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Among themany computational models for quantum computing, theQuantum

Circuit Model is the most well-known and used model for interacting with

current quantum hardware. The practical implementation of quantum

computers is a very active research field. Despite this progress, access to

physical quantum computers remains relatively limited. Furthermore, the

existing machines are susceptible to random errors due to quantum

decoherence, as well as being limited in number of qubits, connectivity and

built-in error correction. Simulation on classical hardware is therefore essential

to allow quantum algorithm researchers to test and validate new algorithms in a

simulated-error environment. Computing systems are becoming increasingly

heterogeneous, using a variety of hardware accelerators to speed up

computational tasks. One such type of accelerators, Field Programmable

Gate Arrays (FPGAs), are reconfigurable circuits that can be programmed

using standardized high-level programming models such as OpenCL and

SYCL. FPGAs allow to create specialized highly-parallel circuits capable of

mimicking the quantum parallelism properties of quantum gates, in

particular for the class of quantum algorithms where many different

computations can be performed concurrently or as part of a deep pipeline.

They also benefit from very high internal memory bandwidth. This paper

focuses on the analysis of quantum algorithms for applications in

computational fluid dynamics. In this work we introduce novel quantum-

circuit implementations of model lattice-based formulations for fluid

dynamics, specifically the D1Q3 model using quantum computational basis

encoding, as well as, efficient simulation of the circuits using FPGAs. This work

forms a step toward quantum circuit formulation of the Lattice Boltzmann

Method (LBM). For the quantum circuits implementing the nonlinear

equilibrium distribution function in the D1Q3 lattice model, it is shown how

circuit transformations can be introduced that facilitate the efficient simulation

of the circuits on FPGAs, exploiting their fine-grained parallelism. We show that

these transformations allow us to exploit more parallelism on the FPGA and

improve memory locality. Preliminary results show that for this class of circuits

the introduced transformations improve circuit execution time. We show that

FPGA simulation of the reduced circuits results in more than 3× improvement in

performance perWatt compared to the CPU simulation. We also present results

from evaluating the same kernels on a GPU.
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1 Introduction

Quantum computing (QC) is a rapidly developing area of

research investigating devices and algorithms that take advantage

of quantum mechanical phenomena to perform computations

which may typically be intractable on classical computers. In

recent years, significant progress has been made with building

quantum computers. For a small number of applications,

quantum algorithms have been developed that display a

significant speed-up relative to classical methods.

Computational quantum chemistry and quantum machine

learning are among the areas of application receiving much

recent research activity. Important developments for a wider

range of applications include quantum algorithms for linear

systems (Harrow et al., 2009) and the Poisson equation (Cao

et al., 2013). Applications to computational science and

engineering problems beyond quantum chemistry have only

recently begun to appear (Montanaro and Pallister, 2016;

Scherer et al., 2017; Xu et al., 2018; Steijl and Barakos, 2018;

Todorova and Steijl, 2020; Steijl, 2020). Despite this research

effort, quantum computing applications in computational

engineering have so far been limited.

In the present work, the development and evaluation of

quantum algorithms for Computational Fluid Dynamics

(CFD) applications forms the main motivation. The emphasis

is on quantum algorithms for lattice-based models in fluid

mechanics and their analysis and verification using quantum

computing simulation techniques.

Currently, the development of quantum-computer

implementation of the Lattice Boltzmann method (LBM)

forms an active area of research (Budinski, 2021; Itani and

Succi, 2022), where the non-linearity of the governing

equations in fluid mechanics forms the main challenge. In

LBM models, this inherent non-linearity appears in the

collision term of the equations, in particular in the definition

of the local equilibrium distribution function in this collision

term. In such models, the convective terms of the Navier-Stokes

equations appear as linear streaming operations of the velocity

distribution functions governed by the LBM.

For linear ordinary differential equations (ODEs) as well as

linear partial differential equations (PDEs), significant progress

has been made in recent years in the development of quantum

algorithms with meaningful complexity improvements over

classical algorithms (Berry, 2014; Berry et al., 2017; Costa

et al., 2019; Fillion-Gourdeau and Lorin, 2019; Childs and Liu,

2020). Examples of recent published works include García-Ripoll

(2021), García-Molina et al. (2021), and Knudsen and Mendl

(2020). However, in contrast to this progress for linear equations,

there has not been similar progress in the development of

quantum algorithms for CFD applications. This can be

attributed to a number of factors. The non-linear nature of

the governing equations of fluid dynamics is a key part of the

challenge. As an example of a further key challenge, the

initialization and measurement of the quantum state

representing a complex flow field can be considered. If not

performed efficiently, these steps have the potential to undo

potential quantum speed-up obtained in the computational steps

in the quantum algorithm.

An example of early work in the area of nonlinear ODEs and

nonlinear PDEs is the innovative and highly ambitious algorithm

introduced by Leyton and Osborne (2008). However, the

computational complexity of this work involves exponential

dependency on the time interval used in the time integration.

A small number of more recent works have addressed nonlinear

differential equations, e.g., Lloyd et al. (2020), Liu et al. (2021),

and Xue et al. (2021). An example of an application to a nonlinear

fluid dynamics problem is the work of Gaitan (2020), where for a

very specific one-dimensional problem the complexity analysis

showed potential for quantum speed-up.

Early work in quantum computing relevant to the field of

Computational Fluid Dynamics (CFD) mainly involved the work

on quantum lattice-gas models by Yepez and co-workers (Yepez,

2001; Berman et al., 2002). This work typically used type-II

quantum computers, consisting of a large lattice of small

quantum computers interconnected in nearest neighbour

fashion by classical communication channels. In contrast to

these quantum lattice-gas based approaches, the present study

focuses on quantum algorithms designed for near-future

‘universal’ quantum computers. Previous work by Steijl and

co-workers introduced hybrid classical-quantum algorithms

for fluid simulations based on quantum-Poisson solvers (Steijl

and Barakos, 2018) as well as a quantum algorithms for kinetic

modelling of gases based on quantumwalks (Todorova and Steijl,

2020; Steijl, 2020). Recently, the quantum-circuit

implementation of non-linear terms was considered by Steijl

(2022). The present work for lattice-based fluid models

represents a major further step in this direction.

1.1 The important role of quantum
computing simulators

Along with developing quantum algorithms for

Computational Fluid Dynamics applications, an important

part of the current work involves novel approaches for

simulating quantum algorithms on classical hardware.

Specifically, a detailed investigation into the potential of using

FPGA-based hardware acceleration.
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Simulation on classical hardware is essential to allow

quantum algorithm researchers to test and validate new

algorithms on a simulated “ideal” quantum computer

(i.e., neglecting noise and decoherence errors for example) as

well as in a simulated-error environment, allowing them to gain

further insight into what is possible using this model. However,

quantum computing simulation on classical hardware is

extremely challenging in terms of computational time and

memory requirement, particularly when the most general

approach, i.e., storing the full quantum state vector

amplitudes as used in the Schrödinger model, is employed. In

general, computational time and memory requirements scale

exponentially with the number of qubits, quickly reaching the

limits of classical hardware.

Computing systems are becoming increasingly

heterogeneous, using a variety of hardware accelerators to

speed up computational tasks. One such type of accelerators,

FPGAs (Field Programmable Gate Arrays), are reconfigurable

devices that can be programmed after manufacturing to

implement a user-specified digital circuit. They offer in

particular very fine grained task parallelism and very high

internal memory bandwidth, as well as excellent performance-

per-Watt.

For the quantum algorithms for Computational Fluid

Dynamics applications considered here, an important research

question is if and how FGPAs can be effectively used in the

evaluation of the quantum circuit implementations of the

algorithms. To facilitate the simulation on FPGAs, this work

details how quantum circuit transformations can be introduced

to create multiple, smaller computational kernels by

“specializing” the quantum state of one or more the most

significant qubits in the quantum state vector. The underlying

idea is to create a representation that will exploit the potential for

fine-grained parallelism.

1.2 Main contributions of this work

The main focus of the current work is the efficient simulation

of large and complex quantum circuits representing lattice-based

models of fluid mechanics. This way, the work also contributes to

the ongoing quest to develop efficient quantum algorithms for

LBM. The focus here is on a reduced lattice-based model for fluid

mechanics, specifically the D1Q3 model in a modified form to

facilitate quantum-computer implementation. A key feature in

the present research work is the evaluation of the non-linear

equilibrium distribution function using quantum computational

basis encoding. For the quantum-circuit implementation of the

D1Q3 model, a series of quantum-circuit transformation

techniques are proposed to facilitate the efficient evaluation of

the quantum algorithm while benefiting from the fine-grained

parallelism offered by FPGAs. The main contributions can be

summarized as follows:

• Demonstration of how quantum algorithms including

non-linear terms can be derived by employing quantum

computational basis encoding. Although the use of this

type of encoding in general precludes exponential speed-

ups relative to classical algorithms, it is expected that this

approach has significant potential as part of larger

quantum algorithms and when achieving polynomial

speed-up is sufficient;

• Introduction of a quantum algorithm defining the non-

linear equilibrium distribution function for the

D1Q3 lattice model in the quantum computational basis;

• Introduction of a quantum-floating point format with

reduced precision with key features of IEEE-754

standard, i.e., use of hidden-qubit approach for

mantissa, the use of sub-normal numbers and consistent

rounding (here, rounding-down to nearest);

• Detailed demonstration of how the derived circuits for the

D1Q3 equilibrium distribution function in quantum

computational basis can be transformed to facilitate

efficient simulation on FPGAs. The reduced memory

requirements resulting from these transformations will

also benefit CPU/GPU based simulation;

• Introduction of a Haskell-based toolchain and eDSL for

specifying and compiling quantum circuits for an FPGA-

based architecture;

• Comparison of a baseline FPGA-based approach with

equivalent CPU/GPU-based approaches for quantum

circuit simulation;

• Demonstration of the performance per Watt improvement

of the baseline FPGA architecture over the CPU-based

approach;

The structure and content of this work can be summarized as

follows. Section 2 briefly reviews essentials aspects of quantum

computing of particular relevance to the present work. Section 3

presents a detailed literature review focusing on quantum

computer simulation techniques as well as previous work in

developing quantum algorithms employing computational-basis

encoding. Section 4 details the work flow used in the present

work to go from quantum circuits to FPGA implementation.

Section 5 briefly reviews the Lattice Boltzmann Method,

introducing the concepts of “streaming” and “collision”

operations. Since the most widely used LBM models,

D2Q9 and D3Q27, were deemed too complex for the current

proof-of-concept work, the reduced D1Q3 model is described in

Section 6, followed by its modified formulation in Section 7.

Section 7 also introduces the quantum floating-point approach

used in the present work, introduced and detailed in previous

work (Steijl, 2022). For the non-linear collision term of the

D1Q3 model, Section 8 then details the design of the

quantum-circuit implementation. The quantum-circuit

transformation steps used to facilitate efficient simulation on

FPGAs is detailed in Section 9. The computational complexity in
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terms of required number of qubits for ‘full’ and ‘reduced’ circuits

is detailed in Section 10. Section 11 details two examples of

reduced quantum circuits where the introduced transformation

steps reduced the quantum circuit from 37 to 25 qubits. In

Section 12, results from simulating the discussed example

quantum circuits are presented and analyzed, and suggestions

for improvements to the FPGA architecture are given. Finally,

Section 13 presents concluding remarks and outlines steps for

future research.

2 Quantum computing principles

Before detailing the quantum algorithms introduced in this

work along with the quantum circuit transformation, a few

essentials aspects of quantum computing of particular

relevance to the present work are briefly reviewed. For a more

thorough background we refer to well-established textbooks, e.g.,

Nielsen and Chuang (2010).

2.1 Amplitude-based and computational-
basis encoding

Typically, there are two methods of encoding the result of a

quantum algorithm: encoding within the amplitudes of the

quantum state and encoding within the computational basis

of the quantum state. Most existing quantum algorithms

employ the first method and encode the input information (as

well as the output information) in the amplitudes of the quantum

states. A key feature of this encoding method is that it enables the

simultaneous manipulation of 2n amplitudes by performing a

single unitary operator on a nq-qubit coherent quantum register.

It is the most commonly used encoding method to take

advantage of quantum parallelism in quantum computing. As

an example, the widely-used Quantum Fourier Transform (QFT)

uses amplitude-based encoding, where the N = 2nq input defines

as complex amplitude xjwith j ∈ [0,N − 1] gets transformed to an

output state defined by N complex amplitudes yj (j ∈ [0, N − 1]):

∑N−1

j�0
xj j
∣∣∣∣ 〉 → ∑N−1

k�0
yk k| 〉 (1)

Encoding within the computational basis of the quantum

state is not as widely used. For some tasks performed by quantum

algorithms, this computational basis encoding is more efficient

than the amplitude encoding. Also, for some computational

tasks, such as the addition of two vectors, amplitude encoding

creates problems in case the two vectors cancel each other and

create a 0 vector that cannot be defined in terms of quantum

amplitude encoding. As, a result, quantum computing in the

computational basis (QCCB) is widely-used in quantum

algorithms performing arithmetic operations. Also, in some

quantum algorithms involving the Fourier transformation, the

Fourier coefficients may be needed in the computational basis

(Zhou et al., 2017). The quantum algorithm for computing the

Fourier transform in the computational basis (termed QFTC) by

Zhou et al. (2017) enables the Fourier-transformed coefficient to

be encoded in the computational basis as follows,

k| 〉 0| 〉 → k| 〉 yk

∣∣∣∣ 〉 (2)

where |yk〉 corresponds to the fixed-point binary representation

of yk ∈ (−1, 1) using two’s complement format. In the algorithm

proposed by Zhou et al. (2017), the input vector �x is provided by

an oracle Ox such that,

Ox 0| 〉 � ∑N−1

j�0
xj j
∣∣∣∣ 〉 (3)

which can be efficiently implemented if �x is efficiently

computable or by using updatable quantum memory (qRAM)

that takes complexity log(N) under certain conditions (Zhou

et al., 2017). Comparing Eqs 1, 2, it is clear that encoding in the

computational basis requires a number of additional qubits

depending on the required fixed-point representation.

In terms of matrix computations, Ma et al. (2020) introduced

a quantum algorithm for the computation of the QR matrix

decomposition using computational basis encoding. The

simulation time of the algorithm shows a polynomial speed-

up relative to classical algorithms. In the QCCB-based QR

algorithm, real numbers are encoded using a fixed-point

representation. This means that any real number with its

amplitude bounded by positive integer M can be approximate

to precision O(M/2m) using m bits. A key factor in achieving the

polynomial time complexity gain relative to classical algorithms,

is that this representation accuracy is independent of the matrix

size considered. In addition to the quantum QR decomposition

algorithm, Ma et al. (2020) also proposed a general approach to

simulate any quantum algorithm based on amplitude encoding

by using the QCCB. The authors show that for this QCCB

simulation, the simulation time does not exceed

O(N2polylog(N)) times the cost of the original quantum

algorithm based on amplitude encoding. It should be noted

that to achieve this performance, the QCCB-based algorithms

introduced by Ma et al. require an updatable quantum memory

(qRAM) where the cost of updating nup entries isO(nup log(nup)).

Such an updatable quantum memory model was previously used

and investigated by Kerenidis and Prakash (2020).

Based on the published works using the quantum

computational basis encoding, it is clear that this approach

has not been as widely explored as amplitude encoding. The

main reason is that the quantum parallelism and exponential

saving in storage offered by quantum amplitude-encoding is lost.

However, it is clear that important and meaningful quantum

algorithms using computational-basis encoded can still be

obtained when used as part of a larger quantum algorithm or
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in cases where a suitable-designed updatable quantummemory is

available.

2.2 Quantum computing simulation
approaches

The most general approach to simulating the quantum state

vector in a quantum computer employs the Schrödinger wave

function approach where the coherent quantum state of an nq-

qubit register is defined by N = 2nq complex amplitudes. In the

following, this approach is termed “full state-vector approach.”

Alternatively, the exponential scaling can be addressed by

avoiding the Schrödinger wavefunction representation as used

in the full-state vector approach. Aaronson and Gottesman

(2004), Garcia and Markov (2015) and more recently, Lee

et al. (2018), used the Heisenberg representation of the

quantum circuit via Stabilized Frames. This approach is

limited to specific quantum circuits, i.e., termed stabilizer

circuits, and for these cases has a polynomial scaling of

memory and computational cost with increasing qubits.

However, this approach cannot be used for general quantum

circuits. Therefore, in the present work, the focus is on simulation

techniques based on Schrödinger wavefunction representation.

This approach can be used for quantum algorithms using the

quantum-amplitude encoding as well as for algorithms using

computational-basis encoding.

3 Literature review

3.1 Software-based simulation
approaches

Early works related to the development of massively parallel

quantum computer simulators include De Raedt et al. (2007) and

Tabakin and Julia-Diaz (2009). Both works involve highly

optimized simulators based on the full state vector approach,

implemented in Fortran using the MPI library to exploit

parallelism on distributed-memory architectures. For a range

of textbook examples, very good parallel scaling was observed for

tests with upto 4,096 processors documented in De Raedt et al.

(2007). The work on QCMPI reported by Tabakin and Julia-Diaz

(2009), was mainly motivated to facilitate numerical examination

of not only how QC algorithms work, but also to include noise,

decoherence, and attenuation effects and to evaluate the efficacy

of error correction schemes. Both works focus on evaluating

quantum circuits, while earlier work by De Raedt et al. (2000)

involved a Quantum Computer Emulator designed to simulate

the physical realization of the quantum computer and a graphical

user interface to program and control the simulator. The

potential to speed-up large-scale parallel simulations such as

those described by De Raedt et al. (2007)and Tabakin and Julia-

Diaz (2009) using Graphics Processing Units (GPUs) has been

thoroughly investigated in the past decade. Early work includes

Gutiérrez et al. (2010) and Lu et al. (2013). In the work of

Gutierrez and co-workers, the simulation of an ideal quantum

computer using NVIDIA’s CUDA GPU programming model is

discussed in the context of how such a problem can benefit from

the high computational capacities of GPUs. The simulator

discussed in their work takes into account memory reference

locality issues. The work showed that the challenge of achieving a

high performance depends strongly on the explicit exploitation of

memory hierarchy.

Highly-optimized approaches of the full state vector

approach aimed at avoiding the exponential scaling of

memory and computational cost with increasing number of

qubits have been investigated for more than 2 decades. One

possibility (e.g., Viamontes et al., 2003; Rosenbaum, 2010)

involves employing the Schrödinger wavefunction

representation (as used in the full-state vector approach)

along with compact representation of amplitudes using tree-

based or decision-diagram based data structures. For a range of

practically relevant quantum algorithms, significant memory and

time savings were documented relative to the full-state vector

approach. However, worst-case situations often occur where

memory and time complexity are still exponential with

number of qubits.

3.2 Quantum computer simulations and
emulations using FPGAs

The earliest work in simulating quantum circuits on FPGAs

dates back to Khalid et al. (2004). A compiler which produces

VHDL, a hardware description language, code that emulates the

quantum circuit on the FPGA was developed. It emulates

quantum parallelism by constructing parallel data paths for

the state vector amplitudes representing the qubits, i.e.

implementing the whole quantum circuit in the FPGA fabric.

State vector amplitudes are implemented by fixed point numbers

to keep the size of the circuits manageable. Fixed point was also

chosen since the probability amplitudes can only have a decimal

part of 0 or 1. This approach emulates a full quantum circuit on

the FPGA, requiring a full synthesis when changing the circuit.

The approach used in Aminian et al. (2008) divides quantum

circuit simulation into two circuit types based on gates used in

the circuit. For circuits involving only X, Y, Z, and CNOT, they

reduce the Logic Cell (LC) usage required for each type of gate to

a handful (X: 2, Y: 6, Z: 2, CNOT: 4). They do this by adding extra

information bits (basis, complexity, sign) and simply operating

on them when applying any of these gates (however there is more

basis bits in the case of CNOT). The second group is H, PS (phase

shift), and CR (controlled rotation), which are implemented

directly as adders and multipliers, requiring resources which

increase with the number of mantissa bits. For circuits involving
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both groups of gates, they apply a different simulation policy than

when just XYZC gates are used.

Conceicao and Reis (2015) address the issue of re-synthesis

present in prior works. They present a reusable architecture for

which synthesis is only rerun when the number of qubits or

mantissa bits of the fixed point representation is required to be

changed. In their design, a control unit holds an address of a an

instruction in some instruction memory (list of gates) and a

quantum Arithmetic Logic Unit (ALU) is fed a gate operational

code (opcode), target qubit, and two control qubits at each gate

and then communicates with a quantum register to perform the

gate. They report their LC usage for a number of algorithms and

benchmarks. In terms of LC usage, they are outperformed by

Aminian et al. (2008), which they point out, but also observe that

the ratio between their average usage of logic cells decreases in

comparison when increasing the number of qubits from 3 to 8,

leading them to believe their system would be better when

scaled up.

Lee et al. (2016) developed a serial-parallel architecture-based

FPGA emulation framework for quantum computing and, for

small numbers of qubits, demonstrated significant speed-ups

relative to CPU-based emulations.

Pilch and Dlugopolski (2019) proposed, designed and

implemented an easily scalable universal quantum computer

emulator, focused on reflecting natural quantum processes in

hardware, while maintaining the time complexity of quantum

algorithms. The underlying idea is to move the weight of

complexity from time to hardware resources by using the

inherent parallelism of FPGAs. As proof-of-concept, the

authors created a hardware-software system capable of

running and correctly interpreting results of the Deutsch

quantum algorithm. So far, only small circuits where

considered, e.g., the Deutsch algorithm was emulated for a 2-

qubit quantum computer.

The works discussed so far (Khalid et al., 2004; Aminian

et al., 2008; Lee et al., 2016; Pilch and Dlugopolski, 2019)

demonstrate the promise for emulating quantum circuits on

FPGAs, albeit for low number of emulated qubits. Mahmud

and El-Araby (2019) focus on scalability, presenting two

architectures for emulation. The first is a CMAC (complex

multiply-and-accumulate) unit-based system, which for a

given quantum circuit, relies on having the full algorithm

matrix precomputed. An optimization to this is to have a

kernel which dynamically generates the values of the

algorithm matrix, massively reducing the memory

requirement. Using this architecture, Mahmud and El-Araby

(2019) emulated a 20-qubit QFT, an increase in qubits compared

to previous works in FPGA emulation of quantum circuits. This

required the creation of a custom hardware architecture for

generating the values of the QFT matrix. The second

recognizes that there may be algorithms which have sparse

algorithm matrices which may not be suited for the CMAC-

based architecture. Instead, this architecture requires a custom

acceleration kernel to be developed from the quantum algorithm,

which is then applied to the input state vector. Using this

architecture, they emulated a 30-qubit Quantum Haar

Transform. This required the extraction of a simplified kernel

from the mathematical description of the QHT rather than from

its quantum circuit description. This is a considerably higher

number of qubits than those achieved in previous works.

However, no method of automating the generation of the

kernels from a quantum circuit model description is

discussed. The authors extend this method to Grover’s

database search algorithm in Mahmud et al. (2020).

Khalid et al. (2021) describe a proposal for a resource-

efficient FPGA-based abstraction of quantum circuits. A non-

programmable embedded system capable of storing, measuring,

and introducing a phase shift in qubits is implemented. The

proposed single-input single-output architecture implements

single-input gates with corresponding memory and

measurement blocks. A fixed-point quantum gate

representation is used, using 8 bits (2-bit integer, and 6-bit

fraction). By increasing the number of bits used for qubit

representation, the quantized superposition states of the of

qubit increase, leading to enhanced accuracy of the emulation

results. The main objective of the proposed abstraction was to

provide an FPGA-based platform as the fundamental sub-block

for the design of quantum circuits. The quantum key distribution

algorithm BB84 was implemented using the proposed platform

as a proof-of-concept. The proposed design exhibits two

principal properties of quantum computing, i.e., parallelism

and probabilistic measurement.

The concept of using exponentially-increasing resources

(with problem size) on an FPGA to maintain the exponential

time-complexity gain of quantum algorithms relative to their

classical counterparts was also investigated by Bonny and Haq

(2020) who implemented the quantum k-means clustering

algorithm on an FPGA emulator. Clustering is a technique

involving the classification of unlabeled data into a number of

categories, and is widely used in machine learning and data

mining. The main computational work in the k-means clustering

algorithm is the computation of the distance between points.

Bonny and Haq model the points as n-dimensional vectors on

the Bloch sphere and then use the inner product as an estimation

of the distance between two vectors. In the example

implementation 2D data was used. The work presented forms

an example of a quantum-inspired algorithm allowing

(exponential) speed-up relative to classical algorithms even

when running on classical hardware, by trading time-

complexity and resource use on the FPGA. Clearly, the rapid

(exponential) increase of logic-gate resources with problems size

limits this approach to relatively small problems. For quantum

circuit emulation, this means that only a few qubits can be used

when trying to main exponential time-complexity gain. This

work follows on from previous works into such quantum-

inspired algorithms including work on modified Grover’s
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search algorithm (Aïmeur et al., 2007) as well as quantum-

inspired evolutionary algorithms for optimization problems

(Han and Kim, 2002). More recently, Fujitsu’s quantum-

annealing inspired optimizer as described by Aramon et al.

(2019) uses extensive hardware acceleration techniques to

achieve time-complexity improvements.

This summary of works involving hardware acceleration of

quantum computing simulation shows that there is a growing

interest in simulating quantum circuits on FPGAs and their

results show that there can be a considerable computational

advantage to using an FPGA to simulate a quantum computer.

However, most of the research so far only considered circuits

with few (< 10) qubits and also did not consider circuit

transformation techniques for reducing the number of qubits.

The work which demonstrated the most promise for scaling to a

high number of qubits recently is Mahmud and El-Araby (2019)

and Mahmud et al. (2020) specialized kernel-based approach,

using which they ran a 30-qubit QHT, and a 32-qubit Grover’s

search circuits on an FPGA. While this approach reaches the

highest number of qubits simulated on an FPGA in the literature,

of which we are aware, it is not very easily reusable. Using their

more circuit-independent CMAC-based approach, they were

able to simulate a 20-qubit QFT circuit. Our work is in line

with their more generic approach because, as we discuss in the

next section, reusability is one of our primary goals.

4 FPGA simulation flow

Given a quantum circuit description, we have developed a

workflow to convert it to a configuration for the FPGA which

simulates the quantum circuit. Our goals for developing an

FPGA simulator for quantum circuits are: universality (ability

to simulate any theoretical gate), reuseability (a recompilation

process should not be necessary between different circuit runs),

and scalability (we should be able to simulate any feasible number

of qubits without recompiling). We achieve universality by

making sure the system has built-in at least a universal set of

quantum gates. Our current architecture stores the state vector in

FPGA board memory and compute kernels corresponding to

each quantum gate access the memory to perform the necessary

computations. Since in general each gate application needs to

access the entire memory space, we perform gate applications

sequentially and attempt to optimize the performance of the

application of a general gate.

The compute kernels on the FPGA expect the following data

about each gate: an opcode representing the gate being applied, a

target qubit index, and some number of control qubit indices. For

a given architecture, we specify a maximum number of allowed

controls at compile time, knowing that with circuit

transformations, a gate with a large number of controls can

be reduced to a set of gates with lower maximum number of

controls per gate. (Alternatively, a new circuit representation

could be compiled accounting for a larger maximum number of

controls.) Thus, for an architecture with up to 2 controls per gate,

the kernels expect four unsigned integers representing each gate.

Some variations on this design which were implemented directly

pass a 2 × 2 matrix to the kernels instead of a gate opcode. This

has the benefit of reducing out an extra control step on the board

(switching on the opcode) freeing up some compute resources.

While this increases communication time between the board and

the host, this overhead would be polynomial in the number of

gates, which, when compared to the exponentially growing

computations needed to execute one gate, becomes negligible.

The FPGA operates on the state vector amplitudes in

memory and for optimal use of the FPGA board resources,

qubits are referred to only by their index in a qubit register.

Based on this index, a gate application is broken down into 2n−1

2 × 2 matrix multiplications. The main task is to maximize the

number of multiplications that can be executed in parallel. Using

the qubit index and the multiplication iteration index, we can

find the indices of the required pair of amplitudes for each

iteration step. In general, these iteration steps will be

distributed across some number of kernels on the board.

4.1 Compiling a quantum circuit

We developed a toolchain in the functional programming

language Haskell to allow for efficient specification and testing of

quantum circuits. The toolchain includes an embedded Domain-

Specific Language (eDSL) that allows for specification and static

analysis of quantum circuits. This embedded language allows

users to label qubits and use high-level circuit constructs, like

looping, tiling, etc. The functionality offered by this toolchain is

similar to other functional language-based quantum computing

tools like Quipper (Green et al., 2013). It was implemented from

scratch, however, to have maximum control over the circuit

reductions and any optimizations necessary for an FPGA-based

architecture.

Since anything the Haskell tool would do on any form of

quantum circuit input would be static compile-time checks/

processing (nothing close to exponential or related to the

number of qubits involved), then the host code controlling the

FPGA environment should be capable of doing the same in

negligible time compared to the execution time of the quantum

circuit on the simulator, which will necessarily be exponential to

maintain generality. However, writing the compiler step in a

separate toolchain allows for more modularity of our designs and

separation of concerns. While currently the toolchain has no

functionality for adding architecture-specific optimizations (such

as gate fusion or other system-level changes requiring a higher

level instruction set), it acts as a starting point for future research.

In addition, usually (and in this case) the host code is written in

C++; writing and maintaining an eDSL in Haskell will be

considerably easier and less time consuming.
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The toolchain offers several constructs for looping gates over

sets of qubits, managing complex controls, and defining

intermediate circuit components. Some of these constructs are

demonstrated in Listing 1.

fullAdd :: QReg -> QReg -> Qu -> Qu -> Circ

fullAdd in1 in2 c z = if length in1 /= length

in2 then error "fullAdd: Input qubit register

lengths must be identical." else let

combinedRegister = c : interleave in2 in1

in

ladderQC 2 3 maj combinedRegister ++

cnot (last in1) z ++

reverseLadderQC 2 3 unmaj

combinedRegister

square :: QReg -> QReg -> Qu -> Qu -> Circ

square u r c anc = if 2*length u /= length r

then error "square: The size of register r

must be double that of u." else let

inputSize = length u

adderCirc = control anc $ fullAdd u (quRange

r (head r) (r!!(inputSize-1))) c (r!!

inputSize)

controlledAdderBlock ctrl = cnot ctrl anc

++ adderCirc ++ cnot ctrl anc

shiftCirc = leftShift r in

loopSingleQubitGateOverReg (\ctrl ->
controlledAdderBlock ctrl ++ shiftCirc)

(take (inputSize-1) u) ++

controlledAdderBlock (last u)

Listing 1. Generic input size full Cuccaro adder and square

circuit example implementation in the presented Haskell

eDSL.

After an FPGA board configuration is compiled, the

quantum circuit simulation flow starts with a user-specified

circuit description. We can describe the circuit using an eDSL

in Haskell, allowing for complex higher-level circuit operators to

be used; alternatively, the toolchain can read a QASM-like file

specifying the circuit. This process is demonstrated in Figure 1.

The toolchain first verifies the specified circuit, ensuring all

qubits used are valid (have an index in the register) and no

gates are specified with invalid target/controls. Then the named

qubit identifiers are parsed away and the qubits are mapped to an

index in the quantum register. At this point in the compilation

process, some constructs are still available to the toolchain which

would not necessarily be available to the FPGA (like direct calls to

a SWAP gate, or a high number of controls), which need to be

reduced away. SWAP gates are replaced with their equivalent

CNOT specifications, negative controls are reduced by negating

the control qubits before and after the gate, and gates with a

higher number of controls than is supported are expanded to

several gates with fewer controls. This results in a circuit which is

ready to be converted to a “QP” file which is simply a list of

integers specifying the circuit. The first element in this list is

always the number of qubits required for the circuit. Taking into

account the maximum number of controls allowed by an

architecture (C), each emitted gate consists of its opcode,

target qubit, followed by a constant number of controls. The

resulting list is then written to disk, ready to be read by the

simulator host.

4.2 Simulator implementation details

HLS design tools for FPGAs (like Intel’s Quartus/Intel’s

FPGA OpenCL Compiler and Xilinx’s SDAccel toolchain)

have been growing in popularity and effectiveness over the

past decade; making it possible to develop customized FPGA

architectures for domain-specific problems in a relatively high-

level language like OpenCL, without requiring knowledge of an

HDL like Verilog.

The presented simulator is written in OpenCL and built

using Intel/Altera SDK for OpenCL. We used Altera Offline

Compiler (aoc) version 17.1. The architecture we have

implemented is a baseline implementation of a full state

vector-based quantum circuit simulator. The simulator is

universal, with direct on board support for the H, X, Y, Z,

and Rm (integer-parametrised phase gate) gates and any

controlled variations of them, up to a static maximum

number of controls per gate. We currently make use of the

dynamic scheduling of the NDRange OpenCL construct to

submit gate applications to the kernel architecture on the

board. Figure 2 show the steps involved in a circuit

simulation. The QP instructions generated from the

compilation toolchain are read from disk on the host CPU.

These instructions contain the qubit count of the circuit, and

based on this sufficient memory is then allocated on the host and

device. The current representation used for the state vector

storage in memory is using 32-bit floating-point complex

numbers, meaning we need to allocate 2n × (2 × 4) bytes to

simulate the given circuit. Based on user input at runtime, the

initial quantum state of the system is set and then copied to the

device DRAMs.

Currently all FPGA architectures we have explored are

parametrised by some values at compile time; primarily these

are the number of compute units (NCU), which are the

duplicated kernels that perform the CMACs required for the

gate iteration computations, and the maximum number of

controls per gate (NCONTROLS). Other more customized

architectures may have more than these parameters at

compile time, particularly for caching and manual memory

buffering. Note that the NCONTROLS parameter determines

the format of the input QP instructions; which the Haskell tool

facilitates by generating QP instructions with a fixed total

number of controls per gate. For non-pipelined architectures,

Frontiers in Mechanical Engineering frontiersin.org08

Moawad et al. 10.3389/fmech.2022.925637

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2022.925637


these duplicated kernels may each include their own memory

interfaces. However, for pipelined architectures (generally seen as

more efficient), the compute units will generally receive their

inputs over channels or pipes.

As discussed above, our focus is optimising the QWM

simulation method with the full state vector being stored in

memory. The main difficulty in performing a gate application in

parallel arises from having an exponential memory space which

has to be fully iterated through for a single gate computation

(each control reduces the required accesses by half, but in general

we still at least access an exponential subset of the memory

space).

4.2.1 Classifying architectures
A QWM simulation architecture can be designed such that

either all information required to run the circuit is accessible

to the FPGA at the start of the circuit runtime process

(i.e., caching the QP instructions in BRAMs/DRAM), or for

the host process to interpret the QP file and enqueue each gate

separately to the board. We distinguish between these

FIGURE 1
Haskell Quantum Circuit Compilation toolchain.

FIGURE 2
QProblem to FPGA flow for an Over-PCIe architecture. At each gate, the QP instruction is sent to the compute units over the host-FPGA PCIe
connection.
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different approaches and identify some intitial advantages and

disadvantages to each:

An On-board QWM architecture is one where the QP

instructions are stored in BRAMs/DRAM at the start of the

circuit runtime process. The main advantages of this approach is

that it eliminates all of the FPGA-host communication overhead,

which is over a relatively slow PCIe connection, and it allows for

cross-gate optimizations on board (e.g., using the same memory

buffer for multiple gates). The main disadvantage is that the

architecture requires extra resource overhead on the FPGA fabric

to store and process the QP, and schedule gate simulations.

On the other hand, an Over-PCIe QWM architecture is one

where the host process reads the QP instructions from a file and

enqueues each gate to the board one-by-one. While

communicating over PCIe is much slower than on-board

communication via BRAMs, if loading a gate from the host

can occur concurrently with computations in the kernels, then

that communication time eventually becomes negligible for

larger qubit counts; as the gate execution time grows

exponentially with the number of qubits. This is the primary

motivator for exploring the design space of simulators with this

approach: at scale, the host-FPGA communication time is

negligible. This architecture can be implemented with

OpenCL’s NDRange construct, making use of the compiler’s

automatic dynamic scheduling.

A further category along which we can divide architectures is

pipelining. While most HLS compilation tools have functionality

to automatically pipeline loops, the main motivator for designing

an explicitly-pipelined architecture is control over the data paths

of the amplitudes from memory to the compute units; allowing

for experimenting with customizable caches, and memory access

patterns.

We refer back to the work by Lee et al. (2016) where the

authors distinguish and describe three types of architectures:

concurrent, pipelined, and a novel serial-parallel architecture.

The described serial-parallel architecture resembles what we

describe as pipelined here (with dynamically scheduled gates

and the gate executions being pipelined); with one key difference:

the proposed architecture is for a quantum circuit simulation

whose state vector fits entirely on the board, significantly

reducing the number of qubits which can be simulated. Our

architecture expands the same pipelining methods to

architectures with access to DRAM banks, allowing us to

simulate up to 29 qubits in 4.3 GB of memory. Another

difference is their compute units (referred to as the ALU in

the architecture diagrams) are customized for optimising a

particular quantum circuit, the QFT; while our architectures

are designed for maximum reuseability and universality.

Currently the best-performing type of architecture we have

implemented is the Over-PCIe non-explicitly pipelined type. We

implement this using our described NDRange approach and our

results are presented based on this architecture. As we have yet to

implement any caching or memory access pattern optimizations,

we believe this outperforms the other designs due to the OpenCL

NDRange dynamic scheduler being far more efficient for a

memory access pattern as random as we currently allow than

our single-task kernel approaches for on-board simulation. Since

we use an NDRange kernel and no channels for explicit

pipelining, our CPU and GPU comparison targets are

evaluated based on the same kernel design as the FPGA. The

implementation of this kernel compute unit is described in the

next section.

4.2.2 Compute unit kernel details
The host initializes a queue for submitting kernel jobs to the

board and is now ready to start submitting QP instructions

representing quantum gates to the FPGA. The architecture’s

NCU parameter defines number of identical compute units using

the OpenCL num_compute_units attribute, over which the 2n−1

NDRange work items are distributed, such that each kernel runs

2n−k−1 times per gate. The host waits for the queue to finish before

submitting the next gate. In its loop, the kernel knows its current

gate iteration index based on its own compute unit index and the

work item index passed to it by the NDRange scheduler. Based on

this, it can compute the required amplitude indices for the target

qubit and the current iteration, read the amplitudes directly from

the DRAM, perform the gate computation, and write them back.

The compute unit kernel’s inputs at each gate are the

following:

• t: gate target qubit index,

• c0. . .cNCONTROLS−1: control qubit indices, equal to t to

specify no control

• mat0. . .mat3: gate matrix values; generated by the host

after parsing the gate code from the QP file.

As an NDRange kernel, the compute unit also implicitly

receives a global ID representing the current gate iteration (i):

this represents this kernel’s current step in the execution of one

gate. The compute unit starts by using the target qubit index and

the gate iteration index to generate the indices of the pair of

amplitudes required for this iteration. It generates these by

finding the ith integer whose tth qubit is cleared; this is the

first of the pair of indices. The second index is then found by

adding the target stride (2t) to the first index. Finding this

amplitude is straightforward, has O(1) complexity, and is

implementable with bit-wise logic. In particular, our

implementation uses the same bit-wise logic as Kelly (2018)

for their OpenCL simulator targeted at GPUs. Next, the kernel

processes the controls for this iteration based on this rule: if the

control value is not the target qubit, check if the amplitude

indices have the bit at the control qubit’s position set to one; if so,

this control’s test passes and move on to the next. Note that the

number of controls which need to be processed at each gate

iteration is static and defined by the NCONTROLS parameter;

thus the controls processing stage is parallelisable for any gate. If
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all the control tests pass, then the iteration step continues with

the computation: it reads the amplitudes from the DRAM,

performs the gate computation (complex matrix-vector

multiplication implemented with CMACs), and writes the

results back to the DRAM.

After all gates are submitted to the board and finish

executing, the final state is read out from the FPGA’s DRAM

and written to an output file by the host. These results can then be

verified.

5 The Lattice Boltzmann method

The present research effort aims to develop quantum-

algorithm implementations of the Lattice Boltzmann method

(LBM) for large-scale fluid dynamics simulations. As a first

important step toward this, quantum algorithm for less

complex Lattice Boltzmann methods, i.e. not modelling the

full Navier-Stokes equations, are considered here. For context,

first the Lattice Boltzmann equation forming the basis for the

LBM is presented, followed by a detailed description of the

reduced LB methods investigated here.

The Lattice Boltzmann equation used here is derived from a

discrete-velocity discretization of the Bhatnagar-Gross-Krook

(BGK) equation, such that the discretized particle distribution

function is governed by the following equation:

zfa

zt
+ ea · ∇fa � −1

τ
fa − feq

a( ) (4)

with fa(x, t) = f(x, ea, t) is the non-equilibrium distribution for

discrete velocity ea for a ∈ [0, nDV − 1], feq
a is the corresponding

equilibrium distribution function and τ represents the relaxation

time. For iso-thermal LBM models, based on the two-

dimensional D2Q9 model, or the three-dimensional D3Q15,

D3Q19 and D3Q27 models, the equilibrium distribution

function can be written as,

feq
a � ρwa 1 + 3

c2
ea · V + 9

2c4
ea · V( )2 − 3

2c2
V · V[ ] ; a ∈ 0, nDV − 1[ ] (5)

where V = (u,v,w)T is the fluid velocity vector, wa is a weighting

factor and ea is a discrete velocity, while nDV denotes the number

of discrete velocities in the model. The lattice speed c is defined as

c = δx/δt. The definition of the lattice speed c provides an explicit

link between lattice spacing δx and time step δt. In the Lattice

Boltzmann method (LBM), physical space is discretized using a

regular lattice in a manner coherent with velocity-space

discretization to preserve the conservation laws and to ensure

the correct behavior of the macroscopic variables. Specifically,

during a single time step, discrete values of distribution function

fa propagate in the direction of their corresponding discrete-

velocity ea to the nearest neighboring lattice point in that

direction. Based on this “streaming” from on lattice point to a

nearest neighbor lattice point the evolution of fa can be written as,

fa xi + eaδt, t + δt( ) − fa xi, t( ) � −δt
τ

fa xi, t( ) − feq
a xi, t( )[ ]

(6)
The discretized distribution functions fa and feq

a are related

to the fluid density and momenta as follows,

ρ � ∑nDV−1

a�0
fa � ∑nDV−1

a�0
feq
a ; ρV � ∑nDV−1

a�0
eafa � ∑nDV−1

a�0
eaf

eq
a (7)

In Lattice Boltmann Methods, the implementation of Eq. 6

employs the stream-collide approach, i.e., the update of fa from

time t to t + δt is performed in two steps:

• Collision step. Creates an intermediate update of fa to fint
a

based on collision term:

fint
a xi, t( ) � fa xi, t( ) − δt

τ
fa xi, t( ) − feq

a xi, t( )[ ] (8)

• Streaming step represents the convection on the left-hand

side of Eq. 6, i.e., based on intermediate update fint
a the

final update is computes as,

fa xi + eaδt, t + δt( ) � fint
a xi, t( ) (9)

Clearly in the LBM, the non-linearity of the Navier-Stokes

equations is represented in numerical moments defining fluid

velocity from the non-equilibrium distribution function fa and

the product terms involving fluid velocity and discrete velocities

in the local equilibrium distribution function feq
a defined in Eq. 5.

6 D1Q3 Lattice Boltzmann model

To facilitate quantum algorithm development, further

reduced lattice Boltzmann models are considered. Here, the

D1Q3 model is considered, as a model non-linear equation

governing (some of) the nonlinear dynamics of a one-

dimensional fluid flow. For the D1Q3 model, the direction

vectors ei, i ∈ [0, 2], density and velocity are defined as,

ei �
−1 for i � 0
0 for i � 1

+1 for i � 2

⎧⎪⎨⎪⎩ ; ρ � ∑2
0

fi ; u � f2 − f0 (10)

and for the collision term,

�Q � −dt
�f − �f

eq

τ
⎛⎝ ⎞⎠ � −dt

τ

1
2

f0 + f2 − f2 − f0( )2 − 1
3

( )
f1 + f2 − f0( )2 − 2

3
( )

1
2

f0 + f2 − f2 − f0( )2 − 1
3

( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

and therefore,
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�f
eq �

1
2

1
3
− f2 − f0( ) + f2 − f0( )2[ ]

2
3
− f2 − f0( )2

1
2

1
3
+ f2 − f0( ) + f2 − f0( )2[ ]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

1
2

1
3
− u + u2[ ]
2
3
− u2

1
2

1
3
+ u + u2[ ]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12)

for u ≥ 0, therefore f2 ≥ f0. For meaningful choices of positive u, all

three components feq
0 , f

eq
1 and feq

2 will be positive numbers.

Since the Lattice Boltzmann Method was derived under the

assumption that �f will be a relatively small deviation from
�f
eq
, we can therefore also assume that f0, f1 and f2 will be

positive numbers for meaningful choices of positive u.

7 Modified D1Q3 Lattice Boltzmann
Method

To facilitate the implementation using the quantum circuit

model, a number of modifications and re-normalizations are

introduced in this section. Firstly, the original 3 direction vectors

are replaced by 4, where the original single “rest” velocity is

replaced by two identical ‘rest’ velocities. This results in the

following directions vectors, with corresponding definitions of

density and velocity,

ei �
−1 for i � 0
0 for i � 1
0 for i � 2

+1 for i � 3

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ; ρ � ∑3
0

fi ; u � f3 − f0 (13)

The original f1 distribution function will be replaced by two

identical distributions functions f1 and f2 in the modified model.

Then, the corresponding equilibrium distribution functions

become,

�f
eq �

1
2

1
3
− f2 − f0( ) + f2 − f0( )2[ ]
1
2

2
3
− f2 − f0( )2[ ]

1
2

2
3
− f2 − f0( )2[ ]

1
2

1
3
+ f2 − f0( ) + f2 − f0( )2[ ]
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(14)

For the flow field at rest (u = 0), the distributions functions

are therefore,

�f
eq � �f � 1

6
;
1
3
;
1
3
;
1
6

[ ]T (15)

To next modification step aims to remove the “constant”

factors 1/3 and 1/6, by introduction a re-scaled distribution

function �g defined as the deviation away from the “rest” state

defined in Eq. 15 as,

�g � �f −

1
6
1
3
1
3
1
6
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Alternatively, �g
eq

can be written as,

�g
eq �

1
2
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2
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1
2
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

For this re-scaled D1Q3 model, the density and velocity are

now defined as,

ρ � 1 +∑3
0

gi ; u � g3 − g0 (18)

7.1 Biased quantum floating point
representation

In the current implementation of the D1Q3 model, the

idea is to represent the (scaled) distribution function values gi,

i ∈ [0, 3] and u/c) with a specialized (biased) quantum floating-

point format. The motivation for choosing this format is the

wider range of numbers that can be represented than in a

fixed-point representation for the same number of qubits

used. To minimize quantum-circuit width, a reduced

number of mantissa and exponent bits is used as compared

to IEEE-754 single-precision format. However, for the

considered problems a scaling was used so that the

ranges of numbers to be represented is both limited and

predictable. For the D1Q3 model, where the numbers will

be ≪ 1, this choice of parameters is further detailed later this

section.

The quantum floating-point representation used here builds

on earlier work by Steijl (2022) and involves reduced-bit

representations of exponent and mantissa relative to single-

precision in the IEEE-754 standard to facilitate quantum

circuit implementations on current and near-future quantum

hardware with relatively small number of qubits (< 100). A key

feature of the used quantum floating-point representation is that

following the IEEE-754 standard, it employs sub-normal

numbers and consistent rounding (here, rounding-down to

nearest). The number of mantissa qubits is defined by NM,
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where only NM − 1 mantissa qubits are stored following the

“hidden-qubit” approach from IEEE-754. Then, the number of

qubits storing the exponent is defined byNE. In the present work,

NE = 3, and exponent 0 (exponent qubits in state |000〉) represent
sub-normal numbers and zero as in the IEEE-754 standard. The

maximum value for exponent is 7 (exponent qubits in state

|111〉) refers to “overflow” conditions, as used in the IEEE-754

standard. ForNE = 3, an “unbiased” exponent formulation would

be equivalent to an exponent bias of 3. To optimize for the small

numbers occurring in considered problems, a bias toward smaller

numbers is used here. Clearly, the choice of NM is crucial in

achieving the required accuracy. For equilibrium distribution

functions, terms linear and quadratic in u/c are combined, and

NM = 3 was found to lead to excessive rounding or truncation for

most values of u/c. Clearly, NM ≥ 4 should be used. However,

since the lattice-based models considered here represent

conservation of mass, momentum and energy in the fluid,

rounding of numbers will have a significant effect on

accuracy, particularly in multiple time-step simulations.

Therefore, realistically it can be expected that NM ∈ (Fillion-

Gourdeau and Lorin, 2019; Bonny and Haq, 2020) is needed for

realistic engineering applications. In this work, circuits for NM =

4 are shown as illustration, and the complexity analysis shown in

Section 10 addresses in detail how the circuit width increases

with NM.

Following IEEE-754, signed floating-point numbers are

stored as “|sign|exponent|mantissa〉,” while the sign qubit is

omitted where unsigned numbers are used in the quantum-

circuit implementation. For “signed” additions or subtractions of

two numbers, two (NM + 1)-qubit registers as input to a modulo

adder are created as follows. First, the hidden qubits are added to

the mantissa, followed by re-normalization (to account for

possible difference in exponent) to create two (NM + 1)-qubit

inputs with |0〉 as most-significant qubit. Where required a

conversion to 2’s complement is performed, so that negative

numbers have the most-significant qubit in state |1〉. After

addition/subtraction, the outcome is converted back to the

quantum floating-point format, where a sign-qubit defines the

sign and with mantissa no longer in 2’s complement, i.e., back

into (NM − 1)-qubit “hidden-qubit” representation.

For NM = 4 and NE = 3, the sub-normal numbers with the

corresponding “negative” (NM + 1)-qubit mantissa

representation using 2’s complement method are shown in

Table 1 for “bias = 3” and “bias = 8.” Here, “bias = 3”

corresponds to the “standard” floating-point format with a

symmetric bias. As can be seen from Table 1, with symmetric

bias (“bias = 3”), terms involving u2 (O(10–2) will always be sub-

normal and often truncated to 0. For “bias = 8,” it can expected

that u2 can be represented either as non-zero sub-normal or

normalized numbers.

TABLE 1 Sub-normal numbers for NM = 4 and NE = 3. Leading qubit acts as “sign” qubit. In 2’s complement “hidden qubit” is represented.

Bias = 3

Positive Negative Mantissa 2’s complement

|0|000|000〉 0 |0|000|000〉 0 |00000〉
|0|000|001〉 1/32 |1|000|001〉 −1/32 |11111〉
|0|000|010〉 2/32 |1|000|010〉 −2/32 |11110〉
|0|000|011〉 3/32 |1|000|011〉 −3/32 |11101〉
|0|000|100〉 4/32 |1|000|100〉 −4/32 |11100〉
|0|000|101〉 5/32 |1|000|101〉 −5/32 |11011〉
|0|000|110〉 6/32 |1|000|110〉 −6/32 |11010〉
|0|000|111〉 7/32 |1|000|111〉 −7/32 |11001〉

Bias = 8

|0|000|000〉 0 |0|000|000〉 0 |00000〉
|0|000|001〉 1/1,024 |1|000|001〉 −1/1,024 |11111〉
|0|000|010〉 2/1,024 |1|000|010〉 −2/1,024 |11110〉
|0|000|011〉 3/1,024 |1|000|011〉 −3/1,024 |11101〉
|0|000|100〉 4/1,024 |1|000|100〉 −4/1,024 |11100〉
|0|000|101〉 5/1,024 |1|000|101〉 −5/1,024 |11011〉
|0|000|110〉 6/1,024 |1|000|110〉 −6/1,024 |11010〉
|0|000|111〉 7/1,024 |1|000|111〉 −7/1,024 |11001〉
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For NM = 4 and NE = 3, the normalized numbers for

|e2|e1|e0〉 � |110〉 with the corresponding “negative” using 2’s

complement method are shown in Table 2 for “bias = 3” and

“bias = 8.”

For themaximum exponent (|e2|e1|e0〉 � |110〉), the values for
“bias = 8” shown in Table 2 indicate that despite the greatly reduced

value of the maximum number that can be represented relative to the

symmetric bias case (“bias = 3”), the components of distribution

function �g and velocity u/c will be so small that these can still be

represented without risking an overflow, as discussed next.

The choice of suitable values forNE and exponent bias for the

scaled and normalized D1Q3 model can be made based on the

flow physics that is modelled. For the D1Q3 model, the lattice

speed of sound is defined as cs � c/
�
3

√
. The iso-thermal model

used here was derived for flows with weak or negligible

compressibility effects. For a compressible fluid, a local Mach

number can be defined as: M � |u|/cs �
�
3

√ |u|/c. For the weakly
compressible-flow conditions it is required that M < 0.3 or

smaller. Therefore, u/c should generally be limited to

maximum values of 0.1–0.15. Clearly, in the modified and re-

scaled D1Q3 model employing a symmetric bias will introduce a

range of numbers far from optimal for the D1Q3 model. As

shown in Table 2, forNE = 3, a bias of 8 gives ample margin at the

upper end of the floating-point range when representing u/c.

However, since the (scaled) and re-normalized equilibrium

distribution functions combine terms O(u) and O(u2) it was

decided that a bias of 9 could potentially leave too little margin in

the floating-point representation of gi components.

7.2 Quantum circuit
implementation—Streaming operation

In Lattice Boltzmannmodels, the non-linear convection term

of the Navier-Stokes equation is effectively (partly) replaced by a

linear streaming of the distribution functions from one lattice

point to a neighboring lattice point during a time step. For the

modified D1Q3 model, only two directions specified by

|dv1|dv0〉 � |00〉 (“−1”) and |dv1|dv0〉 � |11〉 (“+1”) need to

be considered since the remaining two are “at rest.” Assuming a

uniformly-spaced one-dimensional domain with 64 lattice points

and periodic boundary conditions, a possible quantum-circuit

implementation for the streaming operations is illustrated in

Figure 3. This type of linear operators was previously detailed by

Todorova and Steijl (2020) and will therefore not be analyzed

further here.

8 Quantum circuit
implementation—Equilibrium
distribution function

8.1 Mapping of computational problem on
qubit register

The quantum-circuit was designed with input data

encoded in qubits at the top of the circuit (most significant

qubits), followed by qubits representing the output of the

TABLE 2 Example normalized numbers for NM = 4 and NE = 3. Leading qubit acts as “sign” qubit. In 2’s complement “hidden qubit” is represented.

Bias = 3

Positive Negative Mantissa 2’s complement

|0|110|000〉 8 |1|110|000〉 −8 |11000〉
|0|110|001〉 9 |1|110|001〉 −9 |10111〉
|0|110|010〉 10 |1|110|010〉 −10 |10110〉
|0|110|011〉 11 |1|110|011〉 −11 |10101〉
|0|110|100〉 12 |1|110|100〉 −12 |10100〉
|0|110|101〉 13 |1|110|101〉 −13 |10011〉
|0|110|110〉 14 |1|110|110〉 −14 |10010〉
|0|110|111〉 15 |1|110|111〉 −15 |10001〉

Bias = 8

|0|110|000〉 8/32 |1|110|000〉 −8/32 |11000〉
|0|110|001〉 9/32 |1|110|001〉 −9/32 |10111〉
|0|110|010〉 10/32 |1|110|010〉 −10/32 |10110〉
|0|110|011〉 11/32 |1|110|011〉 −11/32 |10101〉
|0|110|100〉 12/32 |1|110|100〉 −12/32 |10100〉
|0|110|101〉 13/32 |1|110|101〉 −13/32 |10011〉
|0|110|110〉 14/32 |1|110|110〉 −14/32 |10010〉
|0|110|111〉 15/32 |1|110|111〉 −15/32 |10001〉
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computation performed. The remaining qubits further

“down” (i.e., less significant in the employed memory

indexing) generally act as ancillae qubits or as workspace.

These ancillae and workspace qubits are all initialized in state

|0〉 and will be returned to |0〉 at the time of completion of the

quantum circuit. In later sections, a modified and transformed

design will be considered were the ordering is altered to

facilitate efficient simulation. For the original circuit, the

qubit register for NM = 4 and NE = 3 can be summarized

as follows:

dv1|dv0| 〉 indices for 4 discrete velocities
eu2|eu1|eu0| 〉 3 − bit representation of exponent of u

su| 〉 sign bit of input velocity u
mu2|mu1|mu0| 〉 3 − bit representation of mantissa of u

eg2|eg1|eg0∣∣∣∣ 〉 3 − bit representation of exponent of geq

sg
∣∣∣∣ 〉 sign bit of outputgeq

mg2|mg1|mg0
∣∣∣∣ 〉 3 − bit representation of mantissa of geq

esq2|esq1|esq0∣∣∣∣ 〉 3 − bit representation of exponent of u2

msq2|msq1|msq0
∣∣∣∣ 〉 3 − bit representation of mantissa of u2

cut| 〉 state 1| 〉 defines thatu2is truncated to 0
r4|qu3|r3|qu2|r2|qu1|r1|qu0∣∣∣∣ 〉 workspace qubits ordered for 4 − qubit addition

c| 〉 workspace qubit named to represent ’carry’ bit in 4
−qubit addition

r7|r6|r5| 〉 workspace qubits ordered for 4 − qubit squaring
anc| 〉 workspace qubit − mostly used as control qubit

This shows that 37 qubits are required in this original design.

Data related to g0 and g3 are stored in the vector for |dv1|dv0〉 �
|00〉 and |dv1|dv0〉 � |11〉. Similarly, states with |dv1|dv0〉 �
|01〉 and |dv1|dv0〉 � |10〉 represent data for the (identical)

distribution functions g1 and g2. For the floating-point

representations of input u and each component of output �g
eq
,

7 qubits are needed using the hidden-qubit approach. For the

temporary storage of u2, the sign bit can be omitted. In the

following, forNM = 4 andNE = 3 an exponent “bias = 8” is used in

the floating-point representations.

8.2 Overview of quantum circuit design

Figure 4 shows the first part of the quantum circuit designed

to compute the equilibrium distribution function �g
eq
for NM = 4

and NE = 3. The first step involves setting |icut〉 � |1〉 for the

cases with a guaranteed truncation of u2—for NM = 4 and NE = 3

this truncation always occurs for |eu2|eu1|eu0〉 � |000〉, |001〉
and |010〉. In the next step, the mantissa of u is set into the

required positions in the workspace, defined by

|qu3|qu2|qu1|qu0〉, for all cases without truncation of u2 to 0.

The operation SQ4 then computes the square of the mantissa and

stores the results in |r7|r6| . . . |r0〉. Operation CCu2 then creates a

(temporary) “copy” of the u2 defined in the quantum-floating

format in the qubits |esq2|esq1|esq0〉 (defining exponent) and

|msq2|msq1|msq0〉 (defining mantissa using hidden-qubit

approach). For u2 no sign qubit is needed. To clear the

workspace for further use, operation ISQ4 un-computes the

mantissa squaring, followed by the removal of the copy of the

mantissa of u from qubits |qu3|qu2|qu1|qu0〉.
The quantum-circuit implementation for SQ4 and ISQ4 are

shown in Figures 5, 6, respectively. Here, FAdd represents a 4-

qubit Cuccaro full adder, and Rmv the un-computation of this

adder. The required shift in the used shift-and-add approach are

performed by Sh (in SQ4) and Sh’ (shift in reversed direction in

ISQ4). Following the definition of u2 in quantum floating-point

format, the equilibrium distribution for directions e1 and e2
(defined by |dv1|dv0〉 � |01〉 and |dv1|dv0〉 � |10〉) is defined
using the operator 0110 in Figure 4.

To define the equilibrium distribution functions for

directions e0 and e3 (defined by |dv1|dv0〉 � |00〉 and

|dv1|dv0〉 � |11〉), the addition of ± u and u2 is required. This

addition operator for the signed values defined in the NM = 4 and

FIGURE 3
Quantum circuit implementing the “streaming” operation for directions 0 (|dv1|dv0〉 � |00〉) and 3 (|dv1|dv0〉 � |11〉) on uniformly-space 1D
mesh (64 cells encodedwith 6 qubits) with periodic boundary conditions. Design assumed amplitude-based encoding of data. Most-significant qubit
as used in data ordering is at the top of circuits.
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NE = 3 format is performed using a modulo-5 Cuccaro adder,

denoted by MA5. Operation 0011a initializes this addition step,

followed by the operation 0011b that uses the created result to

define the equilibrium distribution functions for directions e0
and e3 in qubits |eg2|eg1|eg0〉 (exponent), |sg〉 (sign qubit) and

|mg2|mg1|mg0〉 (mantissa qubits using hidden-qubit

approach).

Figure 7 shows the second part of the quantum circuit

designed to compute the equilibrium distribution function �g
eq

forNM = 4 andNE = 3. The first step involves the un-computation

of the modulo-5 addition (denoted by UMA5), followed by

operation 0011c used to clear the inputs to this addition.

Upon completion of operation 0011c, the 14 workspace

qubits are all in state |0〉. However, at this stage, the

temporary copy of u2 still resides in qubits |esq2|esq1|esq0〉
and |msq2|msq1|msq0〉. To clear these qubits to state |0〉, the
square of the mantissa of u2 needs to be re-computed using SQ4.

Then, CCu2 is used to set the 6 qubits defining u2 in quantum

floating point format to |0〉. Then, ISQ4 un-computes the

mantissa squaring step. Finally the remaining workspace

qubits can be cleared along with the qubit |cut〉, which for

cases with truncation of u2 to 0 is re-set to |0〉.

FIGURE 4
Quantum circuit design for evaluation of �g

eq
in modified D1Q3 model. Velocity u and distribution functions defined as quantum floating-point

numbers with NM = 4 and NE = 3. Most-significant qubits at top of circuit. Part 1.
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At this stage, the output of the quantum circuit has the

required format: the qubits |eg2|eg1|eg0〉 (exponent), |sg〉 (sign
qubit) and |mg2|mg1|mg0〉 define the equilibrium distribution

function for all four directions in the modified D1Q3 model,

while the rest of the qubits is left unchanged.

In operator 0110, the previously computed term u2 is used

to set −u2/2 for the two “rest” directions (|dv1|dv0〉 � |01〉 and

|dv1|dv0〉 � |10〉). For these directions the “−” sign can be

trivially introduced by setting the sign qubit of |g〉eq,
|sg〉 � |1〉. For the direction 0 defined by |dv1|dv0〉 � |00〉,
the equilibrium distribution function is of the form −u/2 + u2/2.

For this direction (and for direction 3 with distribution function

of the form u/2 + u2/2), first the terms −u + u2 and +u + u2 are

computed using a 5-qubit modulo adder MA5 (and its reverse

UMA5), while the division by 2 is introduced when setting the

result in quantum-floating point format. The sign change to ′ −
u′ for direction 0 is created by switching to 2’s complement

notation or the 4 mantissa qubits. Based on the assumption of

positive input velocity u, the 5 input qubits (as “a” input to

Cuccaro modulo adder) representing mantissa of u are initially

set as |0|mu3|mu2|mu1|mu0〉 (with |mu3〉 � |0〉 for sub-

normal numbers). The quantum-circuit implementation of

operator SgnA5 performing this sign change is shown in

Figure 8. With u ≪ 1 in the D1Q3 model, the term −u + u2

will always be a negative number. Since the 4 mantissa qubits of
�g
eq
are not stored in 2’s complement formulation for negative

values (i.e., the sign is defined by |sg〉), a similar sign change to

SgnA5 needs to be applied on the output of the 5-qubit modulo

adder. With the guaranteed negative result for direction 0, it is

sufficient to perform the 2’s complement conversion on only to

FIGURE 5
Quantum circuit defining SQ4 with 4-qubit mantissa qubits (NM = 4, using hidden qubit approach) and a 3-qubit exponent (NE = 3).

FIGURE 6
Quantum circuit defining ISQ4 with 4-qubit mantissa qubits (NM = 4, using hidden qubit approach) and a 3-qubit exponent (NE = 3).
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the 4 qubits (for NM = 4 considered here) used to define

mantissa qubits of �g
eq
. The operator SgnB4 performs this

change. Its quantum-circuit implementation is also shown in

Figure 8.

9 Reduction for FPGA acceleration of
QC simulation

The quantum-circuit implementation for the computation of

the equilibrium distribution functions of the modified

D1Q3 model shown in Figures 4, 7 will be transformed in

this section to facilitate a more efficient quantum circuit

simulation using FPGA acceleration. The “original” circuit

designed for NM = 4 and NE = 3 uses 37 qubits. As a first

step toward “reduced” circuits, circuit re-ordering and partial

specialization of one or more qubits is used.

The key ideas behind the considered reduction/

transformation are as follows:

• The circuit evaluates the distribution functions for

4 directions based on a single input u defined in

FIGURE 7
Quantum circuit design for evaluation of �g

eq
in modified D1Q3 model. Velocity u and distribution functions defined as quantum floating-point

numbers with NM = 4 and NE = 3. Most-significant qubits at top of circuit. Part 2.
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quantum floating-point format—therefore specialized

circuits can be created based on the selected input for u;

• The specialized input is defined using 7 qubits:

|eu2|ue1|e0〉 (exponent), |su〉 (sign) and

|mu2|mu1|mu0〉 (defines mantissa using hidden-qubit

appraoch)—so reduced circuits with 7 fewer can be

created for particular values of u;

• The two most significant qubits in the design shown in

Figures 4, 7, i.e., |dv1|dv0〉 define the direction vector (i ∈
[0, 3]). If required, a further reduction or transformation

can be performed, so that only the equilibrium distribution

function for a single direction is evaluated. This allows a

further reduction by 2 qubits relative to the original circuit;

• The qubit |cut〉 only depends on the exponent of u, so at

compile time for specialized circuits this information

regarding truncation of u2 is known. Therefore, also

|cut〉 can be eliminated in transformed circuits,

specialized for specific u input

Using the above transformation steps, reduced circuits with

27 qubits can be created for NM = 4 and NE = 3, as compared to

the original number of 37.

9.1 Further reduction

The transformation steps detailed in the previous section

enabled a reduction to computational kernels with 27 qubits as

compared to the 37-qubit full circuit. For a further reduction, the

14-qubit workspace needs to be transformed. Specifically, the

arithmetic operations in SQ4, ISQ4, MA5 and UMA5 need to be

transformed and specialized for specific inputs. Since the

Quantum Computer simulator used here employs a memory

allocation with the top qubits in the circuits shown acting as the

most significant qubits, the overall circuit design shown in

Figures 4, 7 needs to be changed: the qubits defining

workspace need to be moved towards the top of the quantum

circuit, and therefore, the qubits storing u2 and �g
eq
in quantum

floating-point format need to be moved down toward less

significant bit locations.

Following this re-ordering, a further reduction requires

specializing (and factoring out) one or more mantissa qubits,

starting from the most significant mantissa qubit of u, i.e., |qu3〉,
followed by |mu2〉, etc. Using this approach, requires

transformation to the u2 computations as well as modulo-

additions, as discussed in following sections.

9.2 Reduction of the u2 computation

To illustrate the further reduction of the number of qubits,

the computation of u2 is analyzed first. In the interest of clarity,

this section will consider the reduced circuits for the evaluation of

geq
1 (|dv1|dv0〉 � |01〉) and geq

2 (|dv1|dv0〉 � |10〉), since these
identical terms only involve the term u2/2. Figure 9 shows the

reduced quantum circuit with 26 qubit resulting from

eliminating the two most-significant mantissa qubits in

squaring operations for NM = 4 and NE = 3. As can be seen,

FIGURE 8
Quantum circuit-implementations of SgnA5 and SgnB4 used to introduced sign change in 5-qubit modulo addition.

Frontiers in Mechanical Engineering frontiersin.org19

Moawad et al. 10.3389/fmech.2022.925637

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2022.925637


the circuit only involves the two mantissa qubits |qu1|qu0〉, and
SQ4 and ISQ4 represent reduced squaring (and un-computation)

for specific choices of |qu3|qu2〉. For the further reduction by

2 qubits to 26-qubits, the operations SQ4 and ISQ4 involve

12 qubits in the workspace. The operation CCu2 sets the

squared-velocity values in terms of quantum-floating point

format in |esq2|esq1|esq0〉 (exponent) and |msq2|msq1|msq0〉
(mantissa), and for the considered reduction to 26 qubits, the

quantum circuit implementations for CCu2 are detailed for

|eu2|eu1|eu0〉 � |011〉, |100〉 or |101〉 in Figure 10. For

|eu2|eu1|eu0〉 � |110〉, the operator is identical to that for

|101〉, apart from the NOT operation on |esq1〉 that for

|eu2|eu1|eu0〉 � |110〉 is performed on |esq2〉 instead. Figure

11 shows the quantum-circuit definitions of the reduced

mantissa-squaring and adders (as well as the reverse circuits),

for the 26-qubit reduced quantum-circuit implementation.

Figure 12 shows the reduced quantum circuit with 25 qubit

resulting from eliminating the three most-significant mantissa

qubits in squaring operations for NM = 4 and NE = 3. As can be

seen, the circuit only involves the mantissa qubit |qu0〉, and SQ4

and ISQ4 represent reduced squaring (and un-computation) for

specific choices of |qu3|qu2|qu1〉. For the further reduction by

3 qubits to 25-qubits, the operations SQ4 and ISQ4 involve

11 qubits in the workspace as can be seen in the quantum-

circuit implementations shown in Figure 13. For the reduced

quantum circuit with 25 qubits, Figure 14 shows the quantum-

circuit implementation of the “shift” operations used in the

“shift-and-add” approach. For NM = 4, a further reduction to

24 qubis can be made, by reducing out qubit |qu0〉 from the SQ4

and ISQ4 operations. For this further reduction to 24 qubits,

quantum-circuit implementation of operations SQ4 and ISQ4 are

shown in Figure 15. The addition and remove operators are

specialized for the 4 mantissa qubits |qu3|qu2|qu1|qu0〉 �
|1001〉.

The operation CCu2 defines squared-velocity values in terms

of quantum-floating point format, and for the considered

reduction to 25 qubits, the quantum circuit implementations

follows directly from those discussed for the reduction to

26 qubits, since |qu1|qu0〉 are not involved in this step. The

operation 0110 finally sets the equilibrium distributions

functions geq
1 (for |dv1|dv0〉 � |01〉) and geq

2 (for

|dv1|dv0〉 � |10〉) in quantum floating point format, based on

the definition of u2 in floating-point format defined previously.

The quantum circuit implementation of 0110 for the reduced

circuits with 25 and 26 qubits (identical in both cases) is shown in

Figure 16.

FIGURE 9
Reduced circuit with 26 qubits: |dv1|dv0〉 � |01〉 or |10〉, |eu2|eu1|eu0〉 � |011〉, |100〉, |101〉 or |110〉 (and therefore |cut〉 � |0〉).
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FIGURE 10
CCu2 for reduced circuit with 26 qubits. Squared velocity u2 defined as quantum floating-point numbers withNM = 4 andNE = 3. Label indicates
for which |eu2|eu1|eu0〉 circuit was derived.

FIGURE 11
Definition of SQ4 and ISQ4 for reduced quantum circuit (26 qubit) for |mu2)= |0)= (|qu3|qu2)= |10) for normalized input). CAdd10 and CRmv10

are defined as Add10 and Rmv10 with |anc) acting as control qubit.
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9.3 Reduction including the modulo-
adder

Following the analysis of the evaluation of the u2 terms in

quantum circuits with partial reduction of the workspace

qubits, the focus now moves to the more complex case of

also reducing the modulo adder (and its reverse) used in

computing the summations u + u2 and −u + u2. The use of

2’s complement method in the current implementation of �geq

evaluation poses particular challenges in the further reduction

process, as detailed in this section. In the interest of clarity, this

section will consider the reduced circuits for the evaluation of

geq
0 (|dv1|dv0〉 � |00〉) and geq

3 (|dv1|dv0〉 � |00〉), since these
represent the only directions for which the modulo-addition

steps is required. Figure 17 shows the reduced quantum circuit

with 25 qubit resulting from eliminating the three most-

significant mantissa qubits in the arithmetic operations for

NM = 4 and NE = 3. As can be seen, the circuit only involves

the mantissa qubit |qu0〉. The operation 0011a prepares the

modulo-adder step and depends on the mantissa qubits of u as

well as on the exponent of u (represented by |eu2|eu1|eu0〉).
Similarly 0011c un-computes these steps to reset workspace to

|0〉 after completion of the addition step and setting geq
0 and geq

3

in quantum floating point format. The (reduced) modulo-5

adderMA5 (and its reverse UMA5) only depend on the specific

choice of mantissa qubits that were reduced, i.e., in this step

there is no dependency on exponent |eu2|eu1|eu0〉. Based on

the outcome of modulo-5 adder, the operation 0011b sets geq
0

and geq
3 in |mg2|mg1|mg0〉 (mantissa), |sg〉 (sign) and

|eg2|eg1|eg0〉 (exponents) for |dv1|dv0〉 � |00〉 and

|dv1|dv0〉 � |11〉, respectively.
Following the process detailed in the previous section, for a

further reduction by 2 qubits to 26 qubits would result in a

similar quantum circuit, then involving |qu1〉 and |qu0〉. For
brevity, this quantum circuit is not shown here.

The operation 0011a comprises two parts. The first part uses

quantum-floating point representation of u2 to set the “b” register of

the modulo-5 Cuccaro adder (i.e., the register that gets overwritten

with addition result). Here, a shift is used to account for the

difference in exponent of u and u2. This part of the 0011a is not

affected by the partial reduction of workspace qubits. The second

part of 0011a set −u (for |dv1|dv0〉 � |00〉) or u (for

|dv1|dv0〉 � |11〉) into “a” register of modulo-5 adder. Figure 18

shows the quantum-circuit implementation of this second step

FIGURE 12
Reduced circuit with 25 qubits: |dv1|dv0〉 � |01〉 or |10〉, |eu2|eu1|eu0〉 � |011〉, |100〉, |101〉 or |110〉 (and therefore |cut〉 � |0〉).
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FIGURE 14
Shift operators used for left- and right-shifting of results register in reduced circuit with 25 qubits.

FIGURE 13
Definition of SQ4 and ISQ4 for reduced quantum circuit (25 qubit) for |mu2|mu1〉 = |00〉 = (|qu3|qu2|qu1〉 = |100〉 for normalized input).
CAdd100 and CRmv100 are defined as Add100 and Rmv100 with |anc〉 acting as control qubit.
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before a reduction of workspace qubits is performed. It can be seen

that in a partial reduction of the workspace qubits, one ormore of the

qubits in the “a” register need to be removed. For the example of the

reduction to 26 qubits, the qubits |a4|a3|a2〉 will be eliminated. For

the reduction to 25 qubits, qubits |a4|a3|a2|a1〉 will be involved as

indicated with the red box in Figure 18.

The quantum circuit illustrated in Figure 18 first “copies”

the mantissa qubits (including the “hidden” qubit) into the

“a” register for |dv1|dv0〉 � |00〉 and for |dv1|dv0〉. To

perform −u + u2, the second part of the circuit transforms

the qubits to 2’s complement for |dv1|dv0〉 � |00〉. Without

this change to 2’s complement formulation, i.e., for

|dv1|dv0〉 � |11〉 the reduction of the workspace for the

modulo-5 adder can be performed using the approach

previously shown for the 4-qubit adders in the evaluation

of u2.

For |dv1|dv0〉 � |00〉, in most cases, the need arises to use

different computational kernels (derived for different choice of

the reduced qubits), depending of the state of the

remaining mantissa qubits of u. The following three examples

illustrate this:

(1) Reduction by 2 qubits to 26-qubit circuit, |mu2|mu1〉 � |0〉.
For normalized inputs, we then have |qu3|qu2〉 � |10〉 in the

representation without hidden qubit. For |dv1|dv0〉 � |00〉:
“-u” into modulo-5 adder, now 4 cases need to be considered:

• |qu3|qu2|qu1|qu0〉 � |1000〉 and there for “−u”: |11000〉
• |qu3|qu2|qu1|qu0〉 � |1001〉 and there for “−u”: |10111〉
• |qu3|qu2|qu1|qu0〉 � |1010〉 and there for “−u”: |10110〉
• |qu3|qu2|qu1|qu0〉 � |1011〉 and there for “-u”: |10101〉

showing that modulo-5 kernels derived for |a4|a3|a2〉 �
|110〉 and for |a4|a3|a2〉 � |101〉 are needed, depending on

|qu1|qu0〉. In addition for |qu0〉 � |1〉 a NOT operation on

|qu1〉 just before and after performing the addition is needed;

(2) Reduction by 3 qubits to 25-qubit circuit,

|mu2|mu1〉 � |00〉. For normalized inputs, we then have

|qu3|qu2|mu1〉 � |100〉 in the representation without

hidden qubit. For |dv1|dv0〉 � |00〉: “−u” into modulo-5

adder, now 2 cases need to be considered:

• |qu3|qu2|qu1|qu0〉 � |1000〉 and there for “−u”: |11000〉
• |qu3|qu2|qu1|qu0〉 � |1001〉 and there for “−u”: |10111〉

similar to the reduction-to-26-qubits example, it follows that

modulo-5 kernels derived for |a4|a3|a2〉 � |1100〉 and for

|a4|a3|a2〉 � |1011〉 are needed for this example, again with a

switch between these kernels that depends on |qu1|qu0〉;

FIGURE 15
Definition of SQ4 and ISQ4 for reduced quantum circuit (24 qubit) for |mu2|mu1|mu0〉 � |001〉 (|qu3|qu2|qu1|qu0〉 � |1001〉 for normalized
input). Controlled add/remove units not needed for the further reduction by 4 qubits (all mantissa qubits for NM = 4).
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(3) Reduction by 4 qubits to 24-qubit circuit, i.e., with all

mantissa qubits for NM = 4 reduced out in the

transformed circuit. For the example

|mu2|mu1|mu0〉 � |001〉, the normalized input showing

the hidden qubit is |qu3|qu2|qu1|qu0〉 � |1001〉. For

|dv1|dv0〉 � |00〉, “−u” is then represented as |10111〉

For the first two examples, Figure 19 shows the quantum-

circuit implementation of the reduced MA5 operation for

|dv1|dv0〉 � |00〉. The circuits were derived by first creating two

separate kernels, e.g. for |a4|a3|a2〉 � |110〉 and for |a4|a3|a2〉 �
|101〉 in the reduction-by-2 qubits example. Then, the differences

between the kernels are performed conditional and ancilla qubit

|anc〉 in the combined circuits shown.

Note: The quantum circuit reductions shown here were

performed manually and certainly pose major challenges for

automation by circuit compilation methods.

10 Complexity analysis

For the full quantum circuit introduced here, the case with

4 mantissa qubits (NM = 4) and 3 exponent qubits (NE = 3) is

described in detail in the present work. A crucial factor in

applying this quantum algorithm as well as its simulation on

classical hardware is its computational complexity in terms of

space (number of qubits—or circuit width) and time (number

of gate operations and circuit depth) as a function of NM and

NE. For a well-conditioned computational problem such as the

flow field governed by the D1Q3 model (with velocity u,

squared velocity u2 and re-scaled distribution functions all

≪ 1 in magnitude), it can be expected that meaningful

simulations can be performed with NE = 3. However, to

reduce the impact of rounding and truncation errors,

realistic applications will involve NM > 4. Therefore, the

growth of circuit width and depth as function of increasing

values of NM is of particular interest in the complexity analysis

presented here.

10.1 Full circuit—Before reduction

For the D1Q3 model 2 qubits |dv1|dv0〉 are required

independent of NM and NE. Using the hidden-qubit

approach, the u-velocity is defined in terms of exponent,

sign and mantissa using NE + 1 + NM − 1 = NE + NM

qubits. For the output �g
eq
, similarly NE + NM are required

since the same floating-point format is used. A single qubit

|cut〉 is used to identify cases with truncation to 0 of u2. The

temporary storage of u2 in floating-point representation

FIGURE 16
Operator 0110 for reduced circuit with 25 or 26 qubits. Squared velocity u2 defined as quantumfloating-point numbers withNM = 4 andNE = 3.
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requires NE + NM − 1 qubits since a “sign” qubit is not required.

The remaining qubits represent the “workspace” of the algorithm.

Two computational steps are performed (as well as their un-

computation) within this space: the shift-and-add based

evaluation of u2 and the “signed” addition ±u + u2 for

directions |dv1|dv0〉 � |00〉 and |dv1|dv0〉 � |00〉. For the

example NM = 4 this addition is performed using a 5-qubit

modulo adder. The modulo adder requires 2NM + 1 qubits. The

u2 evaluation a 2NM results register, NM qubits for unsigned

velocity input, 1 “carry” qubit as well as 1 ancilla qubit. In total,

the u2 evaluation therefore requires 3NM + 2 qubits. This exceeds

the requirement of the modulo adder and therefore the workspace

needs a total of 3NM + 2 qubits. The total space complexity of the

original quantum circuit therefore is:

2 + 2 NE +NM( ) + 1 + NE +NM − 1( ) + 3NM + 2( )
� 4 + 3NE + 6NM

10.2 Quantum circuit after reduction steps

After the first reduction step introduced in Section 9, the

following qubits were removed from the original circuit: 2 qubits

|dv1|dv0〉,NE +NM (input “u” in signed floating-point format) as

well as the single |cut〉 qubit. Therefore, the total space

complexity for the quantum circuit following this first

reduction step is therefore:

4 + 3NE + 6NM − 2 + NE +NM( ) + 1[ ] � 1 + 2NE + 5NM

The further reduction detailed in Section 9.1, one or more of

the NM qubits defining the unsigned velocity input into the u2

evaluation were eliminated. In its most aggressive form, this

reduction step can eliminate all NM qubits defining the

unsigned velocity input, so that the space complexity reduces

further to:

1 + 2NE + 5NM −NM � 1 + 2NE + 4NM

To illustrate the complexity for different choices of NM,

Table 3 summarized the required number of qubits for NE =

3 and increasing NM for the original quantum circuits as well as

the reduction steps 1 and 2.

Figure 20 shows the memory required to store the qubit

information as a pair of 32-bit floating point numbers. For

reference, the red lines show the FPGA board memory and

1 TB, 1 PB, 1 EB and 1 ZB. To put this into context: the UK’s

largest supercomputer, Archer, comprises 4,920 nodes with

each 64 GB of memory, so the total memory is still less

than 1 PB.

FIGURE 17
Reduced circuit with 25 qubits: |dv1|dv0〉 � |00〉 or |11〉, |eu2|eu1|eu0〉 � |011〉, |100〉, |101〉 or |110〉 (and therefore |cut〉 � |0〉).
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11 Examples of D1Q3 quantum circuit
reduced to 25 qubits

In this section, two examples are considered of reduced

circuits with 25 qubits:

• Example 1: velocity u defined as |01000|110〉 � +8/32 �
+1/4 or |01001|110〉 � +9/32. Alternatively, in terms of

unsigned hidden-qubit formulation for mantissa:

|mu2|mu1|mu0|eu2|eu1|eu0〉 � |000|110〉 or |mu2|mu1|
mu0| eu2|eu1|eu0〉 � |001|110〉;

• Example 2: velocity u defined as |01100|101〉 � +12/64 �
+3/16 or |01101|101〉 � +13/64. In terms of unsigned

hidden-qubit formulation for mantissa:

|mu2|mu1|mu0|eu2|eu1|eu0〉 � |100|101〉 or

|mu2|mu1|mu0|eu2|eu1|eu0〉 � |101|101〉.

With a further reduction by 3 qubits, this means that only

|mu0〉 acts as input qubit, and therefore the reduced circuits

represented by both examples only compute 2 separate input

velocities u each, as itemized above.

The equilibrium distribution functions geq
0 (defined by

|dv1|dv0〉 � |00〉) and geq
3 (defined by |dv1|dv0〉 � |11〉) are

shown in Table 4.

Here, the term −u + u2 required in geq
0 was evaluated as

follows using a modulo-5 adder. For positive numbers, a 5-

qubit input with a leading |0〉, followed by the hidden qubit and

NM − 1 = 3 mantissa qubits is used, while for negative numbers,

the 4-qubit representation (including hidden qubit) is

transformed into its 5-qubit 2’s complement. Furthermore,

mantissa qubits are shifted where necessary to account for

difference in exponents of the two inputs. Such shifts are

performed before transformation to 2’s complement. Then,

FIGURE 18
Re-arranged quantum circuit (without further reduction on workspace qubits). Quantum circuit shows setting of − u (for |dv1|dv0〉 � |00〉) or u
(for |dv1|dv0〉 � |11〉) into “a” register of modulo-5 adder. Velocity u and squared velocity u2 are defined as quantum floating-point numbers with
NM = 4 and NE = 3.
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for the four examples in the table above, the “signed” addition

can be summarized as:

u � 8/32 0|110|000| 〉( ): 11000| 〉 + 00010| 〉
� 11010| 〉 → − u + u2 � 1|101|100| 〉 � −6/32 � −12/64

u � 9/32 0|110|001| 〉( ): 10111| 〉 + 00010| 〉
� 11001| 〉 → − u + u2 � 1|101|110| 〉 � −7/32 � −14/64

u � 12/64 0|101|100| 〉( ): 10100| 〉 + 00010| 〉
� 10110| 〉 → − u + u2 � 1|101|010| 〉 � −10/64

u � 13/64 0|101|101| 〉( ): 10011| 〉 + 00010| 〉
� 10101| 〉 → − u + u2 � 1|101|011| 〉 � −11/64
As can be seen, in the top two examples, the outcomes −6/32

and −7/32 result from the modulo-5 mantissa addition, so that a

re-normalization is required. This leads to the normalized

numbers −12/64 and −14/64, respectively. For the bottom two

examples, such a re-normalization was not required.

12 Evaluation

12.1 Experimental setup

We evaluated our approach on a single-node FPGA system.

Our host system has a dual Intel Xeon E5-2609V2 2.5 GHz processor

and 64 GB RAM (DDR3, 1.6 GHz). This system hosts a Nallatech

PCIe-385N A7 FPGA board with 8 GB RAM (DDR3) connected

through a PCIe 2 connection. The system runs Scientific Linux

FIGURE 19
Quantum circuits for MA5 used in reduced circuit with 26 qubits and with 25 qubits for |dv1|dv0〉 � |00〉.

TABLE 3 Required number of qubits for original and transformed
quantum circuits (NE = 3).

NM Original Reduction 1 Reduction 2

4 4 + 9 + 24 = 37 1 + 6 + 20 = 27 1 + 6 + 16 = 23

5 4 + 9 + 30 = 43 1 + 6 + 25 = 32 1 + 6 + 20 = 27

6 4 + 9 + 36 = 49 1 + 6 + 30 = 37 1 + 6 + 24 = 31

7 4 + 9 + 42 = 55 1 + 6 + 35 = 42 1 + 6 + 28 = 35

8 4 + 9 + 48 = 61 1 + 6 + 40 = 47 1 + 6 + 32 = 39

12 4 + 9 + 72 = 85 1 + 6 + 60 = 67 1 + 6 + 48 = 55

16 4 + 9 + 96 = 109 1 + 6 + 80 = 87 1 + 6 + 64 = 71
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6.8 and we used the Intel SDK for OpenCL Version 17.1 to

communicate with and program the FPGA device. The CPU used

for evaluation is the same as the FPGA host. The host code is

compiled using G++ (GCC version 4.7.2). To evaluate the CPU

approach, we run the same OpenCL kernel with the same host code.

Our GPU system has access to an NVIDIA GK110B (GeForce GTX

TITAN Black), with access to 6 GB of VRAM, which is used for the

GPU evaluation target. The GPU system compiles the C++ host code

with G++ (GCC version 5.4.0).

12.2 Experimental results

12.2.1 FPGA resource utilization
We compiled our source code with the AOC tool provided by

the Intel SDK forOpenCL. Table 5 summarizes the FPGA resource

utilization and maximum operating frequency (Fmax) after

synthesis for the presented architecture for 1 through

8 compute units. We see that while we cannot double our

current maximum number of compute units directly, we still

have room to improve the design by simply adding more

compute units, potentially up to 12 units. This is still to be

demonstrated as adjustments have to be made to allow for a

non-power of 2 number of compute units.

12.2.2 Full square circuits
Figure 21 shows the runtime results for several full

squaring circuits with input mantissa sizes of 4 bits through

8 bits. The FPGA outperforms the CPU for a small number of

qubits, which is demonstrative of the higher overhead needed by

the CPU to run the circuit. For a higher number of qubits, the CPU

clearly outperforms our current baseline FPGA implementation.

This is down to the current implementation not having any FPGA-

specific optimizations (discussed below). In particular, to achieve

universality, this architecture can run a number of different gates

based on the gate opcode (or gate matrix) passed to it by the host.

FIGURE 20
Memory requirements for the original circuit and the two types of reduced circuits as a function of NM, for NE = 3

TABLE 4 Input and output of examples for 25-qubit example circuits. Mantissa is shown without “hidden qubit.”

u u2 geq
0 � −u/2 + u2/2 geq

3 � u/2 + u2/2

|0|110|000〉 � 8/32 |0|100|000〉 � 8/128 |1|101|100〉 � −6/64 |0|101|010〉 � 10/64

|0|110|001〉 � 9/32 |0|100|010〉 � 10/128 |1|101|110〉 � −7/64 |0|101|011〉 � 11/64

|0|101|100〉 � 12/64 |0|011|001〉 � 9/256 |1|100|010〉 � −10/128 |0|100|110〉 � 14/128

|0|101|101〉 � 13/64 |0|011|010〉 � 10/256 |1|100|011〉 � −11/128 |0|100|111〉 � 15/128
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While this is necessary for some algorithms which require

universality, some classes of circuits can be performed with a

reduced set of operational gates, for which we can specialize the

FPGA architecture. Aminian et al. (2008) demonstrate this in their

work discussed in Section 3.2.

12.2.3 Reduced square circuits
Figure 22 shows the runtime results for the full 4-bit input

mantissa squaring circuit and two reduced specializations with three

fewer qubits. As expected, the lower qubit reduced circuits

outperform the full circuit and require considerably less memory.

This demonstrates the advantage in runtime gained by performing

the proposed reductions on a small circuit. For the two demonstrated

reduced circuits, the FPGA slightly outperforms the CPU, which

again is down to the CPU havingmore overhead. This will not be the

case for a larger circuit being simulated on this baseline architecture.

12.2.4 Reduced 25-qubit D1Q3
Figure 23 shows the total circuit runtime results for the

reduced 25-qubit D1Q3 with several specializations for

|dv1|dv0〉 and |eu2|eu1|eu0〉. The observed variations in total

circuit runtime between the different specializations of the

D1Q3 circuit are due to the number of quantum gates being

different across these specialized reduced circuits. Because of the

memory restrictions of our CPU and FPGA systems, we were

unable to run the full 37-qubit version of this circuit. In this work,

the main motivation for the introduced circuit transformations is

to facilitate the simulation of large circuits, which without these

reductions would not fit in the memory. Alternatively, similar

transformations can also be used on smaller circuits that do fit in

the device’s memory to reduce their execution times, by taking

TABLE 6 Runtime results in seconds for architecture with 8 NCU and
8 NCONTROLS. Displayed results for reduced circuits is the
average runtime across different specializations, which vary in circuit
width.

FPGA CPU GPU

SQ4 0.0013 0.0010 0.0026

Reduced SQ4 0.0036 0.0043 0.0016

Reduced D1Q3 18.59 10.49 0.877

FIGURE 21
Total circuit and average gate simulation times for the squaring circuits with different input sizes. Logarithmic scale is representative of growing
circuit qubit count.

TABLE 5 FPGA resource utilization and maximum frequency for a baseline (Over-PCIe) Single-Qubit gate QWM kernel for 1 through 8 compute units
and 8 maximum controls per gate.

NCU 1 2 4 8 Total available

ALUTs 62,136 (18%) 79,396 (23%) 117,368 (34%) 194,506 (56%) 345,200

FFs 69,040 (10%) 89,752 (13%) 124,272 (28%) 201,822 (29%) 690,400

RAMs 403 (20%) 464 (23%) 584 (29%) 821 (41%) 2014

DSPs 16 (1%) 32 (2%) 64 (4%) 128 (8%) 1,590

Fmax (MHz) 292.82 299.85 271.81 254.00 —
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advantage of fine-grained parallelism, as demonstrated in the

previous section. For evaluating the circuit for different inputs,

different quantum circuit specializations have to be ran on the

architecture; however, since the architecture is circuit-

independent, there is no extra cost for running different circuits

on it. Since no FPGA bitstream compilation has to be run

between circuit evaluations, this achieves our goal of reusability,

up to some constant maximum number of controls per gate.

12.3 Discussion

The above results show the potential of our approach of

circuit transformations to reduce the number of qubits in

exchange for a higher number of control bits. Table 6 shows a

summary of the runtimes used to infer the following performance

and power consumption results. With the current status of our

work, in absolute terms, the performance of the simulation on the

FIGURE 22
Total circuit simulation times for the full SQ4 and the reduced SQ4 circuit with two different input specializations.

FIGURE 23
Total circuit simulation times for the reduced D1Q3 circuit with different input specializations.
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FPGA is about half as fast as on the CPU host. The GPU benefits

from very high memory bandwidth and thousands of compute

threads, and thus it shines for this particular approach of

simulation (QWM with a full state vector), beating the FPGA

by a factor of 20 for high-qubit circuits.

However, as explained before, to scale to larger numbers of

qubits, it is necessary to move to clusters of FPGAs. For

supercomputer clusters, the dominant factor is the

energy consumption and therefore we need to consider the

performance per Watt. From that perspective, the picture is

quite different: the measured power consumption of the FPGA

board is 25 W (Segal et al., 2014); the host CPU

consumes 160 W (not including RAM power consumption).

So already the FPGA simulation has more than 3×

better performance per Watt than the CPU. Our

evaluation GPU consumes 250 W of power, meaning it is

about 2× better than the FPGA in terms of performance

per Watt.

12.4 Future further improvements

Furthermore, there is a lot of scope for improvement of the

FPGA performance. We used a baseline over-PCIe architecture

without pipeline control to obtain the presented results. For

parallelisation on the device, the architecture currently relies on

the dynamic scheduler of the OpenCL NDRange construct. It is

unclear how well this pipelines our design and we estimate the

architecture would likely benefit from tighter control over

pipelining. This would involve using OpenCL channels to

explicitly control the flow of the amplitudes through the

design. In addition, we are currently not applying any caching

techniques in our design, several of which can be applied. Each of

our kernels currently reads two values at a time from the

distributed RAM of the FPGA, performs some computation

on them, and writes them back. We can make better

utilization of the DRAM’s bandwidth by reading the required

amplitudes in consecutive blocks. Due to the exponential strides

between the amplitudes, it may not always be possible to fill the

cache in one memory read with matching amplitudes. However,

we can show that this is possible with two contiguous memory

reads. Furthermore, another optimization technique which

would be particularly useful for circuits like the ones

presented here is state vector compression. For circuits whose

intermediary state vectors present repetition in their amplitude

values, it is not always necessary to store the full state vector in

memory. Instead, memory access is replaced by computation

over a compressed state vector space; a pattern very suitable for

application on an FPGA.

With these improvements, which are the focus of our

research at the moment, it is expected that the FPGA will

outperform the CPU even in absolute terms, so that we are

confident that the FPGA simulation can achieve an order of

magnitude better performance per Watt. We are also aiming to

show that an optimized FPGA architecture can outperform a

GPU in performance per Watt and total energy consumption.

13 Conclusion

Quantum circuits for the non-linear equilibrium

distribution function for the D1Q3 lattice-based model

were introduced as a step towards more complete models

such as D2Q9 and D3Q27. A key feature of the derived circuits

is the use of the quantum computational basis encoding along

with the use of a reduced-precision floating-point

representation. This in contrast to existing work typically

employing fixed-point representation in quantum

algorithms using the quantum computational basis

encoding. It is demonstrated that for modest precision

(e.g., using 4-bit mantissas) quantum circuits with fewer

than 40 qubits can be derived. Even with further ancillae

qubits that result from transpiling the circuit to native gates

available on quantum hardware, this shows that for Noisy

Intermediate-Scale Quantum (NISQ) Computer-era

hardware, demonstration of the introduced quantum

circuits is feasible. The quantum-circuit transformation

introduced and detailed in this work show that starting

from the full circuit, reduced circuits can effectively be

created so that step-by-step the behavior of the full

quantum circuit can be analyzed using more limited

resources, while taking advantage of the fine-grained

parallelism offered by FPGAs.

We demonstrate reductions from 37 to 23 qubits for the

quantum circuit computing the equilibrium distribution

function of D1Q3 model with input velocity defined in

floating-point format with a 4-qubit mantissa and 3-qubit

exponent. For increased mantissa qubit count of 16, a

reduction from 109 to 71 qubits occurs. We show that the

reduced circuit can be successfully run on an FPGA system

and that the FPGA simulation has more than 3× better

performance per Watt compared to the CPU simulation.

In future work, the quantum-circuit transformation

methods will be analyzed further and extended to wider

range of circuits. In terms of fluid dynamics applications, the

step towards D2Q9 and D3Q27 is the aim of future work. We

will also explore a number of techniques to improve the FPGA

simulation performance, with the aim of obtaining a 10×

improvement in performance per Watt over the CPU and

outperforming the GPU in energy consumption.
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