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Faced with the problem of reducing greenhouse gas emissions and transitioning toward a

greater use of renewable energies, ammonia, as an energy carrier, is increasingly seen as

a potential “green” fuel for transportation, in particular marine applications. However, its

combustion characteristics (high minimum ignition energy and auto-ignition temperature,

low combustion speed in comparison to usual hydrocarbon fuels) are drawbacks that

have so far limited its use. Due to the evolution of different pollutant standards for

road transportation, spark-ignition engines and thus the combustion process itself have

been subjected to many changes over the last 20 years (e.g., gasoline direct injection,

downsizing). The objective of this article is to discuss the potential of ammonia as a

fuel for spark-ignition engines, thanks to the studies carried out so far and to point out

directions for future work.
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INTRODUCTION

According to the International Energy Agency (IEA)1, “green” hydrogen will play a key role
in the world’s transition to a sustainable energy future as it is one of the most promising and
clean energy carriers, for both transportation and power generation (Valera-Medina et al., 2018;
Wijayanta et al., 2019). However, even using the best available technologies, its density is too
low for it to be easily transported and stored with acceptable safety and at a reasonable cost.
Instead, another suitable hydrogen carbon-free vector can be considered, namely, ammonia, or
“chemically energized” water, which can be used not only as a hydrogen carrier but also as a fuel. In
a comparative review of different potential hydrogen storage methods, energy efficiency and cost
(Wijayanta et al., 2019), NH3 appeared to be the cheapest one with a high energy efficiency when
direct use is considered, especially in comparison to liquid or high-pressure compressed hydrogen
(Koike et al., 2012; Zhou et al., 2019).

Recently, studies based on system analysis concluded that “green” ammonia has a real potential
to be considered as a Power-to-Fuel for our energy future and that the greenhouse gas emissions
from an ammonia-driven vehicle could be less than one third of gasoline- or diesel-driven vehicles
(Angeles et al., 2018; Bicer and Dincer, 2018).

1https://www.iea.org/reports/the-future-of-hydrogen
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TABLE 1 | Main studies and literature results on the use of ammonia in SI engines.

Authors Type of engine Cylinder

volume (l)

Compression

Ratio

Engine regime

(rpm)

NH3 amount (%vol.) Fuel promoter

Starkman et al. (1966) CFR 0.625 6 to 10 1,000 to 1,800 25 to 100 H2 by catalytic dissociation

Mørch et al. (2011) CFR 0.612 6.2 to 13.5 1,200 5 to 100 H2

Westlye et al. (2013) 6.2 3,600 Until 80

Grannell et al. (2008) CFR 0.625 10 1,000 to 2,000 Max 70 Gasoline

Grannell et al. (2009) 1,000, 1,300,

1,600

0 to 100

Ryu et al. (2014a) CFR 0.6 10 1,800 Until 80 Gasoline

Ryu et al. (2014b) Until maximum for

maximum power

Gasoline + H2 by intake

catalytic reformer

Susumu et al. (2009) Toyota 0.633 6.1 3,600 50 H2 from catalytic cracker

Koike et al. (2012) Toyota single cylinder 0.5 14 1,200 40 to 90 H2

0 to 60 Gasoline

800 100 H2 by catalytic reformer

Frigo and Gentili (2013) Lombardini 2 cylinders 0.5 10.7 2,500 to 5,000 As high as possible H2 (minimum needs)

Comotti and Frigo (2015) H2 on board catalytic reformer

Woo et al. (2014) Hyundai 3 cylinders 1.1 10.5 1,400 Until 80 Gasoline

Haputhanthri et al. (2015) Unknown 4 cylinders 2.4 10.4 2,000 to 5,000 0 to 18 Gasoline + ethanol (until 30%)

Lhuillier et al. (2019a) PSA GDI 4 cylinders

(1 cylinder/4 fueled)

0.4 10.5 1,500 85 to 100 H2, CH4

Lhuillier et al. (2019b) 85 to 95 H2

Lhuillier et al. (2020) 40 to 100 H2

Even though at the moment there is no transport fleet
operating with ammonia as fuel, the use of ammonia as
an alternative to fossil fuels for transportation vehicles was
considered during the twentieth century. The first well-known
example is the case of the bus fleet operated in Belgium during
World War II due to the limited availability of diesel fuel
(Koch, 1949). The first dual-fuel engine was invented: coal gas,
composed of 50% H2, was directly injected into the combustion
chamber filled with ammonia. In the mid-60s, several studies
(Cornelius et al., 1965; Garabedian and Johnson, 1965; Gray et al.,
1966; Starkman et al., 1966, 1967; Pearsall and Garabedian, 1967;
Sawyer et al., 1968) focused on the possibility of using ammonia
as fuel in thermal engines, first providing recommendations
about the compatibility of ammonia with engineering materials
and lubricants, due to its corrosiveness to copper, copper alloys,
nickel, and even some plastics.

The two classical engine architectures were considered in
these studies, i.e., spark-ignition (SI) and compression ignition
(CI). Even if for the moment, most projects concern CI engines
(Dimitriou and Javaid, 2020), the low auto-ignition ability of
ammonia suggests that it would be more suitable to use ammonia
as a fuel in the SI mode. Its energy content for one quantity of
air introduced for a stoichiometric mixture is higher than that
of gasoline, but fuel consumption is double in the case of neat
ammonia. Its narrow flammability limits and low flame speed
can induce incomplete combustion in SI engines, but ignition
could be favored with H2 or a gasoline blend and the in-cylinder
temperature can be increased by a higher compression ratio or
supercharged conditions without any risk of knocking.

Table 1 summarizes the conditions of all the experimental
studies performed with ammonia in SI engines. While some
studies were conducted in CFR engines with a regular
compression ratio (CR) around 6:1, most of them increased the
CR to around 10:1, a value closer to that of current vehicle
engines. Only two studies (Mørch et al., 2011; Koike et al., 2012)
explored higher CRs up to 14:1. While the best (and carbon-
free) promoter is hydrogen, which has a very high combustion
velocity and wide flammability range, some studies focused on
ammonia/gasoline blends for greater fuel flexibility (Grannell
et al., 2008, 2009; Susumu et al., 2009; Mørch et al., 2011;
Koike et al., 2012; Ryu et al., 2014a,b; Haputhanthri et al.,
2015). Globally, similar performances were obtained with the
introduction of ammonia in the fuel up to a certain percentage,
but after a threshold level, engine performances were improved,
especially at higher engine speeds and full load.

In the following sections, the main results obtained from
previous studies are summarized and discussed according to
three aspects: operating constraints and global performance
results, ammonia injection strategies, and pollutant emissions.

GLOBAL PERFORMANCE

Ammonia Only Operation
It is striking to note that only a few studies have explored the
possibility of fueling an engine with neat ammonia. To promote
this concept, several technological solutions have been proposed
such as plasma jet igniters or a spark plug array (Susumu et al.,
2009). The use of pure ammonia was found to be possible
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with sufficiently low cyclic variation, mainly at full load (Koike
et al., 2012). Moreover, even with a 14:1 CR, under boosted
conditions (up to 2.2 bar), no knocking occurred at 800 rpm
with a stoichiometric air/NH3 mixture. Recently, these results
were confirmed in another current modern SI engine (Lhuillier
et al., 2019a,b). Apart from Susumu et al.’s study, the ignition
system used for all studies has been the original standard with
an optimized ignition advance; the higher the part of NH3, the
earlier the phasing is compared to TDC (up to 45–50 CAD before
TDC in the case of pure NH3).

Ammonia and H2
A comprehensive database, ranging from the leanest air/fuel
mixtures to the richest one as a function of H2 content, is
provided by Mørch et al. (2011). Ammonia storage by a metal
complex and the possibility of desorbing the complex by means
of the heat available at the exhaust as a function of H2 content and
equivalence ratio was first considered. The indicated efficiency
and the load decreased as a function of H2 increase, due to
higher wall heat losses as underlined in Lhuillier et al. (2020).
The highest efficiency was reached for a lean equivalence ratio,
but the highest load was obtained for a stoichiometric, or even
slightly rich, mixture, which was also confirmed for boosted
conditions in a current engine (Lhuillier et al., 2020). It was
found that 5%vol. H2 was enough to guarantee engine stability
with a higher efficiency than gasoline operation. However, the
compression ratio has to be increased to maintain the same load
as with gasoline or the intake pressure needs to be increased,
as in Lhuillier et al. (2019a), to maintain a similar load to that
of methane in order to limit the H2 needs. The minimum H2

required as a function of engine regime was also evaluated,
and the study concluded that in average, at half and full load
11–12 and 6–7%vol. of H2, respectively, were required (Frigo
and Gentili, 2013). As a consequence, however, the output
power obtained with “optimized minimum H2” was found to be
between 10 and 25% less than with gasoline depending on engine
speed and load.

By means of auto-thermal catalyst converters, the addition
of hydrogen on demand and in situ can be done, avoiding the
risks and costs associated with storing and distributing hydrogen.
(Comotti and Frigo, 2015), and (Koike et al., 2012), explored
the possibility to provide sufficient hydrogen to certify stable
combustion at any load. However, it seems that a very large
amount of H2 is needed at idle speed, which is impossible to reach
with an on-board ammonia auto-thermal cracker, but only Frigo
and Gentili (2013) mentioned it.

INJECTION SPECIFICITIES

Most studies were based on the injection of gaseous ammonia
inside the intake port by means of dedicated injectors or LPG
types, due to the physical properties of ammonia, i.e., in the
gaseous phase at a pressure below 10 bar and 25◦C. Other
injection strategies can be selected, however: gaseous phase
directly inside the combustion chamber (Ryu et al., 2014a),
liquid injection in the intake port (Starkman et al., 1966) or
in the combustion chamber (Sasaki and Sarlashkar, 2012), or

an ammonia/ethanol/gasoline emulsion (Haputhanthri et al.,
2015). Ryu et al. (2014a) studied the impact of injection strategy
for direct gaseous ammonia injection inside the combustion
chamber as a function of injection duration and phasing: the
total engine power increased as the ammonia injection timing
was advanced as did the injection duration, as a function of the
load. This makes it possible to achieve better fuel efficiency with
ammonia as a substitute for gasoline in a conventional SI engine
with a reasonable idling performance, unlike indirect injection,
which results in a load decrease of 30% in the worst case, thus
involving the need for a higher CR, as pointed out byMørch et al.
(2011). Due to the high latent heat of vaporization of ammonia,
the injection of liquid ammonia reduces the temperature and
vaporization occurs easily below an ambient pressure of 9 bar
at 25◦C ambient gas temperature (or 20 bar at 50◦C). When
the liquid injection takes place in the intake port, a better
engine filling is obtained, inducing an increase of load between
12 and 15% (Koike et al., 2012). It was also mentioned that
the turbulence generated by the ammonia jet is enhanced and
favors the mixing process. An injector concept for direct liquid
injection was developed by Sasaki and Sarlashkar (2012) with
the possibility of simultaneously injecting hydrogen. Even if
engine output power may be higher with direct liquid injection
of ammonia inside the cylinder, the decrease of in-cylinder
temperature could have a drastic consequence on the combustion
process (Starkman et al., 1966). However, no data are available on
direct liquid injection into the cylinder and there is a general lack
of accurate data, making it difficult to evaluate the best ammonia
injection strategy.

TABLE 2 | Summary of main tendencies for Ammonia/H2 in SI engines:

performances and emissions.

Combustion and performances in SI engines

Minimum H2 for

combustion stability

Efficiency Output energy

Between 5 and 10% in

vol

Higher for ER>=1 Less than gasoline

at low and partial

load

Amount needed

decreases with load

increase (full load: 0%)

Higher than gasoline Increase with CR

or boosted

pressure

slight effect of engine

speed

Decrease with H2

increase

Pollutant Emissions before any after treatment device

ER decrease

(lean)

ER increase

(rich)

H2

increase

Load

NOx

(ppm)

++ maximum

> gasoline

−− + Slight

increase but

no universal

trend

Unburnt

NH3

−− ++ −− But H2

at exhaust

No universal

trend
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Exhaust Pollutants
Grannell et al. (2009) and Westlye et al. (2013) concluded that
NOx emissions with neat ammonia are equal to or less than
with gasoline for stoichiometric or slightly rich fuel/air mixtures.
With the optimized minimum quantity of H2, NOx emissions
could be only half those of gasoline (Comotti and Frigo, 2015),
but for lean mixtures, NOx emissions are higher with a peak
at an equivalence ratio around 0.7/0.8 (up to 8,000 ppm in
wet gas volume). A second peak was even observed for leaner
mixtures as a function of ignition timing, no doubt due to the
ammonia kinetics (Westlye et al., 2013). Several studies (Ryu
et al., 2014b; Woo et al., 2014; Comotti and Frigo, 2015) found
that NOx emissions (in ppm) increase with load, as with classical
fuels, but that brake-specific NOx emissions decrease due to the
high fuel economy at high load (Ryu et al., 2014b). In contrast,
no significant effect of the charge was noted (Lhuillier et al.,
2019a,b). Overall, increasing H2 increases NOx emissions, due
to the impact on the adiabatic temperature. The proportion of
NO2 in total NOx was always found to be lower than that of
NO, with some ammonia dependency. Lastly, very low levels
of N2O emissions (below 100 ppm) were also found in these
studies, without a significant effect of the quantity of NH3. This
indicates that N2O, the unique contributor to global warming
from NH3 combustion, will have a low impact even if its global
warming potential over 100 years is 310 times higher than its
CO2 equivalent mass. The other main pollutant in the case of
NH3 combustion remains the unburnt NH3 itself, with a high
level for rich air/fuel mixtures (up to 2%vol.wet, Lhuillier et al.,
2019a). Unburnt NH3 emissions were found to be constant
even for lean mixtures and without any effect of combustion
phasing, mainly due to crevice trapping, due to high CR (Westlye
et al., 2013). Post-catalyst pollutant measurements showed that a
standard three-way catalyst remains efficient even with ammonia
blends but only for stoichiometric or 0.2% rich air/fuel mixture
(Grannell et al., 2009). The positive impact of an ammonia
catalyst cracker was demonstrated on NH3 emissions, due to
NH3 dissociation itself, but its effect on NOx emissions was
inconclusive and depended on the NH3 quantity at the intake
(Ryu et al., 2014b). Lastly, from exhaust temperature values
displayed in Westlye et al. (2013) and Lhuillier et al. (2020),
a selective catalytic reduction system or other thermal system
could be considered to limit NOx emissions but would require
an additional NH3 trap to limit NH3 slip. It has to be noted that
unique measurements of H2 at the exhaust were performed in

our previous studies (Lhuillier et al., 2019a,b): high H2 emissions
for rich mixtures can be linked to some NH3 auto-thermal
conversions inside the cylinder itself.

CONCLUSION AND RECOMMENDATIONS

The major trends from the referenced studies are summarized
in Table 2. Most of them were conducted in CFR engines,
which are not representative of current SI engine architectures,
or on laboratory single-cylinder engine benches with stable
initial thermal conditions. Recent results performed in current
SI combustion chambers confirmed that a compression ratio
around 10:1 could be sufficient to burn ammonia with small
quantities of H2 (around 5–10 %vol.) or even without H2 in
“full” load, for future hybrid vehicles or range extender systems.
By considering ammonia in all-thermal powertrain vehicles, a
variable compression ratio or boosted intake pressure would
undoubtedly have the advantage of allowing easier operation with
ammonia with an optimized minimum quantity of H2 produced
onboard. More studies on multi-cylinder engine benches are
needed to improve whole systems especially during cold-start
conditions. Moreover, further dedicated comparative studies on
the different injection technologies and strategies are required
before considering ammonia as a vehicle fuel. Finally, the issue
of pollutant emissions is not trivial and requires in-depth studies
before being able to propose optimized solutions according to the
best operating mode to deal with the problem of NOx and/or
NH3 or even H2. As pointed out by Angeles et al. (2018), any
optimization of the automotive ammonia fuel cycle suffers from
“the limited data available on the performance of ammonia-
fueled vehicles.”
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