a parameter. Hence,
as the parameter, the least p : p > 1 is taken. The graphs
of these functions can have various properties, in particular
they can be smooth or fractal. The following fractal Weierstrass
type functions and smooth sinusoidal log-periodic functions are
examples of PH-functions

bβ (x, p) =
∞
∑

n=−∞
p−βnf (pnx)

or b0(x; p) = A cos(2π ln x/ln p+ 8),

where A and 8 are arbitrary constants and f is an arbitrary
function. For any point x0, the PH-functions are repeated
bd(p

kx0; p) = pkdbd(x0; p) in scaling form near all points
pkx0, k ∈ Z.

4.2.2. Weierstrass-Mandelbrot Functions
Mandelbrot (1977) generalized the Weierstrass function, whose
graph is continuous everywhere and differentiable nowhere, and
introduced the complex value Weierstrass-Mandelbrot (W-M)
functionW(x) and its particular real case C(x; p)

W(x; p) =
∞
∑

n=−∞
p−βn(1− eip

nx)eiφn ,

C(x; p) =
∞
∑

n=−∞
p−βn(1− cos(pnx)), p > 1, 0 < β < 1 (9)
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where φn are arbitrary phases. Properties of these functions were
studied in detail by Berry and Lewis (1980). The box dimension
of C(x; p) graphs isD = 2−β . There is no rigorous mathematical
proof that its Hausdorff dimension is the same.

It is evident that C(x; p) is a particular PH-function (9) of
degree β . As it has been mentioned above, the graph of C(x; p)
function was used often for modeling rough profiles.

In addition, Berry and Lewis (1980) were first who studied
the discrete power spectrum G(ω) of the W graphs (9) and
approximated it by a continuous spectrum ¯G(ω) ∼ ω−(5−2D).
This is in agreement with the above mentioned statement by
Falconer (1990).

4.2.3. Self-Affine Scaling and the Hurst Exponent

Terms
Many papers dedicated to studies of surface roughness mention
the concept of self-affine fractals without any definition of the
concept. However, one should be very careful using such terms
as self-affine scaling. Actually, it is known from mathematical
courses that mapping on a plane is self-affine if it is a one-
to-one mapping whose images of any three collinear points in
turn belong to a line. Under this mapping the angle between
two straight lines is normally not preserved. A particular case
of such mapping is the quasi-homogeneous (QH) or anisotropic
coordinate dilation

x′ = eα1x, y′ = eα2y (10)

where α1 and α2 are weights, λx = eα1 and λy = eα2 are scaling
factors. This means that if a coordinate system x, y was Cartesian
one then the x′, y′ system is also rectangular. However, papers on
fractals reduce usually the term self-affine mapping to the above
particular QH case.

In 1980 the concept of fractal was very novel. Perhaps for
popularization of the concept, they used some explanations and
statements that were not mathematically rigorous. For example,
studying W-M functions, they wrote The fractal nature of W
implies that repeated magnification of its graph reveals ever-finer
levels of detail.... The levels of detail are self-similar under an
affine scaling in which the x axis is stretched by a factor p and
W axis by p2−D [note we have changed γ and t used by Berry
and Lewis (1980) to p and x, respectively]. Unfortunately, these
statements of Berry and Lewis (1980) were misinterpreted and
used in many papers as generally accepted and mathematically
rigorous statements applicable to all so-called self-affine fractals.

There was an attempt byMandelbrot (1986) to develop further
the concept of self-affinity. He formulated several statements
about self-affine fractals that were not supported by any strict
definition of these fractals. In essence, his statements are: there
are both local and global scaling for self-affine fractals and each
version of FD for self-affine fractals has a local and a global
value, separated by a crossover. However, these statements have
no mathematical meaning.

Schmittbuhl et al. (1995) wrote that the scaling (10) means
that the heights h are homogeneous functions of the scaling
factors (putting λx = λy)

h(λxx, λxy) = λHx h(x, y)

where the homogeneity exponentH is the self-affine exponent, or
theHurst exponent. Unfortunately, the statement by Schmittbuhl
et al. (1995) about the homogeneity of the fractal graphs is not
very accurate, while the meaning of the Hurst exponent is ill-
defined. It would be better if they would say that the fractal
roughness to obey a discrete dilation homogeneity, i.e., it obeys
the PH-law. Indeed, the scaling properties of C(x; p) function are
connected with the discrete group of coordinate dilation

C(pkx; p) = p(2−D)kC(x; p). (11)

Although this scaling is quite often attributed to FD of the
C(x; p) graph, saying that H = 1 − D∗, these statements
are wrong because the scaling properties are governed by the
degrees d of PH-functions. (Borodich, 1998a,b) showed that
he can construct PH-functions with prescribed global trend
h ∼ xd and given value of FD, while the Hausdorff and box-
counting FDs of the Weierstrass type functions preserve their
values under action of quasi-homogeneous transformation. For
example, taking constants A and 0 < ǫ << 1 one can construct
PH-functions bβ (x, p) = C(x; p), b0(x; p), b1(x; p) and b2(x; p)

b0(x; p) = x−βC(x; p), b1(x; p) = Ax
[

1+ ǫb0(x; p)
]

,

b2(x; p) = Ax2
[

1+ ǫb0(x; p)
]

(12)

have the same values of the Hausdorff and box dimensions
and absolutely different trends. On the other hand, if one uses
the above self-affine terminology then bβ (x, p) and b2(x; p) are
self-affine fractals, while b1(x; p) is self-similar fractal because

b1(p
kx; p) = pkb1(x; p).

It follows from the above discussion that Hurst exponent is an
ill-defined term and it is not connected to FDs of the PH-graphs.

A statement by Mandelbrot (1983) is often cited. Mandelbrot
(1983) wrote that coastlines are not circles, clouds are not spheres,
and mountains are not cones, assuming that they have to be
modeled as fractals. Borodich and Onishchenko (1999) extended
Mandelbrot’s statement saying that roughness of real bodies is
not a mathematical fractal and all these geometrical objects:
spheres, cones, circles as well as fractals are only mathematical
idealizations of complex shapes of natural objects. Mathematical
and physical fractals should not be confused. Certainly one can
employ mathematical fractal as a possible model that reflect
the power-law number-radius relation or PSDF of a natural
object within a bounded interval of scales. However, the obtained
problem may be a very complicated.

5. POWER SPECTRAL DENSITY FUNCTION
APPROACHES TO ROUGH SURFACES

The last 20 years or so the PSDF approach became very popular
in tribology community (see e.g., Persson, 2006). In fact, the
authors of the papers reduce the properties of rough surfaces just
to their PSDF G(ω). This approach was criticized by Borodich
(2002). He wrote: two punches having the same fractal surface but
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FIGURE 2 | The power spectra of the profile h(x) = sin(2π ln(x)/ ln(p)) for

x ∈ [0.0001, 1] with p = 2 (black) and p = 1.3 (red).

situated either above or below the surface show usually different
asymptotics in both load-displacement and load-area relations. As
an example he considered CB profile and solutions presented
by Borodich and Onishchenko (1993). Then Borodich et al.
(2016) showed that any surface and its replica have the same
power spectral density, therefore one cannot characterize contact
properties of rough surfaces just by surface “spectrum.” Indeed,
one can consider an absolutely flat smooth surface having many
sharp dents and its complementary replica (an inverted replica):
a surface having many sharp asperities of the surface roughness.
Evidently, they gave absolutely different contact properties (see
e.g., examples by Borodich and Onishchenko, 1993).

Moreover quite often the PSDF approach is reduced to the so-
called self-affine surfaces by employment of the Hurst exponent
term. As we have discussed above the term is ill-defined and such
papers just create “new clothes” for the vulgar fractal approach.

Using examples, we will show below that the many common
statements about rough non-Gaussian surfaces are wrong or
just meaningless.

5.1. Smooth Functions May Have a
Power-Law PSDF
Let us show that connections of FDs and the slopes of PSDFs
in logarithmic coordinates are meaningless. As an example,
consider a very simple and smooth PH-function, namely a sin
log-periodic function. Figure 2 shows the power spectra for
h(x) = sin(2π ln(x)/ ln(p)) with x ∈ [0.0001, 1].

It is clear that the function is non-fractal, nevertheless its
power spectra in logarithmic coordinates located along a straight
line within a bounded range of scales.

5.2. PSDFs Are Almost the Same for
Different Truncated
Weierstrass-Mandelbrot Functions
Let us consider two truncated Weierstrass-Mandelbrot functions

Ct(x; p) =
N

∑

n=−N

p−(2−D)n(1− cos(pnx)),

A(x; p) =
N

∑

n=−N

(−1)np−(2−D)n sin(pnx),

where N is large natural number, p > 1 and D ∈ (1, 2). In
addition, let us consider a function xD−2Ct(x; p). IfN → ∞ then
Ct(x; p) → C(x; p) and D is their box-dimension, however they
have different trends.

Let us fix the values p = 1.5 and D = 1.5 and vary N. Let us
calculate numerically the PSDFs for obtained graphs. The results
are presented in logarithmic coordinates in Figure 3.

One can see that the average PSDFs are approximately the
same while the functions are rather different.

Now let us fix the values p = 1.5, and N = 100 and vary
D and calculate numerically the PSDFs for obtained functions.
The results are presented in logarithmic coordinates in Figure 4.
Note that for N = 100, the graphs of Ct(x; p) and xD−2Ct(x; p)
are very close to graphs of PH-functions of degrees d = 2 − D
and d = 0, respectively. We know that these functions have the
same FD D and different trends (see a discussion above), while
their PSDFs are very similar to each other.

The same procedure can be applied to the profiles A(x; p) and
xD−2A(x; p). The results are shown in Figure 5. The results lead
to the same conclusion as above.

5.3. PSDF Does Not Characterize
Tribological Properties of Polished
Surfaces
It is known that the tribological properties of gears can be greatly
extended by improved surface finish (Krantz et al., 2001). This
fact was employed by Harris et al. in a series of papers dedicated
to the use of modern hard carbon-based coatings. Indeed, these
hard carbon-based films can remove protuberances on the steel
counterparts, reducing the values of high intensity stresses and
the total number the stress concentration points. On the other
hand, due to polishing of the coating asperities, the rate at which
the coatings abrade steel declines as a power-law of the cycle
numbers, i.e., very rapidly. The coated surface become super
smooth even after just 500 cycles (see SEM images by Borodich
et al., 2003). Let us consider the following thought experiment.
An intact surface is modeled by a Gaussian function f1(x) shown
in Figure 1A (this assumption is in accordance with roughness
measurements of intact surfaces by Pepelyshev et al., 2018 and
Borodich et al., 2019a). Then the asperities of the surface have
been polished away and the roughness of the polished parts
are described by 0.1f2(t) where the profile f2(x) is shown in
Figure 1B. Hence, the full polished surface is described by f3(t) =
min[f1(x), 0.1f2(x)] shown in Figure 6.

Figure 7 shows the power spectra for the profile f1(x) (black),
the profile f2(x) (red), and the “polished” profile f3(x) =
min[f1(x), 0.1f2(x)] (blue).

These three profiles have the different outlook and tribological
properties, however have the same exponent 1.9 in the power
spectra, i.e., G(ω) ∼ 1/ω1.9.
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FIGURE 3 | The power spectra of the profile Ct (x;p) (black) and the profile xD−2Ct (x;p) (red) for x ∈ [0, 1] with p = 1.5, D = 1.5 and varying N (A) N = 100; (B)

N = 30; (C) N = 20; and (D) N = 10.

FIGURE 4 | The power spectra of the profile Ct (x;p) (black) and the profile xD−2Ct (x;p) (red) for x ∈ [0, 1] with p = 1.5, and N = 100 for D = 1.3 (left), D = 1.7 (right).

FIGURE 5 | The power spectra of the profile A(x;p) (black) and the profile xD−2A(x;p) (red) for x ∈ [0, 1] for x ∈ [0, 1] with p = 1.5, and N = 100 for D = 1.3 (left),

D = 1.7 (right).
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FIGURE 6 | The “polished” profile f3(t) = min[f1(x), 0.1f2(x)], where the profile f1(x) is shown in Figure 1A and the profile f2(x) is shown in Figure 1B.

FIGURE 7 | The power spectra for the profile f1(x) (black) shown in Figure 1A,

the profile f2(x) (red) shown in Figure 1B, and the “polished” profile

f3(x) = min[f1(x), 0.1f2(x)] (blue).

6. CONCLUSIONS

A review of mathematical approaches for description of
topography of engineering surfaces has been presented. It
has been shown that in spite of huge amount of parameters
used to characterize the surface topography, only some
of the parameters are quite useful. However, their use is
rather bounded, e.g., these parameters may be helpful at
meso or even microscales, however they could be useless at
the nanoscale.

There are many models of random processes, however just
the case of Gaussian processes is well-elaborated. Some statistical
methods employed for checking normality of distributions
of asperity heights are reviewed. The preliminary results
showed that the intact surfaces are quite often Gaussian at
both micro and nanoscales, while the grinding surfaces are
not normal.

Then the fractal approaches to surface roughness are
discussed. Some common misinterpretations of statements by
Berry and Lewis (1980) are also discussed. Some disadvantages of
the fractal approaches and commonly reported wrong statements
about fractals are listed. It is argued that the practical usefulness

of the fractal approaches is rather doubtful. One should not
expect that the employment of a mathematical fractal model
of a rough surface will provide considerable advantages. In
fact, such models may cause many mathematical difficulties.
Thus, a strict approach to fractal modeling may substitute a
difficult problem to another more difficult than the original
one. Further, dimensions of physical fractals cannot be used
as scale independent parameters. One should provide proper
explanations of the fractal concepts used, otherwise this could
lead tomisinterpretation of the results. Unfortunately, quite often
the answer to the question by Jelinek et al. (1998): Is there
meaning in fractal analyses?, is “No.”

Finally the models of surface roughness based solely on
properties of the auto-correlation function or its Fourier
transform (the PDSF) are discussed. It has been noted that the
PDSF approach to non-Gaussian surfaces are in essence the new
clothes for the vulgar fractal approaches. We argue that these
PDSF models do not reflect tribological properties of surfaces.
In particular, it is demonstrated that rough profiles may have
the same slopes of the PSDF in logarithmic coordinates, while
they have rather different tribological properties. Thus, there is a
bounded scientific value (if any) of a number of papers based on
the PSDF approach.
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