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On the Influence of Microtopography
on the Sliding Performance of Cross
Country Skis
Matthias Scherge*, Melissa Stoll and Michael Moseler

Fraunhofer IWM MikroTribologie Centrum, Karlsruhe, Germany

The sliding performance of cross country skis is mainly influenced by the ability of the

ski base to minimize capillary forces and contact area. Whereas, the first condition

depends on hydrophobicity, the second one is controlled by the ski grinding structure

and the morphology of snow. In this contribution the results of sliding tests with five

typical grinding structures will be presented and compared to calculations of the real

area of contact. Surface topographies were measured and corresponding roughness

features were analyzed by 3D optical microscopy. The measured ski base profiles and

the measured grain size distribution of granular snow at −2◦C were employed within

a bearing model for a rough surface in contact with loose and freely-moving snow

grains treated as ice spheres. For the five grinding structures, this model revealed a

good correlation of the real area of contact between ski and snow with run times in

lab-condition sliding tests. The results indicate that the snow-containing volume of the

grinding structure is pivotal for tailoring the sliding behavior.

Keywords: sliding friction, topography, experiment, simulation, contact mechanics

1. INTRODUCTION

According to the microscopic friction law by Bowden and Tabor Ff = τAr (Bowden and Hughes,
1939) there are two entities that determine the magnitude of friction Ff : the shear stress τ as a joint
contribution of upper and lower friction body and the real area of contact Ar . The shear stress τ

is a complex entity, since it comprises the near-surface shear conditions of the ski base, which can
be altered by ski preparation. In addition, τ is strongly influenced by a nanometer-thin water film
due to pre-melting of snow. This water film grows upon mechanical contact, mainly by the action
of frictional heat. τ cannot be measured and will be treated as a constant in this contribution, as it
is well-known that this assumption only holds under well-defined lab-conditions.

The upper body of the tribological system, the grinding structure, results from the treatment of
the ski base with a circular grinding stone. The abrasives of the stone remove base material (ultra-
high molecular weight polyethylen = UHMWPE) so that after proper conditioning of the stone
prior to grinding a regular groove and ridge pattern appears. The real area of contact between the
grinding structure with the snow withdraws itself from direct observation. This phenomenon is the
inbuilt calamity of tribology as the science of friction, wear, and lubrication.

The real area of contact Ar is a fraction of the apparent (geometric) area of contact, i.e., the
width of the ski times the percentage of ski length in contact with snow. The latter depends on
ski construction (flex) and shape of the terrain. The real area of contact cannot be measured, it
has to be calculated. This task falls into the field of contact mechanics with its roots dating back
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to the research of Hertz (1882). At this time it was possible
to compute Ar for a simple pairing of a sphere vs. a flat.
In addition, Hertzian contact mechanics allowed to determine
both contact stress and indentation depth, for instance of
a harder sphere into a softer flat. Hertz’ solution of the
Bousinesq differential equation was possible under certain
boundary conditions: (i) completely elastic behavior of both
bodies, (ii) small indentation depth in comparison with the
diameter of the sphere, and (iii) no adhesion between ball
and flat.

For a grinding structure in contact with a snow surface,
roughness has to be considered. Furthermore, plasticity cannot
be neglected and therefore a Hertz-type analytical solution is
not possible. Fortunately, the advent of powerful computers and
algorithms allows for the consideration of rough surfaces and
plastic deformation to estimate Ar with numerical means (e.g.,
by using Fourier transform techniques, Pastewka et al., 2012).

Snow—as the lower body of the tribological system—
is a complex material and it would exceed the page limit
of this contribution to explain all properties in detail. We
therefore concentrate on snow which is present in most of the
competitions in cross country skiing. This type of snow is a
mixture of natural and artificial snow after numerous contacts
with a snow groomer. The single constituting grains of snow
are connected by sinter necks for very low temperatures or
by capillary bridges for intermediate temperatures. Close to
the melting point intergranular adhesion is negligible. Here,
we concentrate on the third case. Under this conditions,
the ski base material has a higher hardness than the snow
grains suggesting that plastic deformation will occur in the
snow, only.

The ice grains in the snow considered in this article have a
high Young’s modulus E and a rather low hardnessH. Therefore,
almost no elastic deformation takes place and deformations
are dominated by plasticity. Thus, numeric approaches based
on elastic-plastic contact mechanics represent an unnecessarily
complicated approach that would waste computational resources
for the calculation of the unimportant elastic deformation of the
ice grains. Therefore, we focus on the purely plastic problem
and use the so-called Bearing Model. In this model, plastic
deformation occurs when the local compressive stress equals
the hardness of the snow grains (Popov, 2010; Weber et al.,
2018).

Summarizing, in order to reflect the real conditions in skiing,
a contact model must take into account surface features of
the grinding structure and the snow. It is the aim of this
contribution to relate the results of sliding tests in the field
to calculations of the real area of contact emerging from the
contact of grinded skis and snow. Five different typical grinding
structures were used in sliding tests in a ski tunnel. Microscopical
analysis of the snow coroborated the above assumptions i.e.,
the snow model can be based on an ensemble of individual
round ice grains with no inter-granular adhesion. This approach
allowed us to set up a simple contact model to compute the
real area of contact between the ski base and the top layer of
ice grains.

2. EXPERIMENTAL METHODS

The experimental section explains the ski base preparation,
the way how the sliding tests were performed and how snow
was analyzed.

2.1. Ski Base Preparation
In total five skis with different grinding structures (S1–S5) were
prepared for the test. Structures were provided by Montana
Germany according to the parameters displayed in Table 1. Both
average and maximum roughness Ra and Rz adequately reflect
the grinding machine settings to realize a linear structure which
is fine, medium, and coarse (S1–S3). Structure S4 was linear
as well, however the grinding process was multiply repeated
with altered parameters. In contrast to all linear structures, S5
was cross-hatched. After grinding, the topography of the ski
base was analyzed by optical profilometry using a Bruker white
light interferometer. The gained surface topography then was
Fourier filtered with a cut-off wavelength of 33 µm to decrease
noise of the profile. For each grinding structure, one topography
was captured.

2.2. Sliding Tests
All sliding tests were performed under lab-conditions (Skitunnel
Oberhof, Germany) with snow at a constant temperature of -
2◦C and a humidity between 30 and 40% (Doser). For sliding,
a straight section in the tunnel with moderate slope was chosen
(see Figure 1). The individual runs were executed outside of the
tracks prepared for classic technique. The tester—a professional
skier and Olympian with a height of 1,65 m and a mass of 70 kg—
carried an optical sensor, attached to the ski boot, that was started
by a reflector and 40 m later stopped by a second reflector. Each
ski was tested three times and the sliding time was averaged. In
all tests the skis were not waxed.

2.3. Snow Analysis
Snow was analyzed using an optical microscope with a
magnification of 60 times. To increase contrast, snow was
placed on a black plastic pad. Three different captures were
taken. Snow was found to be composed of individual rounded
grains with an average diameter between 500 and 750 µm. The
grains were not sintered and separated upon slightest mechanical
contact. Additionally, temperature and humidity of snow and air
were measured.

3. COMPUTATIONAL METHODS

On a microscopic scale, sliding on snow is governed by the
interaction of ice grains with the ski base (see Figure 2A).

3.1. Snow Model
Excluding the case of fresh precipitation, snow is composed of
individual ice grains with either polyhedral or roughly spherical
form–depending on the state of transformation. In our case, a
microscopic analysis suggests that the snow consists of individual
unconnected grains. Due to the repeated mechanical stress
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TABLE 1 | 2D roughness data from line scans after grinding.

S1 linear/fine S2 linear/medium S3 linear/coarse S4 linear/mutliple S5 cross-hatched

Ra [µm] 1.51 1.78 2.88 1.61 1.37

Rz [µm] 8.97 10.6 12.7 10.5 10.1

Ra is the arithmetical mean deviation and Rz the maximum peak to valley height of the profile.

FIGURE 1 | Sliding test in the skitunnel in Oberhof. The sliding distance was 40 m with a difference in height of 4 m. The insets show snow outside of a track as well

as the course of temperatures and relative humidities along the sliding path.

by snow groomer and skiers, the snow grains have lost their
cohesion. Caused by the prevailing snow temperature of −2◦C
there is no free water between the grains and therefore also
capillary interaction can be neglected. Thus, in contrast to
completely sintered or wet snow, the grains have a high mobility
and are able to occupy the valleys within the grinding structure
(see Figure 2A). This surface structure of snow impacts the real
area of contact and friction.

The calculation of the real area of contact starts with the
surfaces of ski base and snow which are brought into contact.
Both surfaces are described by a 3D-topography as well as the
mechanical properties (hardness H, Young’s modulus E, and
a Poisson’s ratio ν). Next, the ski base is lowered toward the
snow surface until indention starts. Deformation takes places and
after equilibration the real area of contact is calculated. As the
mechanical properties of the two contacting materials determine
the equilibrium deformation, we first discuss the experimentally
available values for hardnessH, Young’s modulus E and Poisson’s
ratio ν.

3.2. Young’s Modulus E of Ice
Published values for the Young’s modulus E of ice show a
large scatter—literature values range between 1.2 GPa and more

than 10 GPa dependent on the method of measurement, on
temperature and on the orientation of the ice crystals within the
granular network (Shapiro et al., 1997; Schulson, 1999; Theile
et al., 2009; Fellin, 2013; Böttcher et al., 2017).

Literature values of Poisson’s ratios ν exhibit a deviation
between 0.29 and 0.33 (Schulson, 1999; Fellin, 2013; Böttcher
et al., 2017). For randomly oriented polycrystals, typical values
of Young’s modulus and Poisson’s ratio are 9 GPa and
0.33 (Schulson, 1999), respectively. In this work, the values
employed by Böttcher et al. (2017) are used and the calculations
are performed with a Young’s modulus of 9.5 GPa and a Poisson’s
ratio of 0.31 (Böttcher et al., 2017).

3.3. Hardness of Ice
There is a strong dependence of the ice hardness on the loading
rate. The ice hardness H has to be determined on a time scale
relevant to winter sports (Petrovic, 2003; Poirier et al., 2011;
Makkonen and Tikanmäki, 2014). Therefore, the time scale for
the plastic deformation process in our experiments has to be
estimated. We consider the contact time as the duration of the
contact between the ski grinding structure and a grain of the snow
surface. We assume that a skier has an average velocity v̄ of the
order of 10 km/h and a snow grain has an average diameter d
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FIGURE 2 | Model of the ski-snow contact. Snow consisting of unsintered, loose snow grains is considered. These grains move freely against each other and fill the

ski base topography. In (A), the filling process is schematically illustrated with snow grains modeled as spheres having a certain radius R. In (B), it is shown, how the

real contact area A is calculated when a single snow grain is pressed into a ski topography valley. The softer grain deforms plastically and the real contact area A

between ski and snow is determined as the surface of the harder material (the ski) that is wrapped by the softer material (the ice). Projecting A on the sliding plane

yields A0, the projected area of contact. Finally, the fractional contact area is calculated as Afr =
A
R2 .

of 500 µm. We define the contact time tcontact as the time a ski
asperity needs to slide over a snow grain and therefore, tcontact
can be estimated via the following expression:

tcontact =
d

v̄
=

500 µm

10 km/h
≈ 1.8 · 10−4 s (1)

Based on our estimate for tcontact , two hardness models appear to
be adequate. These models provide hardness values as function
of temperature for tcontact ≈ 10−4 s. One model is provided
by Poirier et al. (2011) and the second one by Makkonen
and Tikanmäki (2014). Both models employ a linear relation
between hardness and temperature with different parameters.
While Poirier’s equation is valid for T <-1◦C

H(T) = ((−0.6± 0.4)T + (14.7± 2.1)) [MPa], (2)

Makkonen and Tikanmäki’s expression is valid from −10
to−3◦C

H(T) = −5.08T − 15.19 [MPa]. (3)

These models show a certain discrepancy for the ice hardness
as function of temperature. In this work, the hardness model of
Poirier is used as it provides more realistic hardness values close
to the melting point (theMakkonen and Tikanmäki model shows
negative hardnesses for T > −3◦C).

3.4. Mechanical Properties of Ski Base
Material
The ski base is made of UHMWPE with a Poissons’s ratio of 0.46
and a Young’s modulus of 840 MPa. The hardness of UHMWPE

TABLE 2 | The mechanical properties of an ice grain in snow and the ski base

material at T = −2◦C (Poirier et al., 2011; Fellin, 2013; Böttcher et al., 2017).

Ice grain UHMWPE

Young’s modulus [MPa] 9,500 840

Poisson number [–] 0.31 0.46

Hardness [MPa] 15.9 42.3

is estimated using the following equation:

HUHMWPE = 41.66− 0.33Tice[MPa] (4)

3.5. Deformation Regime
Table 2 summarizes the mechanical properties of the two
materials in contact at T = −2◦C. At this temperature, hardness
of UHMWPE is significantly higher than the hardness of ice.
Thus, snow is plastically deformed by the harder ski base surface.
Interestingly, the mechanical properties of snow are determined
by a very high Young’s modulus and a relatively low hardness
of the ice grains. This peculiar combination of mechanical
properties renders the ice grain a very stiff material that yields
plastically while exhibiting small elastic deformation. In order
to simplify the contact area calculations, one could assume that
the contact mechanics of ice is determined by plasticity alone
and elasticity can be neglected. This assumption was confirmed
by comparing elastic-plastic contact mechanic calculations with
calculations considering plasticity, only. The real contact area
of the ski topography in contact with a flat ice surface was
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FIGURE 3 | Fractional contact area of the ski topographies S1–S5 in contact with an ice surface. Comparison of an elastic-plastic contact mechanics calculation

(black curve) with a calculation considering plastic deformation, only (gray curve). The fractional contact area was calculated between the ski base and a plane surface

having a hardness of 20 MPa and with an applied pressure of 20 kPa. The calculation considered the whole ski sole surface topographies having a nominal area of

1, 660× 800µm.

FIGURE 4 | 3D images of the grinding structures S1–S5.

calculated with elastic-plastic contact mechanic calculations
based on Pastewka et al. (2012) and compared to calculations
using an approach considering only plastic deformation (the
so-called bearing model; Popov, 2010; Weber et al., 2018).
The qualitative results and especially the resulting ranking of
the grinding structures S1–S5 is unchanged when elasticity is
neglected (see Figure 3).

3.6. Macroscopic Pressure in the Ski-Snow
Contact
The macroscopic pressure in a cross country ski-snow contact
is calculated based on assumptions of the average ski surface

dimensions and on the mean stature of a skier. It is assumed

that an athlete of 80 kg is skiing on a pair of 1,900 mm long

and 40 mm wide cross country skis. During skating, most of

the time only one ski is in contact with snow. Assuming that

the whole ski base carries the load of the skier, results in a

pressure of 9.6 kPa. In reality, a cross country ski shows a
curvature along the sliding direction resulting in two major
contact areas which are together much smaller than the total
ski base area. Therefore, a 1.5–3 times higher pressures (15–30
kPa) is chosen for the contact area calculations. As mean value
to work with, 20 kPa is used as a default pressure (Böttcher et al.,
2017).
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3.7. Calculation of the Real Area of
Contact Ar
The ski surface is described as topography on a grid of (x, y)
values having height values hski(x, y) (see Figure 4). The snow
surface is represented by a sphere having a certain diameter
D = 2R and also modeled as topography grid hsnow(x, y). When
the ski base surface is lowered enough such that the macroscopic
pressure of the skier is reached, the contact areas between the
ice grains and the grindings structure sum up to the real area
of contact. Based on the estimates of the mechanical properties,
we assume that plastic deformation of the softer material (the ice
grains) takes places at all contact points.

Starting point of the Ar calculation is the following special
case. The ski base grinding structure is brought in contact
with a single spherical ice grain with radius R (see Figure 2B).
The ski surface topography hski(x, y) is lowered by a distance
δ until indentation of the ice sphere takes place and the ice
deforms plastically. This lowering process stops, when a certain
projected contact area A0(δ) is established such that the local
contact pressure is equal to the hardness of the ice Hice. In this
situation the sphere carries a load A0(δ)Hice that is equal to
the macroscopic pressure times the effective area occupied by
the sphere

A0(δ)Hice = pmacro(2R)
2. (5)

The projected contact area A0(δ) is calculated as follows. The gap
between the ski surface and the ice sphere is given by

g(x, y, δ) = hski(x, y)− δ − hice(x, y) (6)

with the topographies hski(x, y) and hice(x, y). The lowering
distance δ of the ski topography determines the projected
contact area

A0(δ) =
x

2(−g(x, y, δ)) dxdy. (7)

The Heavyside function 2 ensures that only zones that are
in contact [i.e., with a negative gap g(x, y, δ)] contribute to
this integral.

The real area of contact is determined by the integrated surface
of the part of the ski surface that is wrapped by the ice sphere
(see Figure 2B). The equation to calculate the real contact area is
given by:

Ar =
x

2
(

−g(x, y, δ)
)

√

1+

(

∂hski(x, y)

∂x

)2

+

(

∂hski(x, y)

∂y

)2

dxdy (8)

The result of the surface calculation can be translated into
a (dimensionless) fractional contact area Afr which gives the
amount of the computed real contact area Ar over its apparent
contact area (2R)2, which is the assumed area an ice sphere
occupies on the ski surface:

Afr =
Ar

(2R)2
(9)

TABLE 3 | Results of sliding test and ranking.

Structure 1. run

[s]

2. run

[s]

3. run

[s]

average

[s]

STD

[s]

Ranking

[-]

S1 linear/fine 7.52 7.67 7.73 7.64 0.11 5

S2 linear/medium 7.32 7.39 7.41 7.37 0.05 3

S3 linear/coarse 7.23 7.34 7.43 7.33 0.10 1

S4 linear/multiple 7.28 7.34 7.43 7.35 0.08 2

S5 cross-hatched 7.35 7.49 7.51 7.45 0.09 4

In a final step, the surface of the grinding structure is raster
scanned with the ice sphere and the real contact area is calculated
for all sphere positions with the sphere pressed into a topography
valley of the ski base surface. Finally, a mean value of Afr is
computed for each sphere size R.

3.8. Pearson Correlation
In order to quantify the statistical relation rPear between sliding
times and the fractional contact area Afr , the Pearson correlation
coefficient is employed. It quantifies a statistical correlation
between two random variables X and Y :

rPear =

∑n
i=1(xi − x̄)(yi − ȳ)

√

∑n
i=1(xi − x̄)2

√

∑n
i=1(yi − ȳ)2

(10)

where xi is the value of feature X of the ith sample and yi is the
value of feature Y of the ith sample having n samples in total and
where x̄ and ȳ are the mean values of Features X and Y.

The Pearson correlation coefficients ranges between −1 and
1 where the sign indicates the direction of the correlation
between X and Y . While a coefficient of ±1 suggests a complete
monotonic linear relation, an rPear of zero indicates that X and Y
are uncorrelated (Ho et al., 2016).

4. RESULTS

4.1. Sliding Tests
Each ski (with grinding structure S1–S5) was tested three times
and the sliding time was recorded. Then the averaged sliding
time was calculated and the standard deviation as well as
the ranking was determined. In the ranking, the fastest ski
occupies rank number 1 (S3 linear/coarse), while the slowest
ski has rank number 5 (S1 linear/fine). The results are listed
in Table 3. The standard deviations in Table 3 indicate that
while the two slowest skis (S1, S5) can easily be determined,
the sliding times of the three fastest skies (S3, S4, S2) are
close together. In the following we want to present sliding test
results in comparison to the slowest ski (S1) and therefore the
dimensionless sliding time t̃j is introduced for each grinding
structure Sj:

t̃Sj =
tSj

tS1
(11)

Here, Sj denotes the number of the grinding structure and
tSj is the mean sliding time of the skies (see Table 3).
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TABLE 4 | 3D roughness information from topographical scans h(x, y) of the ski soles S1–S5 measured by white light interferometry and post-processed by Fourier

filtering.

S1 linear/fine S2 linear/medium S3 linear/coarse S4 linear/mutliple S5 cross-hatched rPear

Sa [µm] 1.86 1.63 2.84 2.45 1.81 −0.62

Sq [µm] 2.79 2.13 6.49 4.62 3.00 −0.65

Sdq [-] 0.135 0.107 0.137 0.175 0.126 −0.20

Ssk [-] 0.41 0.54 0.18 0.29 0.67 0.38

Sku [-] 1.68 2.83 0.33 0.70 2.22 0.41

Here Sa is the arithmetic mean deviation, Sq the root mean square roughness, Sdq the root mean square slope, Ssk the skewness and Sku the curtosis of h(x, y). For each surface

parameter, a correlation coefficient rPear (see Equation 10) with dimensionless sliding time (see Equation 11) is calculated.

FIGURE 5 | Distribution of the snow grain diameters. Three microscopic snow images of the loose, unsintered snow grains (inset) are analyzed and snow grain sizes

are estimated from the microscopic images. From the resulting diameters a histogram is calculated (gray barplot) that is approximated by a smooth, normalized grain

size distribution (black line) using Equation (12).

The results are normalized by the sliding time of the
slowest ski. Thus, the slowest ski has a dimensionless
sliding time of 1 and the faster skies have values smaller
than 1.

4.2. Grinding Structures of Ski Base
Figure 4 shows all 3D images of the grinding structures
considered in this article. To characterize and categorize surface
properties of the grinding structures, various characteristic 3D
surface parameters are calculated and listed in Table 4.

The amplitude parameters Sa and Sq characterize the surface
based on the vertical deviations of the 3D topography from its
mean height. The root mean square slope Sdq is also given to
provide more insight into the short length scale properties of
the grinding structures. The higher the variation of the texture
within a short lateral spacing, the higher Sdq. To regard surface
parameters which reveal information about the profile shape,

the parameters skewness Ssk and kurtosis Sku are calculated.
Ssk measures the asymmetry of the topography about the
mean plane and thus describes the shape of the topography
height distribution. Sku indicates the sharpness of the roughness
profile and thus measures the peakedness of the surface profile
about the mean plane. When the Pearson correlations were
calculated between these surface parameters and the sliding
time (see Table 4), no significant correlation could be found.
Note, that for a significance of α = 0.05 an |rPear| ≥ 0.88
is required.

4.3. Snow Analysis
Based on various microscopy images of the snow at the
test day in Oberhof (see inset in Figure 5), a grain size
distribution was estimated (see Figure 5). To do so, snow grains
were identified in the microscopic pictures and elliptic forms
were matched.
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FIGURE 6 | Fractional contact area as a function of the dimensionless sliding time of skis with grinding structure S1–S5. Grain sizes representing the grain size

distribution of the experimental snow exhibit monotone relations between Afr and dimensionless sliding time (A), while for grain sizes outside the range of the grain

size distribution no significant correlations can be detected (B). The dimensionless sliding time is defined by the sliding time of each ski divided by the sliding time of

the slowest ski. The strength of the correlations in (A,B) is measured by the Pearson correlation coefficient rPear; see Equation (10). Note, that for a significance of

α = 0.05 an |rPear| ≥ 0.88 is required.

FIGURE 7 | Pearson correlation coefficient (see Equation 10) as a function of grain size. The gray colored area and the histogram illustrates the grain size distribution

calculated from the grain sizes measured by snow microscopy (see Figure 5). For each grain size, the fractional contact areas between grain and ski sole

topographies is calculated and a Pearson correlation coefficient is determined (see Figure 6 which shows this relation exemplary for some grain sizes).

Using the discrete grain size distribution, a normalized
grain size distribution of the form f (D) = a · ecD · Db

was matched (Nakamura et al., 2001). Fitted was the
function to the relative frequencies of the grain sizes
using a non-linear least squares fit. The resulting grain
size distribution is the following (see black curve in
Figure 5):

f (D) = (4.65 · 10160) · D249.22 · e−398.84D (12)

4.4. Correlations of Real Area of Contact
With Sliding Times
The raster scanning of the ski surface was performed employing
ice spheres with diameters between 500 and 750 µm (see
grain size distribution in Figure 5). For each grain diameter,
the fractional contact area for the grinding structures S1–S5
was calculated. In Figure 6, the resulting Afr is plotted over
the dimensionless sliding time for some selected grain sizes.
Figure 6A shows this relation for ice grains which can be found
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FIGURE 8 | Average fractional contact area as a function of dimensionless

sliding time. The fractional area of contact Afr (D) is averaged using the

normalized grain size distribution f (D). This yields 〈Afr〉; see Equation (13). The

inset shows the corresponding Pearson correlation coefficient. Note, the

similarity to Figure 6A.

in the grain size distribution, while Figure 6B displays results for
grain sizes outside the size distribution.

As can be seen, a significant correlations between fractional
contact area and dimensionless sliding time can be detected for
grain sizes occurring in our experimental snow. To quantify these
correlations, the Pearson correlation coefficient was calculated
for grain sizes ranging from 450 to 700 µm (see Figure 7).
Interestingly, for grain sizes outside the size distribution
the Pearson correlations showed small negative correlation
coefficients. Conversely, for grain sizes between 550 and 670 µm
the Pearson correlation turns positive and reveals a strong
dependency of sliding time on real area of contact i.e., the larger
the Afr of the ski the larger the sliding time.

Finally, a grain size averaged fractional contact area is
calculated by

〈Afr〉 =

∫

Afr(D)f (D)dD (13)

where f (D) describes the grain size distribution in Equation (12),
D the grain size diameter and Afr(D) the real contact area for
a grain with diameter D. Figure 8 displays the relation of 〈Afr〉

and the dimensionless sliding time. An rPear of 0.93 marks a
significant correlation (see Figure 8). This result underlines the
usefulness of the contact model developed in this article for loose
granular snow in contact with ski grinding structures. It also
highlights the apparent grain size as a decisive factor to predict
ranking of sliding times and that the grinding structure has to be
matched to the grain radii.

5. DISCUSSION AND CONCLUSIONS

The aim of this work was to quantify the influence of the ski base
microtopography on the sliding performance of cross country
ski. Since the correlations between standard 3D roughness
parameters with the skis’ sliding times turned out to be
insignificant, we focused our attention on the real area of contact.
This was achieved using a simple contact mechanical approach
for snow close to the melting point. For the prevailing snow
conditions at an experimental temperature of −2◦C the snow
can be modeled by an ensemble of freely-moving snow grains.
At this temperature, the Young’s modulus of ice is ∼9,500
MPa, while the ice hardness has been estimated by Poirier’s
constitutive equation to be 15.9 MPa. These values have to
be compared to the mechanical properties of the ski base
material (UHMWPE) which has a Young’s modulus of 840 MPa
and a hardness of 42.3 MPa. Since the snow grains posses a
much lower hardness than the polyethylene ski base, plastic
deformations are restricted to the ice grains. In addition, the
Young’s modulus of the ice is rather large compared to its small
hardness. In this case, our full contact mechanic calculations of
the grinding structures in contact with a flat ice surface showed
the same ranking as a calculation on a Bearing Model approach
that neglects elasticity of the ice and takes only into account
plastic deformations. Therefore, only purely plastic deformations
of the ice grains were taken into account in our ski/snow
contact model.

Snow was modeled as granular material consisting of single
spherical ice grains with a certain grain radius. This model
assumes that the single ice spheres are not connected by sinter
necks and therefore the grains can freely organize and fill
the valleys of the grinding structure. When the ensemble of
grains has adapted to the ski surface topography, individual
grains in the top layer carry the load of the skier and the
related high local contact pressure result in a plastic deformation
of the top grains. The interfacial area between the grinding
structure and a deformed ice sphere can be calculated by simple
geometrical considerations. This provides an estimate of the

fractional real area of contact for a single grain A
grain

fr
(x, y) at

lateral position (x, y). The total fractional real area of contact can

be determined by an average over the individual A
grain

fr
(x, y) after

scanning the lateral position (x, y) of the ski topography with the
ice sphere.

It could be shown that grain size in this simple bearing
model has a crucial impact on the qualitative relation
between the sliding times and the calculated real area of
contact of the ski/snow interface. While for the experimental
grain radii (observed in the experimental snow) a significant
correlation could be found, for radii outside the experimental
grain size distribution the correlation was insignificant. This
observation could hint toward a general design rule for ski
microtopographies. It seems to be beneficial when the spatial
scale of the grinding structure can be adapted to the prevailing
sizes of the ice grains in the snow. However, considering the small
number of tested structures and the neglect of other important
snow parameters (such as grain shape), the results in this article
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represent only a first glimps on such a design rule. In future, more
ski structures and a broader variety of test conditions should be
considered in order to corroborate our first qualitative results
and to elucidate further the relation between the microscopic
properties of the snow and the ski microtopography.
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