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It is known that superposed movements can lower the friction felt at the macroscale. This is
well documented for in-plane and normal translatory oscillations. Contact mechanics are a
suitable approach to model this effect but so far have not gone beyond single-slider
dynamics. In this study, we make use of 3D Boundary Elements Simulations to study
the macroscopic friction reduction. This approach allows us to take into account also partial
sliding of the contact zone. We first revisit the case of transversal in-plane translatory
oscillations. Here, we argue that the behavior at small velocities can best be described when
partial slip is indeed taken into account. Next, we investigate the frictional response of a
Hertzian indenter when the lateral movement is superposed with a rotational bore
movement. An analytical approximation is given for the steady state solution with
constant angular velocity. The third case under investigation is an oscillating bore
rotation. We present numerical results for the reduction of the macroscopic friction. In
two limiting cases, an analytical prediction is given, following the lines used in the translatory
case. For extremely large amplitudes, it is based on the idea that a rotational steady state is
assumed at every instant. For small velocities we adapt our new approach including partial
sliding. We find these predictions to be good but not perfect, slightly underestimating the
reduction that rotational oscillations can provide.
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INTRODUCTION

When frictional contacts are subjected to external oscillations, the friction felt at the macroscale is
generally reduced. Since this constitutes a relatively simple way to control friction, the effect is used in
countless manufacturing applications (Siegert and Ulmer, 2001a; Siegert and Ulmer, 2001b;
Murakawa, 2001; Egashira and Mizutani, 2002; Ashida and Aoyama, 2007) as well as in noise
control (Thomsen, 1999). On the negative side, it can lead to an error in measurements of the
coefficient of friction (Kado et al., 2014).

The effect has been described experimentally in the middle of the last century (Fridman and
Levesque, 1959; Pohlman and Lehfeldt, 1966; Godfrey, 1967; Lenkiewicz, 1969) but modeling was
not attempted. In 2002, Storck (2002) investigated translatory in-plane oscillations
experimentally and analytically. They argued that the interplay of forward friction and the
superposed vibrations can be modeled using the perspective of contact mechanics with the simple
Coulomb law of friction of a single slider. Kumar and Hutchings (2004) use a comparable
modeling to interpret their experimental data. Tsai and Tseng (2005) employed the Dahl friction
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model to estimate the reduction for in-plane oscillations and
found that rigid slider models overestimate the friction
reduction. Teidelt, (2012) reported an impressive series of
experimental data on the reduction for oscillations in the
two in-place directions as well as the out-of-plane direction
and interpreted the results using a model of rigid sliders.
Starcevic and Filippov also worked on this dataset. They
used the Method of Dimensionality Reduction to study static
friction under the influence of in-plane parallel oscillations.
Their setup consisted of two coupled parabolic sliders and
included micro-slip (Starcevic and Filippov, 2012). The same
method was used by Teidelt et al. (2012) to study the
performance of Microdrive actuators. The simultaneous
acting of normal and in-plane-parallel oscillation was
studied by Popov and Li (2018) using an elastic slider
model. The case of in-plane oscillation transversal to the
macroscopic forward motion was modeled in a recent study
by Benad et al., (2019). They used a coulomb-type frictional
slider attached to a linear spring. In this work, results are given
as a function of normalized input quantities and explicit
dependencies are given for two limiting cases, corresponding
to very low forward velocities (static friction) on the one hand
and very large oscillation amplitudes on the other hand. Their
work can be considered the starting point of the current paper.
“Transverse Oscillations” section of the current paper will build
on their results but will introduce explicit partial slip.

The setup under investigation is the following: We focus
solely on superposed in-plane motion, leaving the normal
contact unchanged. Unless stated otherwise, the indenter is a
sphere with radius R, approximated by a parabola shape. It is
compressed elastically against a non-deformable flat
counterbody. The resulting contact zone and normal stresses
are of the Hertzian type and are assumed to be unaffected by
tangential stresses. The elastic sphere and the rigid counterbody
interact locally with a constant coefficient of friction µ, such that
the effective tangential stress inside the contact zone is always
less or equal to the normal stress at that point. While the
indentation depth in normal direction (z) is held constant,
the sphere is subjected to controlled in-plane displacements.
“Transverse Oscillations” section will start with a constant
velocity in forward (x) direction and harmonic oscillation in
y-direction. In “Continuous Rotation (Bore)” section, the sphere
will also move with constant velocity but will also rotate (bore)
around its central z-axis at constant angular velocity.
“Oscillating Rotation (Bore)” section will cover the case of
oscillatory bore rotation. In all cases, the macroscopic
forward friction will be decreased. The greatest reduction is
generally associated with larger amplitude, frequency or
velocity, respectively, of the superposed motion.

TRANSVERSE OSCILLATIONS

The case of transverse oscillations consists of a frictional indenter
which is moved with constant velocity in x-direction while its
position in y-direction is given by a sine-function

x(t) � ]0 · t
y(t) � y0 sin(ωtransvt) (1)

The simplest approach is to assume that Eq. 1 describe not
only the macroscopic motion of the indenter but also the
exact motion of the contact spot. This approach neglects the
lateral elasticity of the indenter. In contrast, the model of
Benad et al. (2019) consists of a single slider but connected to
the coordinates given in Eq. 1 by a linear spring. They
showed that the stiffness has a considerable influence on
the system behavior, in particular for small oscillation
amplitudes. We agree with this assessment. Because the
system is quasistatic, it makes sense to formulate in
problem in a way that eliminates the time. Similar to
Benad et al. (2019), we employ a set of two dimensionless
variables for such system including elasticity. The amplitude
of the oscillation is described as

~y0 �
y0
ulim

(2)

where ulim � μd Ep

Gp is the maximum unidirectional tangential
displacement of the indenter before full sliding occurs, see
(Mindlin, 1949; Popov, 2019). Here d is the indentation depth
in normal direction, E*, G* are the reduced moduli of shear and
elasticity Eq. 1, ] is Poisson ratio.

Ep � E
1 − ]2

, Gp � 4G
2 − ]

(3)

The forward speed is normalized with respect to the speed
of the oscillation and is expressed as the dimensionless
variable.

~v0 � v0
ωtransv · ulim. (4)

FIGURE 1 | Dependency of the normalized tangential force on the
displacement when transverse oscillations are applied. Here ~v0 � 0.3 and ~y0 �
1.6 were chosen. The resulting effective coefficient of friction is ~μmacro ≈ 0.53.
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The definitions ~v0 and ~y0 coincide with those from Benad et al.
(2019) when l0 of their paper equals ulim, which is the most
reasonable interpretation since “l0 is the elongation at which
sliding starts.”

The dependent variable is the apparent coefficient of friction
~μmacro which is determined from the tangential force Fx in
x-direction and the normal force Fz

~μmacro �
〈Fx(t)〉
μFz

. (5)

Here 〈/〉 means averaging over one period of oscillation, after
the system has tuned in.

Results
Figure 1 shows a typical evolution of the resistive tangential force
in x-direction. Such curves were obtained for a variety of
combinations for parameters ~v0 and ~y0. The resulting
macroscopic coefficient of friction is depicted in Figure 2 and
mostly reaffirms known results (Tsai and Tseng, 2005). In Benad
et al. (2019), an almost identical graph is not given in the paper
but can be found on the cover page of the journal’s issue.

Limiting Solution for Large Oscillation Amplitudes
An estimate for the apparent coefficient of friction at large
oscillation amplitudes is given as

~μmacro, large �
2
π
∫π/2

0

dτ�������������
1 + (~y0

~v0
sin τ)2

√ . (6)

In the range covered in this current work, we find the same as
(Benad et al., 2019): We basically confirm (6) and find it slightly
overestimates the reduction in~μmacro for finite ~y0, see the red curve
in Figure 2. This is to be expected, since the turning points in the
oscillation delay the reducing effect.

Limiting Solution for Small Driving Velocities
The limit of small driving velocities can be considered the case of
static friction. From a macroscopic point of view, this describes
simply the value of the tangential force below which the indenter
does not advance. Looking at the situation within an oscillation
cycle, the limit translates into the requirement that at least during
one infinitesimal instant of the cycle, a forward motion is
possible.

In the elastic-single-slider model of (Benad et al., 2019), these
instants coincide with the extremal values of the oscillations and a
value for the tangential force can be associated. For μmacro a closed
form solution at v010 is deduced

~μmacro,static,Benad �
�����
1 − ~y20

√
(7)

This solution is applicable for ~y0 ≤ 1 and is shown in Figure 2. For
any larger values, static macroscopic friction vanishes.

Our numerical simulations show that Eq. 7 overestimates the
macroscopic friction. In other words, the reduction resulting
from the oscillation is underestimated. Here we’d like to argue
that this due to the exclusion of partial slip in the model. Partial
slip does not occur in a single slider element but requires a finite
contact zone and distribution of normal stress.

For a Hertzian indenter in the absence of a forward motion,
the oscillation with amplitude ~y0 ≤ 1 gives rise to the formation of
a ring-shaped slip zone and an inner circle of stick. According to
Mindlin theory, the radius of the stick region c depends on ~y0
according to

c � a
�����
1 − ~y0

√
. (8)

where a is the contact radius. From this state, what condition
must be met in order to achieve a forward motion? Since ~v010,
the oscillations are at high frequency in the outer ring of slip and
are very effective in reducing, even suppressing the friction there.
Therefore it is reasonable to assume that the driving forward
motion only has to overcome the friction inside the remaining
stick zone. With the total normal force Fz and the normal force
only acting inside the stick zone Fz,c, we can conjecture

~μmacro,static �
Fz,c
Fz

� ∫c

0
p(r)rdr∫a

0
p(r)rdr. (9)

Here p(r) is the distribution of normal contact stress. In the
particular case of a Hertzian stress distribution, Eq. 9 reduces to

~μmacro,static � 1 − (1 − c2

a2
)3/2

(10)

Furthermore in the particular case of translatory oscillations
using Eq. 8 it reduces to

~μmacro,static � 1 − ~y3/20 (11)

which is also plotted in Figure 2 and coincides much better with
direct simulation results. Thus we see reason that unless the result
is zero or one, ~μmacro,static cannot be predicted by a single slider
approach.

FIGURE 2 |Dependency of the macroscopic coefficient of friction on the
dimensionless velocity and oscillation amplitude for transversal oscillations.
The smallest value of ~v0 is 0.005. Green line represents Eq. (11), red lines
represent Eq. (6) on the right, Eq. (7) on the left.
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CONTINUOUS ROTATION (BORE)

We now investigate a rotationally symmetric indenter which is
rotated around the z-axis while sliding in the x-y-plane.

x(t) � 0
y(t) � v0t
φ(t) � ωt

(12)

Since the problem is quasistatic, it can be reduced to a single
system parameter and dimensionless time

~v � v0
aω

, ~t � t
v0a

(13)

In this configuration, the instantaneous center of rotation in the
undeformed remote parts of the body is situated at

xcenter � −~va, ycenter � v0t. (14)

See Figure 3A. The steady state can be analyzed using the
following simplifications.

• The velocities of all spots on the surface are assumed to be
the same as their corresponding spots in the remote body

• For the calculation of frictional torque, surface stresses are
assumed to act at the undeformed spot.

In particular, the above simplifications are valid for small µ.
The amplitudes of the frictional stresses τ are given by

∣∣∣∣τ(x, y) �
μp(x, y)∣∣∣∣ and they are directed opposite to the velocity in each
surface point. This can be expressed as

τx(x, y) � − y��������������
y2 + (x − xcenter)2

√ μp(x, y)
τy(x, y) � − (x − xcenter)��������������

y2 + (x − xcenter)2
√ μp(x, y) (15)

See Figure 3B for an example. The resulting tangential forces
and torque can then be calculated as

Fx � 0 (16)

Fy � ∫
o

τydA � μ∫a

0
p(r)rQY(r/~va)dr (17)

Mz � ∫
o

(τyx − τxy)dA � μ∫a

0
p(r)r2QM(r/~va)dr (18)

wherein ∫
0
dA means integrating over the contact area and we

introduced

QY(~r) � ∫2π

0

~rcosφ + 1�������������
~r2 + 2~rcosφ + 1

√ dφ (19)

QM(~r) � ∫2π

0

~r + cosφ�������������
~r2 + 2~rcosφ + 1

√ dφ (20)

The additional rotational movement eases the forward
movement and effectively reduces the apparent coefficient of
friction. Vice versa, the forward motion eases the rotation.
Therefore, the required torque Mz also depends on ~v. A
macroscopic coefficient of friction can be formulated for both
the lateral movement and the rotation.

~μy(~v) � Fy/μFz � ∫1

0
QY(~r/~v)p(~ra)~rd~r
2π ∫1

0
p(~ra)~rd~r

(21)

~μM(~v) � Mz/μMz,0 �
∫1

0
QM(~r/~v)p(~ra)~r2d~r
2π ∫1

0
p(~ra)~r2d~r

(22)

where Mz,0 is the steady state torque at zero forward velocity.

FIGURE 3 | Hertzian indenter slipped in positive y-direction and rotated. Normalized forward speed ~v � 0.5. Quiver plots of (A) local velocity field, (B) tangential
surface stresses. The stress vector field also rotates around x/a � −0.5 but its amplitude is related to the contact pressure.
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For a Hertzian Indenter the dependencies of Eqs 21 and 22 on
~v are shown in Figure 4. In our transient numerical simulations,
these values are approached after the influence of the initial

conditions has vanished. Typical evolutions of the tangential
forces and torque are shown in Figure 5. It can be seen that
the macroscopic forces and torque approach a steady state which
is indeed well predicted by Eqs 21 and 22.

Interestingly, our simulations never showed zones of stick
when the steady state was reached, even when instantaneous
center of rotation is located inside the contact region.

OSCILLATING ROTATION (BORE)

In this section, we will set a continuous forward motion and the
additional bore rotation will be oscillating. Let us impose a
displacement of the indenter according to

x(t) � 0
y(t) � v0 · t
φ(t) � φ0 sin(Ωt), ω � _φ � φ0Ω cos(Ωt)

(23)

Some normalization is again required for the oscillation
amplitude. In “Transverse Oscillations” section, it was divided
by the maximum tangential deflection before the start of
macroscopic slip, which is when the inner stick region fully
vanishes. In the case of pure rotation of a Hertzian indenter
however, there is no such maximum angle at which the stick
region vanishes. According to Lubkin (1951) (indexed “lk”)
(Popov, 2019), the stick radius c and the torsion angle φ are
related as

FIGURE 4 | Theoretical prediction of the dependency of the
macroscopic coefficient of friction on the dimensionless velocity for added
continuous rotational (bore) movement to a Hertzian Indenter according to
Eqs 21 and 22. The frictional resistances on both the forward motion
and on the rotational torque are reduced.

FIGURE 5 | Coefficient of friction regarding Forces and torque of a Hertzian Indenter which is displaced and rotated simultaneously at ~v � 0.8. Dashed lines
represent theoretical prediction according to Eqs 21 and 22. Initial conditions were (A) full stick without tangential stress, (B) full rotational slip without lateral
displacement and (C) full lateral slip, no rotation.
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φlk(c) �
μEpa
πGR

[K( �������
1 − c2/a2

√ ) − E( �������
1 − c2/a2

√ )]
� ulim

a
4

π(2 − v)D(c/a) (24)

where we introduced

D(m) � K( ������
1 −m2

√ ) − E( ������
1 −m2

√ ) (25)

With the complete elliptical integrals of the first and second kind

K(k) � ∫π/2

0
(1 − k2sin 2φ)−1/2dφ,

E(k) � ∫π/2

0
(1 − k2sin 2φ)1/2dφ (26)

Indeed Eq. 24 tends to infinity for small c, meaning that the
very center of the contact will always be in stick state.
Normalization of the rotational amplitude will be instead be
done with respect to the angle necessary to achieve a stick radius
of c � a/2 in the absence of lateral displacement.

~φ � φ0

φlk(a/2)
� φ0

a
ulim

π(2 − v)
4D(1/2) (27)

The normalization of the forward velocity is done with respect
to the maximum speed of the contact zone edge at r � a

~v � v0
Ωφ0a

(28)

With these definitions, simulations and evaluation can be done in
analogy to “Transverse Oscillations” section.

Results
Figure 6 shows the results of μmacro for a range of parameters ~v
and ~φ. At first sight, the general appearance resembles the
dependencies shown in Figure 2 of “Transverse Oscillations”

section. For ~φ � 0, no reduction is found and thus ~μmacro � 1.
For large amplitudes of the rotational amplitude, friction is
greatly reduced, especially for small forward velocities ~v. Please
note however, that even in the limit of ~v10, the macroscopic
friction is not reduced to zero.

Limiting Solution for Large Oscillation Amplitudes
For the limiting case of large amplitudes, a similar expression to
Eq. 6 can be found, when it is assumed that the contact is always
in a rotational-transversal steady state such as “Continuous
Rotation (Bore)” section has introduced. Then, the results
found in Eq. 21 can be averaged over one period with
momentary values of ω(t) � φ0Ω cos(Ωt) yielding

~μmacro,largerot �
2
π
∫π/2

0
μy( v0

aφ0Ω cos(τ))dτ
� 2
π
∫π/2

0
μy( ~v

cos(τ))dτ (29)

This finding is shown in Figure 6with the red line. Please note the
resemblance to Eq. 6 in Figure 2.

Limiting Solution for Small Driving Velocities
Following the approach laid out in “Limiting Solution for Small
Driving Velocities,” it is possible to formulate an approximation
for the static friction in the limit of ~v10. Let us take the exact
same steps for the rotational problem.

In a situation without forward motion, the rotational
oscillation will give rise to a zone of constant stick. The
oscillation amplitude φ0 and the static stick radius c are related
by Eq. 24

φ0 � φlk(c) (30)

which we can now write in normalized form, introducing ~c � c/a

~φlk(~c) �
φlk(c)
φlk(a/2)

� D(~c)
D(1/2) (31)

This is a monotonous dependency with D(1/2) ≈ 0.9455. Let
~clk(~φ) be the inverse function

~clk(~φ) � D−1[D(1/2)~φ] (32)

We can then use this stick radius with Eq. 10 to find

~μmacro,static � 1 − (1 − ~clk(~φ0)2)3/2 (33)

Which is shown in Figure 6 with the green line. It can be seen
that Eq. 33 constitutes a reasonably good prediction of static
friction, but not an exact one. It appears to accurately predict
the static friction very well for ~φ0 greater than approximately 2.
At this point one should note that our judgment on the
accuracy is limited, because in order to reach a steady state,
the velocities used in the simulation must be strictly positive
and smaller values require more computation time. Therefore,
the minimum value represented in Figure 6 is ~v0 � 0.005. For
~φ0 < 2 however, Eq. 33 clearly underestimates the reduction of
friction.

FIGURE 6 | Dependency of the macroscopic coefficient of friction
(forward) on the dimensionless velocity and oscillation amplitude for bore
oscillations acting on a Hertzian Indenter. The smallest value of ~v0 is 0.005.
Red curve represents the limiting solution according to Eq. 29 green
curve represents (33).
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This means that the forward force does not need to overcome
the entire normal stress inside the oscillatory stick zone
multiplied with μ, but less. This in turn means that during the
forward motion of the indenter, not the entire inner circle slides
forward. Indeed, the time series of these simulations indicate that
at no point in time there is full sliding in the contact zone. Instead,
patches of stick alternate between the left and the right hand side
of the contact zone.

CONCLUSIONS

In this paper, we investigate friction under the influence of
superposed motion using explicit contact mechanics. In all
cases, the superposed motion reduces friction. The stronger
the motion (faster, higher amplitude) the greater the
reduction. Under the influence of any given superposed
motion, the forward friction increases with the forward
velocity, stabilizing the frictional system.

Based on the findings presented here for transversal
oscillations, the spring model given in Benad et al. (2019)
provides satisfactory results, except for very small forward
velocities, so-to-speak for static friction when the oscillations
provoke some partial slip, which should be taken into
account. We postulate that in order to start a forward
motion, only the friction inside this stick region must be
overcome.

For friction under the influence of additional continuous
bore movement, an approximation for the steady state is
identified and given in “Continuous Rotation (Bore)” section.
Both the friction opposing forward motion and opposing the
rotation are reduced.

When the bore movement oscillates, a reduction of the
macroscopic forward friction is again found and the
dependency on forward velocity and oscillation amplitude
resembles the transversal case (Compare Figures 2, 6).
Here, two limiting cases are again identified and analyzed.
At large amplitudes, assuming steady state in every instant
leads to a good approximation. For small velocities near static
friction, a new estimate with good agreement is suggested. It is
again based on the stick zone caused by the oscillations alone.
However, simulations show that the reduction of forward
friction is even greater than predicted, hinting to a more
elaborate mechanism.

Rotational bore oscillations are a promising way to control
static friction or micro-propulsion due to two favorable
properties over transversal oscillations. First, ~μmacro,static does
not sharply saturate at zero for increasing amplitudes but is
instead very well controllable in this region. Second, the
reduction in ~μmacro,static is very effective even at small
amplitudes.

METHOD

We employ the Boundary Elements Method for contact problems
(Pohrt and Li, 2014). The normal contact is solved following
standard procedures. Interaction of normal and in-plane
deformations are not considered. Interactions between the two
in-plane directions are considered. For the tangential contact, an
iterative scheme is employed that ensures each point satisfies the
following conditions in each time step.

• Tangential stress is below the frictional threshold |τ|< μp
(“stick state”) or,

• Tangential stress |τ| � μp and the difference in point
coordinates including deformation, the local velocity, is
directed opposite of tangential stress (“slip state”)

where τ is the tangential stress, having x and y components, p is
the local pressure and μ is the coefficient of friction. For the stress
inequality we typically allowed an error of 0.1% and for the
alignment of local stresses and velocities we typically allowed an
error of 4°. Achieving convergence in the iterative scheme proved
be time-consuming. Furthermore, the investigations of low
forward speeds required the use of up to 8,000 time steps. As
a consequence we limited the spatial resolution of the contact
region to 32 times 32 points in bulk simulations such as those
shown in Figures 2, 6. We used ] � 0 for the Poisson ratio and
μ � 0.2.
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