
Editorial: Developments in Acoustic,
Phononic, and Mechanical Materials
for Wave Control
Chengzhi Shi1,2*

1George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States, 2Parker H.
Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States

Keywords: metamaterials, acoustics, mechanical, phononic crystal, wave control

Editorial on the Research Topic

Developments in Acoustic, Phononic, and Mechanical Materials for Wave Control

Wave control at will is of particular interest to the scientific and engineering fields due to its
importance in imaging, sensing, and communication. In the past two decades, designing novel
structural and artificial composite materials with unprecedented functionalities for wave control has
been a hot topic among the research community since the realization of the first acoustic
metamaterials with negative effective elastic constant in 2000 (Liu et al., 2000). Acoustic
metamaterials are structural materials consisting of deep subwavelength unit cells that achieves
different effective dynamic properties based on resonances (Cummer et al., 2016). As an example, the
negative effective mass density of the first acoustic metamaterial was realized by operating near the
dipolar resonance of the unit cells (Mei et al., 2006). Meanwhile, acoustic metamaterials with negative
effective bulk modulus can be achieved by operating near the monopolar resonance of the unit cells
(Fang et al., 2006). When designing the structures of the unit cells to attain an overlap of the
frequency bands associated with negative density and bulk modulus, the effective refractive index
becomes negative (Lee et al., 2010). A metamaterial with negative refractive index can be used as a
superlens for super-resolution imaging (i.e., imaging beyond the diffraction limit with deep
subwavelength resolution) (Kaina et al., 2015). In addition to resonance-based metamaterials,
sonic and phononic crystals with periodic structures were developed to induce frequency
bandgaps through Bragg scattering for wave guiding and filtering (Martínez-Sala et al., 1995).

These novel concepts were later extended into mechanical structures and materials for the
manipulations of elastic waves, stress, and deformations (Bertoldi et al., 2017). Auxetic metamaterials
with negative Poisson’s ratio were designed with inverted hexagon patterned structures (Lakes, 1987).
Judicious designs of unit cell chirality in deformation have enabled the conversion between compression
and twisting (Frenzel et al., 2017). Lattice defects were used to regulate the stress distribution in
mechanical lattices (Paulose et al., 2015). The ancient techniques of origami and kirigami have also inspire
many new designs of mechanical materials for deformation control to achieve deployable structures,
flexiblemedical stents, and flexible electronic devices (Melancon et al., 2021). Spinning gyros were applied
to induce topological effects for robust one-way propagation of elastic wave along the edge of mechanical
crystals (Wang et al., 2015). Topological mechanisms were developed to control the propagation of
domain walls (Kane and Lubensky, 2014). Nonlinearity of lattice structure was implemented for the
realization of nonreciprocal mechanics (Coulais et al., 2017). More recently, these newly obtained
mechanical properties have been integrated with the design of acoustic metamaterials to realize a self-
adaptive soft acoustic invisibility cloak (Xue and Zhang, 2021). Zhang andWang discussed the control of
rolling elastic waves in anisotropicmaterials in the article “Boundary Reflections of RollingWaves in Cubic
Anisotropic Material” of this collection.
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While achieving unprecedented material properties is still an
exciting direction to pursue, the focus of the research
community has started shifting towards the practical
applications of the novel functionalities. Acoustic superlens
with negative refractive index has the potential to achieve
super-resolution imaging, but the fact that the subwavelength
images can only be formed near the lens limits its application in
biological systems. On the contrary, ultrasound contrast agents
including microbubbles and phase-transition nanodroplets
provide more practical solutions. Ultrasound localization
microscopy with micrometer scale resolution was developed
using microbubbles flowing in blood for the visualization of the
brain vasculature of a mouse (Errico et al., 2015). The use of
phase-transition nanodroplets has the potential to further
improve the imaging quality (Luke et al., 2016). However,
the presence of the skull prevents the realization of high-
quality ultrasound brain imaging for large mammals
including humankinds due to the strong acoustic impedance
mismatch and porosity of the cranial bone. A passive acoustic
metamaterial was designed to match the acoustic impedance
and reduce ultrasound reflection (Shen et al., 2014), but the
ignorance of the porosity induced acoustic attenuation makes
the metamaterial impractical in improving the transcranial
ultrasound transmission. An active non-Hermitian
complementary acoustic metamaterial was proposed to
counteract the impedance mismatch and porosity induced
loss simultaneously (Craig et al., 2019). In this collection,
Craig et al. presented the effect of skull imperfections on the
performance of transcranial ultrasound improvement by the use
of the non-Hermitian complementary acoustic metamaterial in
the article “Non-Hermitian Complementary Acoustic
Metamaterials for Imaging Through Skull with Imperfections,”
showing a significant increase in transcranial ultrasound
transmission when properly designed metamaterial is used
even for skulls with imperfect geometry and uniformity.

Another major challenge of practical applications of
metamaterials is from the nature of their resonance-based
designs, limiting the operating frequency band for the control
of waves, particularly for low frequency audible range. In the
article “Low-Frequency Broadband Acoustic Metasurface

Absorbing Panel” of this collection, Ji et al. coupled multiple
types of resonators to extend the operation bandwidth for low-
frequency acoustic absorption. Wang et al. designed a composite
perforated partitioned sandwich panel for absorption of low-
frequency sound waves underwater in the article “A Composite
Perforated Partitioned Sandwich Panel with Corrugation for
Underwater Low-Frequency Sound Absorption” of this
collection. Besides acoustic absorption, the control of sound
reflection requires prudent designs. In this collection, Qin
et al. presented a metasurface consisting of differential phase
shifters to achieve broadband control of sound reflection in the
article “Acoustic Wave Reflection Control Based on Broadband
Differential Phase Shifters.”

In addition to the designs of metamaterials, phononic crystals
are also commonly used for the control of wave propagation.
Reyes et al. applied defects in phononic crystals to realize high
quality factor cavity in the article “Optimization of the Spatial
Configuration of Local Defects in Phononic Crystals for High Q
Cavity” of this collection. Lucklum et al. discussed the use of
phononic crystals as a new class of resonant sensors in the article
“Phononic Crystal Sensors: A New Class of Resonant Sensors –
Chances and Challenges for the Determination of Liquid
Properties” of this collection.

The development of new materials for the control of acoustic
and elastic waves will continue to be an active hot topic among the
scientific and engineering research communities. We hope the
readers will find this collection to be inspiring for their future
research in structural materials and wave propagations.
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