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It is well known that the mechanical behavior of arterial walls plays an important role in the
pathogenesis of vascular diseases. Most studies existing in the literature focus on the
mechanical interactions between the blood flow and wall’s deformations. However, in the
brain, the smaller vessels experience not only oscillatory forces due to the pulsatile blood
flow but also structural and morphological changes controlled by the surrounding brain
cells. In this study, the mechanical deformation of the cerebral arterial wall caused by the
pulsatile blood flow and the dynamics of the neuronal nitric oxide (NO) is investigated. NO is
a small diffusive gaseousmolecule produced by the endothelial cells and neurons, which is
involved in the regulation of cerebral blood flow and pressure. The cerebral vessel is
assumed to be a hollow axial symmetric cylinder whose wall thickness is much smaller than
the cylinder’s radius and longitudinal length is much less than the propagating wavelength.
The wall is an isotropic, homogeneous linear viscoelastic material described by an NO-
modulated variable-order fractional Maxwell model. A fractional telegraph equation is
obtained for the axial component of the displacement. Patterns of wall’s deformation are
investigated through numerical simulations. The results suggest that a significantly
decreased inactivation of the neuronal NO may cause a reduction in the shear stress
at the blood-vessel interface, which could lead to a decrease in the production of shear-
induced endothelial NO and neurovascular disease.

Keywords: variable-order fractional Maxwell viscoelastic model, cerebral nitric oxide dynamics, vascular wall
deformation, variable-order fractional telegraph equation, separation of variables method

INTRODUCTION

Cerebral vasculature plays a critical role in brain’s metabolism and neurovascular conditions. The
literature abounds with studies of cerebral blood flow and its interactions with the vasculature and
brain cells [reviews of models and computer simulations can be found in chapter 4 of Drapaca and
Sivaloganathan (2019)]. Recent advancements in technology have allowed researchers to gain
invaluable knowledge about the intricate chemo-mechanical connections among neurons, glial,
vascular, and blood cells. It is now acknowledged that the neurons and glial cells control the cerebral
blood flow through the chemo-mechanical activation of the cells within the vascular wall (Attwell
et al., 2010).

One of the many particles that facilitate the chemo-mechanical communications among the brain
cells, blood, and the vascular wall is the nitric oxide (NO). A small diffusive gaseous molecule, the
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cerebral NO is mainly produced by shear-induced
mechanotransduction at the blood-vessel interface (Sriram
et al., 2016) and by synthesis reactions within the endothelial
cells of the blood vessels and neurons (Forstermann and Sessa,
2012). NO diffuses and is removed from brain through some
specialized chemical processes (Palacios-Callender et al., 2007;
Unitt et al., 2010; Santos et al., 2011; Santos et al., 2012; Helms
et al., 2016). In its role as a neuro-glial-vascular messenger, NO
controls the cerebral blood flow and the release of
neurotransmitters (Huang, 1999; Iadecola, 2004; Attwell et al.,
2010; Contestabile et al., 2012; Iadecola, 2017). The regulation of
the blood flow in brain is achieved through vasomotor
mechanisms in which both the neuronal and endothelial NO
are involved (Cockcroft, 2005; Metea and Newman, 2006; Attwell
et al., 2010; Atochin and Huang, 2011; Petzold and Murthy, 2011;
Contestabile et al., 2012; Lourenco et al., 2014; Haselden et al.,
2020). However, throughout the entire cardiovascular system, the
endothelial NO usually acts as a vasodilator (Attwell et al., 2010;
Schuler et al., 2014). While the cerebral NO activity causes the
local vasodilatation of downstream cerebral vessels at the neuro-
glial-vascular unit site, the NO diffusion within the vascular wall
relaxes the smooth muscle cells leading to the so-called remote
vasodilation due to the propagation of muscle’s relaxation to the
upstream arteries via the intercellular communications among
endothelial and smooth muscle cells (Freed and Gutterman,
2017) facilitated by vascular gap junctions (Iadecola, 2004;
Iadecola, 2017). Impaired cerebral NO production and/or
decay can signal the presence of a neurovascular disease
(Parker and Parks, 1995; Maurer et al., 2000; Wilkinson et al.,
2004; Unitt et al., 2010; Santos et al., 2011; Haselden et al., 2020).

Although the NO-modulated vasodilation contributes to the
mechanical deformation of the vascular walls of intracerebral
vessels, existing mathematical models and corresponding
numerical simulations of blood flow interacting with the
deformable vascular wall do not account for it since their
focus is the mechanics of big arteries in the presence of the
pulsatile blood flow. The arteries are usually modeled as
anisotropic, incompressible, nonlinear elastic materials whose
constitutive stress-strain relationships may also incorporate
collagen fibers’ orientations and waviness, and/or the
activation of smooth muscle cells (see Ebrahimi, 2009;
Holzapfel and Ogden, 2010; Kim and Wagenseil, 2014;
Espinosa et al., 2018 and references within). For instance,
muscle activation has been modeled using 1) the (original or
modified) Hill model (Hill, 1938), 2) an elastic strain-energy
function dependent on the concentration of free intracellular
calcium (Rachev and Hayashi, 1999), 3) a strain-energy function
dependent on the chemical kinetics of the smooth muscle
(Stalhand et al., 2008), and 4) a lumped Hodgkin-Huxley-like
electrical circuit of the smooth muscle cell membrane coupled
with a fluid compartment model describing the mass balances of
considered ions and a contractile kinematics model regulated by
intracellular calcium (Yang et al., 2003). Given the viscoelastic
behavior of constituent cells (Kasza et al., 2007) of the blood
vessels (and biological tissues, in general), the vascular wall has
also been modeled as a viscoelastic material (Toth et al., 1998;
Orosz et al., 1999; Holzapfel et al., 2002; Hodis and Zamir, 2008;

Ebrahimi, 2009). Since these models do not incorporate the NO
influence on the vascular wall, they are not able to predict
neurovascular pathologies in which NO plays a critical role.
Furthermore, the coupling of most of the above models with
the cerebral NO dynamics will probably increase the already large
number of model parameters that are practically impossible to
find in a living brain with minimally invasive procedures using
present-day technologies.

The aim of this study is to propose a novel mechanical model
for cerebral arterioles that accounts for changes in the wall’s
mechanical behavior due to the NO-activated vascular cells and
has few parameters. Orosz et al. (1999) used stress-relaxation
measurements in cerebral arteries of human cadavers to show
that four- and five-element generalized Maxwell viscoelastic
models provide more accurate descriptions of the vascular wall
mechanics than the two-element Maxwell viscoelastic model.
One way to obtain a linear viscoelastic constitutive law with
fewer parameters that perform as well as (or better) a spring-
dashpot model with many elements is to use an integral
formulation instead of the differential operator representation
commonly associated with rheological (spring-dashpot) models.
Integral constitutive laws admit equivalent differential
formulations only for certain expressions of their relaxation
functions (Gurtin and Sternberg, 1965; Drapaca et al., 2007).
It was observed experimentally that relaxation functions
represented as power functions of negative fractional
exponents accurately describe the fading memory of many
viscoelastic materials, including polymers and soft biological
tissues (Nutting, 1921; Gemant, 1935; Gemant, 1936; Scott
Blair and Coppen, 1939; Scott Blair and Coppen, 1942;
Nutting, 1943; Guttinger, 1966; Caputo and Mainardi, 1971;
Bagley and Torvik, 1983a; Bagley and Torvik, 1983b; Koeller,
1984; Torvik and Bagley, 1984; Suki et al., 1994; Mainardi, 2010).
Integral constitutive laws with decaying fraction power-law
relaxation functions have equivalent differential
representations like those used in classic rheological models
where integer-order derivatives were replaced by fractional-
order derivatives (convolutions between decaying fraction
power functions and integer-order derivatives). These
fractional viscoelastic models are causal at zero time (Bagley
and Torvik, 1983b; Torvik and Bagley, 1984) and can be derived
from molecular theories that incorporate the molecular
complexity of various polymers (Bagley and Torvik, 1983b;
Suki et al., 1994). In this context, the fractional order of the
strain history models the “contribution of the long-chain
molecules to the macroscopic stress” (Suki et al., 1994). Also,
Suki et al. (1994) noticed the structural similarities between the
lung tissue and some polymers and showed that a fractional
viscoelastic model can successfully predict the viscoelastic
behavior of lung tissue. Given that lungs are highly
vascularized, it is reasonable to assume that a fractional
viscoelastic model could be employed in studies of blood
vessels mechanics.

Therefore, this study proposes a new NO-modulated variable-
order fractional Maxwell viscoelastic model for the cerebral
vascular wall and investigates its predictions through
numerical simulations. The suggested constitutive equation is
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a generalization of the (constant order) fractional Maxwell
viscoelastic model (see, for instance, Mainardi, 2010). The
classic (first-order) Maxwell viscoelastic model has been
previously used in the literature to model vascular walls (see,
for instance, Hodis and Zamir, 2008), and therefore, this is the
model which was chosen to be generalized here. According to
Lorenzo and Hartley (2002), variable-order fractional operators
are suitable in modeling, for instance, the fading memory
characteristic of viscoelastic materials and the order memory
which records the order in which memories are recalled [a
recent review of applications of variable-order fractional
operators can be found in Patnaik et al. (2020)]. In the model
proposed here, the neuronal NO dynamics controls the order
memory. With only three parameters, the proposed model can
account for vessel’s mechanics and the fact that the order memory
of chemo-mechanical events is essential to the proper
functionality of the constituent cells of the vascular wall.
Lastly, the vascular wall is assumed to be isotropic and
homogeneous.

As in Hodis and Zamir (2008), it is further assumed that the
cerebral vessel is a hollow axial symmetric cylinder whose wall
thickness is much smaller than the cylinder’s radius, and
longitudinal length is much less than the propagating
wavelength. These assumptions together with the new
constitutive equation led to a variable-order fractional
telegraph equation for the unknown axial displacement of
the vessel’s wall. By assuming that the blood-vessel interface
was exposed to the pulsatile blood flow and the vessel-tissue
interface was tethered (Hodis and Zamir, 2008), an initial-
boundary value problem was obtained and solved using the
separation of variables method and finite difference schemes.
The assumption of a tethered vessel-tissue interface is
supported by experiments performed using high-resolution
ultrasonic scanning that shows significantly larger longitudinal
displacements of the wall’s middle layers than the
corresponding displacements of the wall’s outer layers
(Persson et al., 2003; Cinthio et al., 2006). Lastly, the
variable fractional order was taken to be proportional to the
concentration of neuronal NO. Two cases of neuronal NO
synthesis (NOS) were considered: 1) a stepwise activation of
NO with drastically decreased NO inactivation and 2) a
dynamic activation of NO (Hall and Garthwaite, 2006).
Case 1 may not be physiological because the main neuronal
NOS activation matches the short pulsatile Ca2+- calmodulin
binding activation in dendritic spines (Hall and Garthwaite,
2006), and thus, this case may model impaired neuronal NO
dynamics. Indeed, the temporal variation of NO resembles a
stepwise function when the NO inactivation is drastically
reduced by either brain ischemia (Santos et al., 2011) or the
inhibition of cytochrome c oxidase (COX) (Palacios-Callender
et al., 2007; Unitt et al., 2010). Brains of Alzheimer disease
(AD) patients may suffer from a COX inhibition and thus an
accumulation of NO (primarily in the temporal cortex and
hippocampus) because a selective defect of COX causing a
significant reduction in COX activity was found in AD brains
(Parker and Parks, 1995; Maurer et al., 2000). Numerical
simulations generated in MATLAB show smaller

displacements within the vascular wall in the case of
stepwise NOS than in the case of dynamic NOS. Also, the
shear stress at the bloodvessel interface is smaller in the case of
stepwise neuronal NOS. Since the production of shear-induced
endothelial NO is proportional to the shear stress at the inner
boundary of the vessel’s wall (Sriram et al., 2016), it follows
that less endothelial NO will be produced in this case which
could ultimately lead to neurovascular disease. Thus, the
model could be used as a complementary clinical tool for
early detection of disease and intervention (Alzheimer, for
instance).

The study is structured as follows. The proposed mathematical
model and the initial-boundary value problem under
investigation are presented in Mathematical Model. The
corresponding semi-analytic solution is given in Semi-Analytic
Solution. Numerical simulations are shown in Results, which is
followed by the last section containing a discussion of the results
and final conclusions.

MATHEMATICAL MODEL

The vessel is modeled as a hollow horizontal axial symmetric
circular cylinder of radius a and thickness h (Figure 1). As inHodis
and Zamir (2008), it is assumed that the vessel’s wall is made of a
homogeneous, linear viscoelastic material that is tethered at the
outer boundary (the wall-tissue interface) and exposed to
oscillations caused by the heart pulsations at its inner boundary
(the blood-wall interface). In addition, it is assumed that the spatial
variations of the oscillations can be neglected in a first
approximation because they are of the same order of magnitude
as the propagating wavelength (which is approximately 10m at a
frequency of 1Hz in the systemic circulation) while the vessel’s
length is much smaller than the wavelength. Thus, only the time
variations of the oscillations at the inner boundary of the vessel’s
wall will contribute to the wall’s deformation. If (r, θ, x) are the
cylindrical coordinates, then the modeling assumptions made so
far reduce the equation of motion which is relevant to the work
presented here to the following equation (Hodis and Zamir, 2008):

ρ
z2ξ

zt2
� zσrx

zr
+ σrx

r
, (1)

FIGURE 1 | A schematic of the geometric domain occupied by a vessel
of radius a and wall thickness h. The model assumes a hollow horizontal axial
symmetric circular cylinder whose wall has a fixed outer boundary and an
oscillatory inner boundary.
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for (r, t) ∈ (a, a + h)×[0,T]. In Eq. 1, ρ is the mass density,
ξ(r, t) is the axial displacement of a material point of the vessel’s
wall, and σrx(r, t) is the shear stress of a wall’s point. Lastly,
because the wall thickness h is usually much smaller than the
radius a, the curvature term σrx/r is smaller than the other terms
of Eq. 1, and thus, it can be neglected. Therefore, Eq. 1 reduces to
(Hodis and Zamir, 2008):

ρ
z2ξ

zt2
� zσrx

zr
. (2)

In this study, it is assumed that the mechanical behavior of the
vessel’s wall is described by the constitutive equation of a
variable-order fractional Maxwell linear viscoelastic material:

zα(t)t σrx � E(zα(t)t εrx − σrx

μα
), (3)

where, based on the model’s assumptions, the infinitesimal strain
εrx reduces to:

εrx � zξ

zr
. (4)

The constitutive Eq. 3 has three physical parameters: E, the
modulus of elasticity, μα, and α(t), 0< α(t)≤ 1. Without loss of
generality, it is assumed further that εrx(r, 0+)� 0 and
σrx(r, 0 + )� 0 (Bazhlekova and Bazhlekov, 2017). Lastly, the
variable-order fractional derivative used in Eq. 3 is as follows
(see for instance Ramirez and Coimbra, 2010; Moghaddam and
Machado, 2017):

zα(t)t φ(t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(1 − α(t))∫

t

0

φ(m)(s)ds
(t − s)α(t), if m − 1< α(t)<m,∀t > 0

φ(m)(t), ifα(t) � m,∀t > 0

1
Γ(−α(t)) ∫

t

0

φ(s)ds
(t − s)1+α(t), ifα(t)< 0,∀t > 0

,

(5)

wherem ∈ 1, 2, 3 . . . ,}{ φ(t) is an arbitrary, continuously
mth-order differentiable function whose mth-order derivative is
denoted by φ(m)(t) such that φ(k)(0+) � 0, k ∈ 0, 1, . . .m − 1}{ ,
α(t) is a continuously differentiable function, and Γ(z) �∫∞
0
yz−1 exp(−y)dy(Re(z)> 0) is the gamma function. For

α(t) constant, the fractional derivative given by Eq. 5 reduces
to the Caputo fractional derivative (see, for instance, Caputo and
Mainardi, 1971).

According to Ramirez and Coimbra (2010), Eq. 5 is desirable
in modeling of physical processes since a physical interpretation
of the variable fractional order α(t) ∈ (0, 1) can be provided in
this case: the order of a variable-order model describing the
dynamics of a viscoelastic oscillator in stationary motion is a
normalized phase shift. Since Eq. 5 preserves the well-known
formula of calculating the integer-order derivative of a monomial
(Samko and Ross, 1993), the following property holds for
nonconstant analytic functions satisfying the zero initial

conditions mentioned above (Theorem 1, pg. 82 in West et al.,
2003):

zα(t)t zβ(t)t φ(t) � zβ(t)t zα(t)t φ(t) � zα(t)+β(t)t φ(t), (6)

Equation 6 yields zα(t)t z−α(t)t φ(t) � φ(t).
From Eq. 5 and the zero initial conditions satisfied by εrx and

σrx , it follows that Eq. 3 becomes the fractional Maxwell model
for α(t) a constant in the interval (0, 1) and reduces to the
classic Maxwell model for α(t) � 1,∀t > 0. Note that in the
classic Maxwell model parameter μα becomes the viscosity
denoted by μ. When the fractional order is a constant
α ∈ (0, 1), properties of the (Caputo) fractional derivative
Eq. 5 and the Laplace transform can be combined to obtain
the following expressions for the creep compliance J and
relaxation modulus G (Mainardi, 2010; Bazhlekova and
Bazhlekov, 2017):

J(t) � 1
E
( g
Γ(1 + α)t

α + 1),G(t) � EEα(−gtα), (7)

where g � E/μα and the Mittag-Leffler function is, by
definition, Eα(z) � ∑∞

k�0 zk
Γ(αk+1) . Figure 2 shows plots of

dimensionless material functions EJ and G/E given by Eq. 7
versus the dimensionless time �t � t/T for various values of α.
Thus, the material functions for a variable order α(t) ∈ (0, 1)
will combine the behavior of multiple material functions
shown in Figure 2.

Replacing Eq. 4 in Eq. 3, applying operator z−α(t)t to Eq. 3, and
using Eq. 6 give:

σrx � E(zξ
zr

− 1
μα

z−α(t)t σrx). (8)

FIGURE 2 | Plots of dimensionless material functions (A)EJ and (B)G/E
given by Eq. 7 versus the dimensionless time �t for various constant values of
α ∈ (0, 1).
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Differentiating Eq. 8 with respect to the spatial variable r and
using Eq. 2 yield:

zσrx

zr
� E(z2ξ

zr2
− ρ

μα
z2−α(t)t ξ). (9)

Lastly, by replacing Eq. 9 in Eq. 2 the following equation is
obtained:

z2ξ

zt2
+ gz2−α(t)t ξ � E

ρ

z2ξ

zr2
, (10)

Eq. 10 is a variable-order fractional telegraph equation (or two-
term time-variable fractional diffusion-wave equation).

The initial and boundary conditions are as follows:

ξ(r, 0) � 0,
zξ

zt
(r, 0) � ξ0ω, (11)

ξ(a, t) � ξ0 sinωt, ξ(a + h, t) � 0. (12)

It is assumed that the variable fractional order α(t) ∈ (0, 1)
models the temporal effects of the neuronal NO on the
vessel’s wall. At this incipient stage, the shape of α(t) is
considered to look like the temporal profile of the
concentration of neuronal NO. Hall and Garthwaite (2006)
proposed two models of neuronal NO dynamics: 1) stepwise
activation of NO and 2) dynamic activation of NO. Both
models include the NO inactivation. The equation of the first
model is as follows:

d[NO]
dt

� ν1 − Vmax[NO]
Km + [NO],

whose approximate analytic solution for zero initial condition is
(Mehala and Rajendran, 2014) as follows:

[NO](t) � ν1
κ
(1 − exp(−κt)). (13)

The equation of the second model is as follows:

d[NO]
dt

� ν1(1 − exp(−k1t)) exp(−k2t) − Vmax[NO]
Km + [NO]

whose approximate analytic solution for zero initial condition is
(Mehala and Rajendran, 2014) as follows:

[NO](t) � ν1(−exp(−k2t)k2 − κ
+ −exp( − (k1 + k2)t)

k1 + k2 − κ

+ exp(−κt)( 1
k2 − κ

− 1
k1 + k2 − κ

)). (14)

Here, [NO] is the concentration of NO, ν1 is the constant rate
of NOS, Vmax is the maximum rate at saturating concentration of
NO, Km is the concentration of NO at which the reaction rate is
Vmax
2 , k1 and k2 are constant kinetic parameters, and κ � Vmax/Km.

The values in Table 1 were chosen such that the numerical
solutions to the above differential equations for [NO] and the
corresponding approximate analytic solutions agree (Mehala and
Rajendran, 2014). Figures 3A,B show plots of the NO
concentrations given by Eqs 13, 14, respectively, while Figures
3C,D show two proposed profiles for the variable order
α(t) ∈ (0, 1) which are obtained by simply multiplying the
NO concentrations shown in Figures 3A,B by a factor of 102.
The scaling factor was chosen as follows. As seen in Figures 3A,B,
the maximum concentrations of NO are in the low picomolar
rage, while physiological values are in the low nanomolar range
(Hall and Garthwaite, 2006). A mere multiplication of the NO
concentrations by 102 brings the maximum values within the
physiological range for the NO concentrations. Since these scaled
concentrations are still less than 1 nM , they can be used as
expressions for α(t). Another advantage of this scaling factor is
that significant differences are observed between the
displacements and the shear stresses at the blood-vessel
interface corresponding to the two profiles of α(t) shown in
Figures 3C,D (see later).

The aim of the study is to find a semi-analytic solution to the
initial-boundary value problem (10–12) for two variable orders
given by scaled Eqs 13, 14. The first step is to formulate a
corresponding non-dimensional problem. By introducing the
dimensionless quantities:

�r � r − a
h

, �t � t
T
, �ξ � ξ

ξ0
,

TABLE 1 | List of parameters with corresponding values and units. Due to a lack of experimental data, the value of T was fixed first, and then, the values of f and g were
chosen such that a semi-analytic solution could be found for the initial boundary value problem Eqs 15–17. The normalized value of the wall’s density was chosen for
mathematical simplicity.

Considerations Parameters Values
and units [reference]

Geometry and Viscoelasticity ρ 1 Kg/m3

ω 1Hz [Hodis and Zamir, 2008]
f 0.1 s−2

g 0.5 s−α

T 10 s
NO synthesis and inactivation (Hall and Garthwaite, 2006; Mehala and Rajendran, 2014) v1 1 nM/s

k1 2 s−1

k2 1.5 s−1

Vmax 2 × 103nM/s
Km 10 nM
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the initial-boundary value problem (10–12) transforms into the
following dimensionless form:

z2�ξ

z�t2
+ gTα(�t)z2−α(�t)�t

�ξ � f T2z
2�ξ

z�r2
, (�r, �t) ∈ (0, 1)2, (15)

�ξ(�r, 0) � 0,
z�ξ

z�t
(�r, 0) � ωT, (16)

�ξ(0, �t) � sin(ωT�t), �ξ(1, �t) � 0. (17)

In Eq. 15, f � E/(ρh2). The solution for problem (15–17) is
presented in the next section.

SEMI-ANALYTIC SOLUTION

A classic approach of solving initial-boundary value problems for
partial differential equations is used. Look for a solution to
problem (15–17) of the form:

�ξ(�r, �t) � V(�r, �t) +W(�r, �t), (18)

such that V(0, �t) � �ξ(0, �t) � sin(ωT�t),V(1, �t) � �ξ(1, �t) � 0 and
z2V
z�r2 � 0. It is straightforward to solve for V(�r, �t) and find that:

V(�r, �t) � (1 − �r) sin(ωT�t). (19)

Combining Eqs 18, 19 yields:

�ξ(�r, �t) � (1 − �r) sin(ωT�t) +W(�r, �t). (20)

By substituting Eq. 20 in problem (15–17), the following
initial-boundary value problem for W(�r, �t) is obtained:

z2W

z�t2
+ gTα(�t)z2−α(�t)�t W � f T2z

2W
z�r2

+ (1 − �r)[(ωT)2 sin(ωT�t)
− gTα(�t)z2−α(�t)�t (sin(ωT�t))],

(21)

W(�r, 0) � 0,
zW
z�t

(�r, 0) � ωT�r, (22)

W(0, �t) � 0,W(1, �t) � 0. (23)

The first step in solving problem (21–23) is to look for a
solution to the corresponding homogeneous equation:

z2W

z�t2
+ gTα(�t)z2−α(�t)�t W � f T2z

2W
z�r2

. (24)

The method of separation of variables suggests looking for a
solution of the form W(�r, �t) � F(�t)G(�r). Then, Eq. 24 and the
boundary conditions (Eq. 23) yield the following Sturm-Liouville
problem for G(�r):

f T2d
2G
d�r2

− λG � 0, G(0) � G(1) � 0 (25)

Thus, the eigenfunctions satisfying problem (25) are Gn(�r) �
sin(nπ�r), n ∈ 1, 2, 3 . . . ,}{ and the corresponding eigenvalues are
λn � −(nπT)2f , n ∈ 1, 2, 3 . . .}{ . The solution to problem (21,
22) is thus of the form:

W(�r, �t) � ∑∞
n�1

An(�t) sin(nπ�r). (26)

FIGURE 3 | Plots of NO concentrations versus the dimensionless time �t for (A) the dynamic synthesis of NO (Eq. 14) and (B) the stepwise synthesis of NO (Eq. 13).
The proposed shapes for the variable order α(t) corresponding to the two cases of NOS (A) and (B) are shown in plots (C) and (D), respectively.
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Substituting Eq. 26 in problem (21, 22) and using the half-
range Fourier sine series expansions of the functions 1 − �r and �r
yield the following initial value problem
for An(�t), n ∈ 1, 2, 3 . . .}{ :

d2An

d�t2
+ gTα(�t)z2−α(�t)�t An � −f (nπT)2An + 2

nπ
[(ωT)2 sin(ωT�t)

− gTα(�t)z2−α(�t)�t (sin(ωT�t))],
(27)

An(0) � 0,
dAn

d�t
(0) � 2ωT

(−1)n+1
nπ

. (28)

Let

Zn(�t) � An(�t) + 2
nπ

sin(ωT�t), n ∈ {1, 2, 3 . . .}. (29)

By replacing expression (29) in problem (27, 28), the following
problem for the unknown function Zn(�t), n ∈ 1, 2, 3 . . .}{ is
obtained:

d2Zn

d�t2
+ Bz

2−α(�t)
�t Zn + CnZn � Dn sin(ωT�t), (30)

Zn(0) � 0,
dZn

d�t
(0) � Fn, (31)

where B � gTα(�t),Cn � (nπT)2f ,Dn � 2nπT2f , and
Fn � 2ωT (−1)n+1+1

nπ . Once the solution to the initial value
problem (30, 31) is found, Eqs 20, 26, and 29 can be
combined to find the solution to the original problem (15–17):

�ξ(�r, �t) � (1 − �r) sin(ωT�t) +∑∞
n�1

[Zn(�t)
− 2
nπ

sin(ωT�t)] sin(nπ�r), (32)

Thus, the last step is finding a solution to problem (30, 31).
If the fractional order is a constant α ∈ (0, 1), then a closed-
form solution of problem (30, 31) can be obtained by using
either the Laplace transform method (Gorenflo et al., 2014) or
an operational method proposed by Luchko and Garenflo
(1999) (it is worth noticing here that the Laplace transform
method belongs to the class of operational methods). Not only
that this analytic solution is cumbersome and difficult to
implement in a computer program but also may not be
generalizable to the case of variable fractional order.
Therefore, looking for a numerical solution to problem
(Eqs 30, 31) is a better approach. Eq. 30 is a linear multi-
term fractional differential equation which for a constant
fractional order α ∈ (0, 1), can be solved numerically using
the elegant explicit, implicit, and predictor-corrector methods
involving product-integration rules proposed by Garrappa
(2018). For the variable-order fractional differential Eq. 30,
the finite difference schemes given by Moghaddam and
Machado (2017) can be used. Thus, in this study, the
second-order derivative of Eq. 20 will be approximated by a
center difference scheme, and the variable-order fractional
derivative will be approximated by the forward difference

scheme proposed in theorem 3.1 of Moghaddam and
Machado (2017). For the sake of completeness, the
numerical discretization of Eq. 30 is presented further.

Let 0 � t0 < t1 < . . . < tN � 1 be an equally spaced
discretization of the interval [0, 1] of constant step size
Δ�t � 1/N . Denoting by Zk

n � Zn(tk), k ∈ 0, 1, . . . ,N , n fixed}{ ,
and αk � α(tk), k ∈ 0, 1, . . . ,N}{ , the numerical
approximations of the derivatives in Eq. 30 can be written as:

d2Zn

d�t2
(�tk+1) ≈ Zk+2

n − 2Zk+1
n + Zk

n

Δ�t2
, (33)

z
2−α(�tk+1)
�t Zn(�tk+1) ≈ Δ�t−2+αk+1

Γ(1 + αk+1) ∑
k

j�0
ψ2,k,j(Zk−j+2

n − 2Zk−j+1
n + Zk−j

n ),
(34)

where ψ2,k,j � (j + 1)αk+1 − jα
k+1

(Moghaddam and Machado,
2017). The truncation error of scheme Eq. 33 is of order
O(Δ�t2), while for scheme Eq. 34, it is of order O(Δ�t). By
replacing approximations Eqs 33, 34 in problem (30, 31), the
following explicit scheme is obtained:

Z0
n � 0,Z1

n � FnΔ�t

Zk+2
n − 2Zk+1

n + Zk
n + B

Δ�tαk+1

Γ(1 + αk+1) ∑
k

j�0
ψ2,k,j(Zk−j+2

n − 2Zk−j+1
n

+ Zk−j
n ) + CnΔ�t2Zk+1

n

� DnΔ�t2 sin(ωT�tk+1), k ∈ {0, 1, . . . ,N − 2}.
(35)

The semi-analytic solution to problem (15–17) is then
obtained by replacing the discrete solution (35) for
n ∈ 1, 2, . . . .}{ in Eq. 32.

The shear stress distribution within the vessel’s wall is
obtained from the dimensionless form of Eq. 2 by integration
(Hodis and Zamir, 2008):

�σrx(�r, �t) � 1

f T2 ∫�r

0

z2�ξ(~r, �t)
z�t2

d~r + �σrx(0, �t), (36)

where the following non-dimensionalization was used for the
shear stress: �σrx(�r, �t) � σrx(r, t)/(Eξ0h ). By replacing Eq. 32 in Eq.
36, the following expression for the shear stress at the blood-
vessel interface is obtained:

τw ≡ �σrx(0, �t) � ∑∞
n�1

−1
nπf T2 [d

2Zn(�t)
d�t2

− 2ω2T2

nπ
sin(ωT�t)] (37)

RESULTS

Numerical scheme Eq. 35 was implemented in MATLAB, and
plots of the distributions of dimensionless displacements within
the vessel’s wall (Eq. 32) and the dimensionless shear stress at the
blood-vessel interface (Eq. 37) were generated for two
expressions of the variable fractional order: the stepwise NOS
and the dynamic NOS. The values of the parameters used in the
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numerical simulations are given in Table 1. Numerical
simulations used a step size Δ�t � 0.00025 and 20 terms of the
Fourier series in Eq. 32.

Figure 4 shows temporal profiles of the dimensionless axial
displacement �ξ(�r, �t) at various radial locations inside the
vascular wall and for constant fractional orders. These
plots were generated using MATLAB’s function

MT_FDE_PI12_PC developed by Garrappa which is an
implementation of the predictor-corrector scheme proposed
by Garrappa (2018). The same results are obtained with the
forward scheme Eq. 35 when α is constant. This agreement of
numerical solutions validates scheme Eq. 35. The plots of
Figure 4 show that while the amplitudes of the oscillations are
approaching zero as �r→ 1 for all values of α, the decaying in

FIGURE 4 | Plots of the dimensionless axial displacement �ξ versus the dimensionless time �t at various dimensionless radial locations �r within the vascular wall
(A) r―�0, (B) r―�0.09, (C) r―�0.24, (D) r―�0.49, (E) r―�0.74, and (F) r―�−0.94 and for various constant values of α ∈ (0, 1).

FIGURE 5 | Spatio-temporal variations of the dimensionless axial
displacement �ξ(�r, �t) for the variable fractional order α(t) corresponding to the
case of dynamic NOS.

FIGURE 6 | Spatio-temporal variations of the dimensionless axial
displacement �ξ(�r, �t) for the variable fractional order α(t) corresponding to the
case of stepwise NOS.
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amplitude decreases faster as α increases. The solutions for
constant fractional orders provide a first glimpse into the
shapes of the displacements for variable fractional orders
since these are expected to be a combination of the
behaviors of the solutions for constant α.

Figures 5, 6 show spatio-temporal variations of the
dimensionless axial displacement �ξ(�r, �t) for the variable
fractional order α(t) corresponding to the case of decaying
dynamic NOS (Figure 5) and to the case of stepwise NOS
(Figure 6). The amplitude of the oscillations appears to be
bigger in the dynamic NOS case than in the stepwise NOS
case. This is confirmed in Figure 7 which shows temporal
profiles of the dimensionless axial displacement at various
radial locations inside the vascular wall which was extracted
from the surfaces presented in Figures 5, 6. Since the results
in Figure 7 resemble those in Figure 4, it can be concluded that
the solutions for variable fractional orders are plausible.
According to Figures 3C,D, the maximum value of α(t) for
the case of dynamic NOS is 0.15 which is smaller than the almost
constant value of 0.5 that α(t) in the case of stepwise NOS. The
results in Figure 7 confirmed what was already known from
Figure 4, namely that the amplitude of oscillations corresponding
to the higher values of α(t) is smaller than the one corresponding
to lower values of α(t).

To better understand the differences noticed between the
oscillatory patterns corresponding to the two cases of stepwise
NOS and dynamic NOS, the dimensionless shear stress at the
blood-vessel interface was calculated using Eq. 37 and
MATLAB’s built-in function gradient. The results of this
comparison are shown in Figure 8. The amplitude of the
shear stress is bigger in the case of dynamic NOS which was
expected given that the amplitude of the axial displacement is also
bigger in this case. By varying the scaling factor of order α(t)
corresponding to the case of stepwise neuronal NOS, the

FIGURE 7 | Plots of the dimensionless axial displacement �ξ versus the dimensionless time �t at various dimensionless radial locations �r within the vascular wall
(A) r―�0.09, (B) r―�0.24, (C) r―�0.49, and (D) r―�0.74 for the variable fractional order α(t) corresponding to the case of dynamic NOS (solid line) and to the case of
stepwise NOS (dashed line).

FIGURE 8 | Plots of the dimensionless shear stress at the bloodvessel
interface τw versus the dimensionless time �t for the variable fractional order
α(t) corresponding to the case of dynamic NOS (solid line) and to the case of
stepwise NOS (dashed line).
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difference between the shear stresses at the inner boundary of the
vessel wall corresponding to the two cases 1) vanishes when the
fractional order of the stepwise neuronal NOS gets smaller and 2)
is almost unchanged when the fractional order of the stepwise
neuronal NOS approaches 1. The possible implications of this
finding will be discussed in the next section.

DISCUSSION

The main contribution of this study is modeling the wall of a
cerebral blood vessel using an NO-modulated variable-order
fractional Maxwell viscoelastic model. The variable fractional
order is assumed to be proportional to the neuronal NO
dynamics, and thus, the order memory introduced by this
choice guides the pattern of the fading memory of this
viscoelastic material. Two cases of NOS are considered: a
stepwise activation of NO and a dynamic activation of NO.
Following the approach of Hodis and Zamir (2008), a
variable-order fractional telegraph equation for the axial
displacement of the wall was obtained which was solved under
the assumptions that the outer boundary of the vascular wall was
tethered, and the inner boundary of the wall was exposed to the
pulsatile blood flow. Numerical simulations were created in
MATLAB using numerical scheme (Eq. 35) and Garrappa’s
function MT_FDE_PI12_PC (Garrappa, 2018) for constant
fractional orders. The function MT_FDE_PI12_PC was used
to validate scheme (Eq. 35) in the case of constant fractional
orders. The main finding of these simulations is that a
significantly decreased inactivation of the neuronal NO causes
a reduction in the shear stress at the blood-vessel interface which
could lead to a decrease in the production of shear-induced
endothelial NO and ultimately to neurovascular disease.

Testing the computer code for various values of the parameters
f , g , and T which are present in the coefficients of Eq. 15 showed
that both approaches, scheme (Eq. 35) and MT_FDE_PI12_PC,
were sensitive to these parameters for variable and constant
fractional orders. These numerical schemes are stable only for
narrow ranges of f , g , and T. These parameters couple
mechanical parameters E, μα, wall thickness h, and the
characteristic time T. Thus, if these narrow ranges of f , g , and
T are subsets of their corresponding physiological ranges, this
stability issue could be disregarded. However, for
E � 6 × 105N/m2, μα � 1.5 × 105Kg/(m × s2−α) derived from
Hodis and Zamir (2008) for arteries and (α � 1), a wall
thickness h � 10−3 m measured in human intracranial arteries
in vivo (Yuan et al., 2021), and a more accurate value of the wall
density ρ ≈ 1.1 × 103Kgm3 (IT’IS Foundation, 2021), the following
values are obtained: f � 5.45 × 108 s−2 and g � 4 s−α. These
values, together with the chosen T � 10 s, make Eq. 15 stiff
since the order of magnitude of the coefficient of the right-
hand side term is much bigger than the magnitudes of the
coefficients of the left-hand-side terms. For a smaller wall
thickness which is more appropriate for an intracerebral
arteriole which experiences NO-modulated vasodilation, the
order of magnitude of the coefficient of the right-hand-side
term of Eq. 15 becomes even bigger. The proposed numerical

schemes are unstable for a stiff Eq. 15, and a mere decrease of the
step size Δ�t does not resolve this issue. Finding algorithms for stiff
variable-order fractional differential equations is an open
problem in numerical analysis. Nevertheless, for a
characteristic time T of order of ms which may be more
suitable for NO dynamics in vivo (Hall and Garthwaite, 2006),
a possibly lower value of E corresponding to cerebral arterioles
(Medical Physiology, 2021), and a more realistic value of the wall
density, the numerical stiffness can be avoided, and thus, the
presented results will hold.

Emerging imaging techniques could help validate the
proposed model in animal models and thus make the model
relevant to clinical applications. For instance, a multimodal in
vivo magnetic resonance (MR)/electron paramagnetic resonance
(EPR) spectroscopy/fluorometry could be used to visualize NO
production and spatio-temporal distribution (Sharma et al.,
2014). Also, intravascular optical coherence tomography could
be used for the in vivo real-time estimation of the vascular
stiffness (Potlov et al., 2020). By combining these imaging
techniques and the high-resolution ultrasonic scanning of
Persson et al. (2003) and Cinthio et al. (2006) for the
visualization of wall’s longitudinal displacements, the cerebral
NO dynamics and vascular wall mechanics may be investigated
simultaneously. This approach can be used to estimate α(t), f , g ,
and T and validate the mathematical model proposed here. If a
significant decrease in the neuronal NO inactivation is observed,
then the model’s prediction could suggest the use of a preventive
therapy [such as NO inhalation proposed by Terpolilli et al.
(2016)] to reduce imminent brain damage.

Until the above-mentioned imaging techniques are adapted and
approved for clinical applications, animal models can be used to find
healthy physiological ranges for the model’s parameters and
investigate the potential of using these parameters as biomarkers.
For example, animal models of cerebral ischemia have shown that
the decreasing amount of endothelial NO will act as a protective
agent for a few minutes after the injury, while the amount of
neuronal NO will increase causing neuronal injury (Huang, 1999;
Wei et al., 1999). If the production of shear-induced endothelial NO
mediated by the blood flow ceases to happen following ischemia,
then the stepwise concentration of neuronal NO is a consequence of
the significantly decreased NO inactivation caused by ischemia
(Santos et al., 2011) and thus, according to the prediction made
by the proposed model, may contribute to the reduction of the
localized endothelial NO produced by the lower shear stress in the
vessel wall at its inner boundary. Thus, the model’s prediction may
explain the interplay between the endothelial and neuronal NO seen
in cerebral ischemia. Lastly, model’s parameters estimated using the
multimodal in vivo imaging techniques mentioned above could
suggest the presence of cerebral ischemia and thus be used as a
complementary diagnostic tool.

Improving the mathematical model may provide more
sensitive biomarkers and helps avoiding the numerical stiffness
issue mentioned earlier. According to Iadecola (2004), the NO-
modulated local vasodilation of the intracerebral arterioles and
capillaries propagates upstream in the vascular network which
causes an increase of blood flow in the upstream arteries that
leads to increased shear stress at the blood-vessel interface and
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thus an increase in the amount of shear-induced endothelial NO
and a further flow-mediated vasodilation. The proposed model
represents the blood flow as an inner boundary condition, and
thus, this mechanism of global production of shear-induced
endothelial NO is not accounted for. Thus, the decrease in the
local production of the shear-induced endothelial NO due to a
stepwise neuronal NOS predicted by the model proposed in this
study might not be significant enough to cause adverse effects if
the cerebral blood flow is intact. Coupling the deformation of the
vessel’s wall and the blood flow and incorporating in the model
the mechanism described above should provide a better
prediction of the amount of shear-induced endothelial NO
and the possible role that the neuronal NO dynamics may
play in this process. Introducing more detailed information
about the complex, multi-layered structure of the vascular wall
could also enhance the accuracy of model’s predictions. Lastly,
the full three-dimensional fluid-structure interaction problem
should be formulated and solved since the simplifying
assumptions made by Hodis and Zamir (2008) and
implemented here that reduced the model to a one-
dimensional problem might not be valid for cerebral arterioles
given the overly complex geometry of the cerebral vascular
network (Reina-De La Torre et al., 1998). The parameters of
this enhanced mathematical model could be found either from
in vitro/in situ measurements or from in vivo, real-time
observations using medical imaging techniques.

In conclusion, the study proposes a novel NO-modulated
variable-order fractional Maxwell viscoelastic model of the
cerebral arterioles and investigates the effects of the neuronal
NOS on the mechanical behavior of the vessel’s wall. Numerical
simulations show how neuronal NO dynamics influence the
deformation and shear stress within the vascular wall. A
generalization of this model to a three-dimensional geometry
and the incorporation of the blood flow into the model should
provide a better understanding of the coupling between NO
dynamics and mechanical damage and their combined role in
neurovascular diseases.
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