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Editorial on the Research Topic

Friction and Multi-Field Problems in Sliding Contacts

Friction inevitably occurs in the form of shear stress between rubbing surfaces in machine
components and many natural structures because of the solid interaction and adhesion. In the
early days of tribology, few classic frictional problems (e.g., Mindlin, 1949) associated with simple
contact geometries can be solved analytically using the theory of elasticity and linear viscoelasticity
(Johnson, 1987; Goryacheva, 1998). Thanks to the fast growth of computational power, friction
problems with complex interfaces, complicatedmaterial models and damagemechanism are solved
numerically using finite element method (Wriggers, 2002). Besides the complex mechanical field,
the performance and service life of the contact interface is largely influenced by multi-fields, e.g.,
thermal, electric, magnetic, acoustic and, chemical field (Wang and Zhu, 2019). Thermal field is
commonly coupled with the mechanical field due to the heat generation between the contacting
asperities, especially at high sliding speed. One of the representative phenomena thermoelastic
instability (Barber, 2018). Thermal stresses can induce partial slip of surfaces in the vicinity
of thermoinsulated (Malanchuk et al., 2011) and medium-filled (Chumak et al., 2014) surface
irregularities. Electrical connector is a typical example of coupled mechanical-thermal-electrical
problem (Holm, 2013). The asperity contact between mating terminals greatly constricts the
electric field so that the current only flows through the tiny contact area which causes a larger
contact resistance and higher energy waste through Joule heating. In the finger-pad interaction,
the tribo-charges can enhance the adhesion between skin and pad through the Coulomb
force. This can eventually alter the real contact area and friction (Persson, 2018). Triboelectric
nanogenerator (TENG) is another heat area where the mechanical field is strongly coupled with
the electromagnetic field (Wang et al., 2016). TENG relies on the tribo-charges, generated within
the real contact area between two sliding surfaces, to transform the kinetic energy into the electricity
(Xu et al., 2020). Magnetic field can be either measured by using TENG as a magnetic sensor
(Yang et al., 2012) or can be used to achieve the wireless power transmission (Cao et al., 2019).
The acoustic method is commonly as an alternative to reduce the friction in machine components
(Mahajan et al., 2008). In other areas, e.g., haptics (Wiertlewski et al., 2016) and ultrasonic actuator
(Zhao, 2011), it is applied to tune the friction. The chemical field is commonly coupled with thermal
field and other environmental factors. Heat generation between contacting asperities accelerate the
chemical reaction on the interface. Important topics include the formation of tribo-film (Spikes,
2004; Brizmer et al., 2017) and tribo-emission (Wang et al., 2019).

A total of six papers are included in this article collection. At the single asperity contact level,
the classic Cattaneo-Mindlin partial slip problem was extended to cover more complex interfacial
geometry (Klimchuk and Ostryk). The bilinear strain hardening law was introduced to the seminar
work of Jackson and Green asperity contact model (Ghaednia et al.). Effect of surface layer
on the sliding contact between a rigid indenter and a viscoelastic half-space was studied using
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boundary element method (Torskaya and Stepanov). At the
rough surface contact level, the thermal rectification between
sinusoidal waviness surfaces with trapped interstitial gas was
solved using an analyticonumerical approach (Chumak and
Martynyak). A simplified theory of electroadhesion for rough
interface was built upon the Persson’s theory of contact
(Ciavarella and Papangelo). A simple estimation of the adhesion
forces between rough surfaces was achieved using bearing area
model. Finally, an analytical framework for developing multi-
scale thermo-electro-mechanical approach for rough surface
contact was proposed (Komvopoulos).

We hope the readers can find the latest accomplishment
in the multi-field modeling of the tribological problems.
We would like to thank all authors contributing in this
article collection.
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