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Over the years, metamaterials have shown their potential in a wide range of

different disciplines, e.g. optics, electromagnetics, dynamics etc. Metamaterials

are, often periodic, engineered structures made of conventional materials but

which exhibit properties not encountered in nature. In the field of noise and

vibration, metamaterials have received increasing interest since they can obtain

frequency ranges of high noise and vibration attenuation, called stop bands.

Their performance is often investigated by means of dispersion curves, which

are calculated based on a single unit cell and assuming a structure of infinite

periodic extent. Nowadays, the attenuation of acoustic and structural waves is

commonly tackled as two separate problems, whereby either acoustic or

structural dispersion curves are used. Recently, vibro-acoustic unit cell

designs have come to the fore which can exhibit appealing characteristics,

such as simultaneous structural and acoustic stop bands. To consider the vibro-

acoustic coupling in these unit cell designs during the performance predictions,

vibro-acoustic dispersion curve calculations are thus required. However, these

computations are typically cumbersome to perform due to the associated high

computational cost and therefore, often, uncoupled dispersion curves are used

during the performance assessment. Although several unit cell model order

reduction approaches have recently been proposed to accelerate the

dispersion curve computations, such as the Bloch mode synthesis (BMS) and

Generalized Bloch mode synthesis (GBMS), they are not readily applicable to

vibro-acoustic unit cells. To accelerate vibro-acoustic dispersion curve

calculations, this work extends the BMS and GBMS techniques towards 2D

and 3D periodic vibro-acoustic systems. To balance accuracy versus speed, the

extended BMS reduction basis is constructed using a split set of vibro-acoustic

coupled modes, while the extended GBMS reduction basis uses the uncoupled

modes. Several verification cases demonstrate that strongly accelerated vibro-

acoustic dispersion curve computations are achieved whereby the vibro-

acoustic coupling inside the unit cell is accurately accounted for.
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1 Introduction

In the past decades, wave control by means of metamaterial

structures is extensively researched in different disciplines, e.g.

electromagnetics, dynamics etc. (Hussein et al. (2014)).

Metamaterials are, often periodic, engineered structures made

of conventional materials which exhibit properties not

encountered in nature. In the field of elastic and acoustic

wave control, metamaterials have shown potential for

attenuating noise and vibrations in specific frequency ranges,

called stop bands. Two types of metamaterials are commonly

distinguished: 1) phononic crystals which rely on Bragg

scattering (Hussein et al. (2014)) and 2) locally resonant

metamaterials which are based on Fano-type interference (Liu

et al. (2000)). The performance of metamaterials is often

investigated by means of dispersion curves (Bloch (1929)).

These use as an input the smallest non-repetitive part of the

structure, denoted as the unit cell (UC), while assuming infinite

periodicity by applying the Bloch-Floquet theorem. The UC is

commonly modeled using the finite element (FE) technique due

to its suitability to discretize complex designs and its availability

in commercial software packages. The dispersion curves give a

relation between the frequency and propagation constant and

contain information on the wave propagation in the infinite

periodic structure. Several approaches exist to determine the

dispersion curves, 1) the direct approach imposes real

frequencies and solves the dispersion eigenvalue problem for

the corresponding propagation constants, while 2) the inverse

technique imposes the propagation constants and solves for the

frequencies (Hussein et al. (2014)).

Nowadays, metamaterials are mostly designed to attenuate

either acoustic or structural waves, resulting in purely acoustic or

structural phononic crystals and locally resonant metamaterials

e.g. Claeys et al. (2013); Yamamoto (2018) etc. Note that

structural metamaterials can be used in vibro-acoustic context

while no vibro-acoustic stop band is present, e.g. Claeys et al.

(2016). Since either structural or acoustic bandgaps are achieved,

their performance is typically investigated with purely structural

or acoustic dispersion curves, respectively. Recently, an

increasing trend is observed towards intricate vibro-acoustic

UC designs, consisting of a solid and an air phase, which aim

to obtain extraordinary performance characteristics such as: 1)

simultaneous structural and acoustic bandgaps, e.g. Bilal et al.

(2018); Li et al. (2022) or 2) structural and acoustic resonances

are combined to achieve multiple peaks in the sound

transmission loss performance, e.g. Roca and Hussein (2021).

To include the effects of the vibro-acoustic coupling during the

design and performance assessment of these novel structures,

vibro-acoustic dispersion curves are required. Although vibro-

acoustic dispersion curves contain valuable information,

uncoupled dispersion curves are often computed in the

literature to circumvent the high computational cost

associated with the coupled dispersion curve calculations.

Purely structural or acoustic dispersion curve calculations are

already cumbersome to compute due to the presence of (often)

many degrees-of-freedom (DOFs) in the complex UC designs

and the high number of required propagation constant

evaluations. This computational cost increases for vibro-

acoustic dispersion curves due to the nature of the (coupled)

vibro-acoustic system and the increase of the DOFs in the vibro-

acoustic system description, e.g. (u,p)-formulation.

The high dispersion curve calculation cost can be reduced by

using model order reduction (MOR) techniques: a UC model

with less DOFs is constructed while preserving the important

dynamic information of the reference model. Several UC MOR

techniques exist, ranging from wave-based methods (cf. Hussein

(2009)) to component mode synthesis techniques such as the

Bloch mode synthesis (BMS) and generalized BMS (GBMS) (cf.

Krattiger and Hussein (2014; 2018)) and hybrid methods (cf.

Boukadia et al. (2018); Droz et al. (2016)). This work builds upon

the (G)BMS techniques, since they have the advantage that the

reduction of the UC happens without a dependency on the wave

propagation constants. The BMS method reduces the interior

DOFs with a truncated set of normal modes, while the GBMS also

reduces the boundary DOFs with a set of boundary modes. It are

Craig-Bampton techniques which were first derived by Krattiger

and Hussein (2014, 2018) for the acceleration of the direct

dispersion curve computation of 2D periodic media. Recently,

the (G)BMS methods were extended towards 1) inverse

dispersion curve computation by Palermo and Marzani

(2016), 2) 3D periodic structures by Cool et al. (2021a,b) and

3) damped UC designs by Aladwani et al. (2022). All techniques

have, until now, only been applied to purely structural or acoustic

UC designs. The Craig-Bampton method has been extended in a

substructuring context for the analysis of vibro-acoustic finite

systems. Wolf (1977) suggested the use of uncoupled structural

and acoustic modes for the construction of the reduction basis,

while Ma and Hagiwara (1991) and Stammberger and Voss

(2008) proposed the use of both the coupled left and right

eigenvectors. Recently, Maess and Gaul (2006); Herrmann

et al. (2010) have shown the applicability of the Craig-

Bampton method while reducing the interior and boundary

DOFs for the frequency response calculation of fluid-filled

piping systems. The extension and applicability of the Craig-

Bampton method in a UC reduction context for the acceleration

of vibro-acoustic dispersion curves is, however, yet to be

investigated.

In this work, the BMS and GBMS techniques are extended

towards 2D and 3D periodic vibro-acoustic UCs to enable

accelerated vibro-acoustic dispersion curve computations.

The efficiency and accuracy of the extended methodologies

are investigated using 2D and 3D vibro-acoustic UC models,

consisting of a solid and an air phase, which contain a large

number of DOFs and differ not only in the periodicity

dimensionality but also in the vibro-acoustic coupling

strength.
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This paper is structured as follows. Section 2 gives an

overview of the applied vibro-acoustic FE UC model and

dispersion curve calculation. Next, the extended BMS and

GBMS model reduction technique are proposed. Section 3

elaborates on two numerical verification cases focusing on the

achieved acceleration and accuracy of the methods. Conclusions

are given in Section 4.

2 Methodology

This section gives an overview of the applied vibro-acoustic

FE modeling, the dispersion curve calculation and the BMS and

GBMS MOR techniques for vibro-acoustic UCs. For sake of

brevity, the methodologies are elaborated for 2D periodic

structures. Using the work of Cool et al. (2021a), these can be

readily extended towards 3D periodic structures.

2.1 Vibro-acoustic UC model

Several techniques exist in the literature to discretize a vibro-

acoustic system. In this work, the (u, p)-formulation is used in

which the structural DOFs are the displacements u and the

acoustic DOFs are the pressures p (Fahy and Gardonio, 2007).

The equations of motion of an undamped vibro-acoustic FE UC

with N DOFs are given in matrix format by:

−ω2 Ms 0
ρaC

T Ma
[ ]︸�����︷︷�����︸

M

+ Ks −C
0 Ka

[ ]︸����︷︷����︸
K

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ u
p

[ ]︸��︷︷��︸
q

� f s
fa

[ ]︸��︷︷��︸
f

, (1)

in which ω is the radial frequency, q, f ∈ RN×1 are the generalized

nodal DOFs (displacement u and pressure p) and force vectors,

and M,K ∈ RN×N are the mass and stiffness matrices. The

subscript s and a represent, respectively, the structural and

acoustic parts, C is the coupling matrix and ρa is the density

of the acoustic medium. The FE model matrices are extracted

from commercial FE software, i.e. Siemens Simcenter 3D is used

in this work.

2.2 Dispersion curve calculation

Starting from the FE UC model, dispersion curves can be

computed which describe the wave propagation in the

corresponding infinite periodic structure. The curves are

obtained by applying the Bloch-Floquet theorem by Bloch

(1929) to the UC model. The theorem states that the

generalized DOFs and forces on the UC boundaries are scaled

with λx � ejμx and λy � ejμy when moving along the periodicity

lattice vectors from one UC to the next UC, with μ = (μx, μy) the

propagation vector. By partitioning the UC according to the

interior and boundary DOFs (Figure 1) and when no external

excitation is present, the Bloch-Floquet periodic boundary

conditions and force equilibrium are formulated using the

periodicity matrix Λ:

q � qTI q
T
L q

T
R q

T
B q

T
T q

T
BL q

T
BR q

T
TL q

T
TR[ ]T, q � Λ~q,ΛHf � 0 (2)

in which H represents the Hermitian transpose, ~q represents the

periodic DOF vector and

Λ �
I 0 0 0

0 Λx 0 0

0 0 Λy 0

0 0 0 Λx,y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Λi � I

λiI
[ ],

Λi,j �
I

λiI

λjI

λiλjI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ~q �

qI
qL
qB
qBL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(3)

Note that for a 3D periodic UC design, the node partitioning

needs to be adapted, see the work of Cool et al. (2021a).

Combining Eqs 1, 2 leads to the dispersion eigenvalue

problem which governs the wave propagation characteristics

of the 2D infinite periodic structure:

~K − ω2 ~M( )~q � 0, ~K � ΛHKΛ, ~M � ΛHMΛ. (4)

Different approaches exist to solve this eigenvalue problem,

since it is both a function of ω and μ (Hussein et al. (2014)). In

this work, the ω(μ)-approach is applied: first a set of real μ is

imposed and next Eq. 4 is solved towards ω. This leads to free

wave propagation solutions, which are typically used to identify

band gaps. The set of real μ-combinations are only selected along

the Irreducible Brillouin Contour (IBC) of the UC (Kittel (2010)).

In this work, Eq. 4 is solved in Matlab using the built-in

function EIGS.

2.3 Model order reduction

The computational cost associated with the dispersion curve

calculation quickly increases with the number of UC DOFs and

the number of imposed μ-combinations since Eq. 4 needs to be

solved for each μ-pair. MOR techniques are employed to

accelerate these computations. In this work, the BMS

technique by Krattiger and Hussein (2014) and GBMS

technique by Krattiger and Hussein (2018) are extended

towards the use for vibro-acoustic UCs. The techniques are

component mode synthesis methods in which the UC is

divided into the interior and boundary part. Both methods are

projection-based MOR techniques in which a projection basis

B ∈ CN×NB is constructed using modal information to reduce the

mass and stiffness matrices from dimension N to NB (with

NB ≪ N):
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M � BTMB, K � BTKB. (5)

After reducing the UC model matrices, the Bloch-Floquet

BCs will be enforced to solve the dispersion eigenvalue problem.

Following sections describe the construction of the reduction

basis B for both methodologies.

2.3.1 Bloch mode synthesis
The BMS method only reduces the interior (both structural

and acoustic) DOFs of the UC. Therefore, the coupled vibro-

acoustic full order model (FOM) system of Eq. 1 is first divided

into the interior (I) and boundary (A) part of the entire UC:

KII KIA

KAI KAA
[ ] − ω2 MII MIA

MAI MAA
[ ]( ) qI

qA
[ ] � 0, (6)

in which qI represents theNI interior DOFs and qA theNA boundary

DOFs. Next, the projection matrix B is constructed by reducing the

interior part with a Craig-Bampton approach: the interior DOFs are

approximated by a linear combination of a set of fixed interface

normal modes Φt
I and a set of static constraint modes Ψt

IA:

qI
qA

[ ] � B
ηI
qA

[ ] � Φt
I Ψt

IA

0 I
[ ] ηI

qA
[ ], (7)

in which ηI is the reduced set of interior modal DOFs. In the

literature, Craig-Bampton techniques exist using fixed or free

interface normal modes, e.g. Voormeeren et al. (2010). In this

work, the fixed interface normal modes are used because only

structure-structure and acoustic-acoustic interactions occur on

the boundary between adjacent UCs. Note that both the

structural and acoustic boundary DOFs are kept as physical

DOFs, allowing straightforward application of the Bloch-Floquet

BCs to the reduced DOF set.

Φt
I is constructed starting from the coupled vibro-acoustic

fixed interface normal modes corresponding to the nI smallest

eigenfrequencies:

KII − ω2
iMII( )ϕi

I � 0, i � 1 . . . nI. (8)

However, these coupled eigenmodes do not form an efficient

reduction basis since the systemmatrices are unsymmetric leading

to the right eigenvectors not being mutually orthogonal (Creixell-

Mediante et al. (2018)). Therefore, the fixed interface normal

modes are divided into the structural and acoustic parts:

ϕi
I �

ϕi
s,I

ϕi
a,I

[ ], Φs,I � ϕ1
s,I ϕ2

s,I . . . ϕnI
s,I[ ],

Φa,I � ϕ1
a,I ϕ2

a,I . . . ϕnI
a,I[ ].

(9)

Due to the splitting, the reduced system matrix can become

singular. A normalization of the modes after the division,

denoted by Φ̂s,I and Φ̂a,I, solves these numerical problems.

Finally, the applied Φt
I reads:

Φt
I � Φ̂s,I 0

0 Φ̂a,I
[ ]. (10)

The NI interior DOFs are now reduced to 2nI DOFs. For

purely structural or acoustic problems, the number of nI is

commonly determined using a frequency-based truncation

criterion: the modes up to two times the maximum frequency

of interest are typically included (Krattiger and Hussein (2014)).

However, for vibro-acoustic problems this does not guarantee a

good accuracy. In Boily and Charron (1999), a truncation rule

which applies the information of the coupling terms is proposed

to identify which modes are most important to include. In this

work, instead, the commonly applied truncation criterion is

applied with a higher frequency tolerance (four times the

maximum frequency of interest).

The static constraint modes Ψt
IA represent the influence of

the boundary motion on the interior part. One option is to

compute this using the vibro-acoustic system matrices:

Ψt
IA � −K−1

IIKIA. (11)

FIGURE 1
Schematic visualization of the node groups for a 2D periodic vibro-acoustic UC: (A) three-dimensional view, (B) top view.
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Another option is to compute the static constraint modes for

the structural and acoustic parts separately, without taking into

account any coupling (Herrmann et al. (2010)):

Ψs,IA � −K−1
s,IIKs,IA, Ψa,IA � −K−1

a,IIKa,IA,

Ψt
IA � Ψs,IA 0

0 Ψa,IA
[ ]. (12)

The difference between both approaches is that the former

considers an extra dependency of the boundary pressure DOFs on

the interior displacement DOFs arising from the coupling matrix C.

Although using the coupled systemmatrices takesmore information

into account, it is opted to use the separated approach in this work

because 1) the computation cost to compute the static constraint

modes with the coupled system matrices quickly increases with

number of DOFs and 2) the separated approach has the advantage

that the structure of the original model is preserved upon projection.

2.3.2 Generalized Bloch mode synthesis
Since the BMS technique only reduces the interior DOFs, an

extra reduction can take place by reducing the boundary DOFs,

using the GBMSmethod, first proposed by Krattiger and Hussein

(2018). Starting from the BMS, an extra boundary

transformation matrix L is constructed to also approximate

the boundary DOFs using a reduced set of modal boundary

DOFs: qA = LηA. The reduction basis B becomes:

qI
qA

[ ] � B
ηI
ηA

[ ] � Φt
I Ψt

IAL
0 L

[ ] ηI
ηA

[ ]. (13)

The transformation matrix L is constructed as follows. After

the BMS reduction of the system according to Eq. 5, the BMS

reduced system is first partitioned according to ηI and qA:

KII KIA

KAI KAA
[ ] − ω2 MII MIA

MAI MAA
[ ]( ) ηI

qA
[ ] � 0. (14)

Next, the boundary motion is approximated by a truncated

set of normal modes. Since the boundary only consists of one

layer of DOFs, the coupling between the structural and acoustic

parts is not taken into account in this work. Moreover, as for the

BMS technique, using the coupled modes was found to lead to

slow convergence. Separate structural and acoustic boundary

modes are, therefore, computed instead according to:

Ks,AA − ω2
jMs,AA( )ϕj

s,A � 0,

Φs,A � ϕ1
s,A ϕ2

s,A . . . ϕns,A
s,A[ ], ns,A ≪Ns,A (15)

and

Ka,AA − ω2
jMa,AA( )ϕj

a,A � 0,
Φa,A � ϕ1

a,A ϕ2
a,A . . . ϕna,A

a,A[ ], na,A ≪Na,A. (16)

In contrast to the selection of nI, no frequency criterion can be

used to select ns,A and na,A (Herrmann et al. (2010)). Since the

GBMS reduction is applied before the Bloch-Floquet BCs, the

reduced modal boundary DOFs need to contain the same

compatibility conditions as the FOM. The compatibility

conditions are imposed to the system for the structural and

acoustic parts separately. They are ensured by first partitioning

the mode sets Φs,A and Φa,A according to the different

boundary parts, cf. Eq. 2. Next, the sets which need to be

compatible are combined. These combined sets are

orthogonalized with a singular value decomposition into new

bases Φp, with p representing the DOFs which are combined

e.g. Φs,LR is the basis for the structural boundary DOFs of the

left and right face of the UC. All new bases are combined to

construct the transformation matrix L:

L �

I2 ⊗ Φs,LR 0 0 0 0 0
0 I2 ⊗ Φa,LR 0 0 0 0
0 0 I2 ⊗ Φs,BT 0 0 0
0 0 0 I2 ⊗ Φa,BT 0 0
0 0 0 0 I4 ⊗ Φs,E 0
0 0 0 0 0 I4 ⊗ Φa,E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(17)

with Ii the identity matrix of dimension i and E all edge DOFs

(BL, BR, TR, TL), cf. Figure 1.

3 Numerical verification

This section discusses a 2D and 3D verification case to

investigate the efficiency and accuracy of the proposed BMS

and GBMS method for the calculation of vibro-acoustic

dispersion curves. Both cases contain a solid and an air phase,

while they differ in the dimension of periodicity and the strength

of the vibro-acoustic coupling. All calculations are performed

on a laptop with 32 GB RAM and a 2.6 GHz Intel Core i7-9540

processor using Matlab R2019b. A relative frequency error of

the reduced order model (ROM) with respect to the FOM is

used to quantify the accuracy of the computed dispersion

curves:

ϵrel � ωROM − ωFOM

ωFOM

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣. (18)

3.1 2D periodic case

The first case is based on the vibro-acoustic 2D periodic UC of

Roca and Hussein (2021), visualized in Figure 2A. It consist of a

hollow plate with a hollow pillar on top. It is opted to choose a UC

with the pillar in the middle because it is favorable for the efficiency

of the BMS and GBMS technique to choose the UC with the lowest

number of boundary DOFs to start with, as shown in Cool et al.

(2021b). The in-plane UC dimensions are 25 × 25 mm, the other

geometrical dimensions can be found in Roca and Hussein (2021),

only the plate wall thickness is decreased to 0.25 mm to increase the

vibro-acoustic coupling effect. The structural material is polymeric

ABS (Young’s modulus E = 1,627MPa, density ρ = 1,050 kg/m3,

Poisson’s ratio ] = 0.35), while the voids are filled with air (ρa =
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1.225 kg/m3, ca = 340 m/s). The UC is discretized using commercial

FE software with 84424 structural and 46644 acoustic linear

tetrahedral elements. This leads to a FOM with 97680 DOFs

from which 86448 structural and 11232 acoustic. The frequency

range of interest goes from 0 Hz till 4,500 Hz, leading to the

calculation of the first 16 dispersion curves. The dispersion

curves are calculated along the IBC (Figure 2B) with a

propagation constant resolution of 0.02π. The dispersion curve

calculation of the FOM, which contains 95010 DOFs after

applying the Bloch-Floquet BCs, takes 5,648 s. The vibro-acoustic

dispersion curves, together with the purely structural and acoustic

curves, are shown in Figure 2C. The difference between the coupled

and uncoupled dispersion curves indicates a strong vibro-acoustic

coupling.

To accelerate the dispersion curve calculation, the BMS

technique is applied with nI = 50 modes according to four times

the maximum frequency of interest criterion. This results in a ROM

of 5,416 DOFs or 2,746 DOFs after applying the Bloch-Floquet BCs.

The total time to obtain the dispersion curves with the BMS

technique is 369 s, of which 45.7% is due to the construction of

the ROM (Figure 3A). The dispersion curve calculation is therefore

accelerated with a factor 15.3 with respect to the FOM. Figure 3B

shows the resulting dispersion curves and the corresponding relative

error, cf. Eq. 18. An accurate dispersion curve prediction is obtained

FIGURE 2
(A) FEmodel of the vibro-acoustic 2D periodic UCwith a detail of one fourth of the acoustic and structural part, (B) IBC in reciprocal wave space,
(C) Coupled vibro-acoustic and uncoupled structural and acoustic FOM dispersion curves.

FIGURE 3
Results of the vibro-acoustic 2D periodic case. (A) Comparison of the different calculation times for the construction of the ROM and the
dispersion curve calculation. (B) Dispersion curves of FOM and ROMs with corresponding relative error.
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with an error of 6 · 10–3 or smaller. Note that the relative error

increases with increasing frequency due to the validity of the modal

reduction basis.

To further accelerate the dispersion curve calculation, the

boundary DOFs are also reduced with the GBMS technique.

ns,A = 100 and na,A = 30 are chosen for the structural and

acoustic parts, respectively. This results in a reduced system with

704 DOFs, or 390 DOFs after applying the Bloch-Floquet BCs.With

this reduction, the total calculation time reduces further to 271 s,

TABLE 1 Overview of the results: DOFs after applying the Bloch-
Floquet BCs, the total required time and the relative error when
applying the BMS and GBMS technique to the vibro-acoustic 2D
periodic case.

FOM BMS GBMS

DOFs [/] 95010 2,746 390

Total time [s] 5648 369 271

Largest relative error [/] — 6 · 10–3 1 · 10–2

FIGURE 4
(A) FE model of the vibro-acoustic 3D periodic UC with a detail of one eighth of the acoustic and structural part, (B) IBC in reciprocal wave
space, (C) Coupled vibro-acoustic and uncoupled structural and acoustic FOM dispersion curves.

FIGURE 5
Results of the vibro-acoustic 3D periodic case. (A) Comparison of the different calculation times for the construction of the ROM and the
dispersion curve calculation. (B) Dispersion curves of FOM and ROMs with corresponding relative error.
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from which merely 4.9 s are required for the IBC calculation

(Figure 3A). This represents an acceleration with a factor

20.8 with respect to the FOM. Remark that not the full BMS

construction time is required to set-up the GBMS reduction

basis, which explains the reduced time for the interior reduction

with the GBMS method. Figure 3B shows the resulting dispersion

curves and the corresponding relative error. The relative error using

the GBMS technique is slightly larger than with the BMS technique

due to the additional approximation of the boundary DOFs, but still

an accurate prediction is obtained with a relative error smaller than

1 · 10–2. An overview of the results in terms of the DOFs, total

required time and obtained relative error is given in Table 1.

3.2 3D periodic case

The second case is based on the vibro-acoustic 3D periodic UC

of Li et al. (2022) (Figure 4A). It combines a mass-in-mass local

resonance system with Helmholtz resonators to obtain a

simultaneous bandgap for structural and acoustic waves. The UC

dimension is 50 × 50 × 50 mm. The geometry is simplified with

respect to Li et al. (2022), while the geometric parameters are tuned

to obtain an overlapping structural and acoustic bandgap. The

structure consists of resin (E = 2,600MPa, ρ = 1,300 kg/m3, ] = 0.4),

while air has the same properties as before. Only the non-closed air

compartments, resulting in the acoustic bandgap, are considered to

the example Li et al. (2022). The UC is discretized with

80592 structural and 51712 acoustic linear tetrahedral elements

resulting in 82093 DOFs, with 69060 structural and 13033 acoustic

ones. The frequency range of interest goes from 0 Hz till 5,000 Hz.

23 dispersion curves are computed along the IBC (Figure 4B) with a

propagation constant resolution of 0.02π. Applying the Bloch-

Floquet BCs to the FOM results in a system with 76750 DOFs.

The dispersion curve calculation using this FOM takes 19650 s. The

vibro-acoustic dispersion curves, together with the purely structural

and acoustic curves, are shown in Figure 4C. An acoustic bandgap is

detected between 1,201 Hz and 1,338 Hz, while a structural bandgap

is present between 1,166 Hz and 2,433 Hz. The separately computed

dispersion curves overlapwith the coupled ones, indicating that only

a weak vibro-acoustic coupling is present.

To accelerate the dispersion curve calculation, the interior DOFs

are reduced with nI = 95. With this technique, the FOM reduces to a

system with 10696 DOFs, or 5,353 DOFs after applying the Bloch-

Floquet BCs. The total time to construct the ROM and compute the

dispersion curves along the IBC, takes 3,028 s, fromwhich 387.7 s are

needed for the construction of the ROM (Figure 5A). This represents

an acceleration with a factor 6.5 with respect to the FOM calculation.

Figure 5B shows the resulting dispersion curves and the

corresponding relative error. Good accuracy is obtained with an

error smaller than 4 · 10–3 with respect to the FOMdispersion curves.

To further reduce the computation time, the boundary DOFs

are reduced by applying the GBMS with ns,A = 300 and na,A = 45.

The resulting ROM consist of 2,638 DOFs, or 1,324 DOFs after

applying the Bloch-Floquet BCs. The total computation time to

set up the ROM and compute the dispersion curves is 1,348 s,

with 153 s required for the dispersion curve calculation itself

(Figure 5A). This is an acceleration with a factor 14.6 with respect

to the FOM calculation. Figure 5B shows the dispersion curves

and corresponding relative errors. It is concluded that the

dispersion curves can be obtained in a considerably reduced

time while maintaining a good accuracy with relative error

smaller than 2 · 10–2. An overview of the results in terms of

the DOFs, total required time and obtained relative error is given

in Table 2.

4 Conclusion

In this work, the BMS and GBMS reduction techniques are

extended towards 2D and 3D periodic vibro-acoustic UCs to achieve

efficient vibro-acoustic dispersion curve computations. The BMS

reduction basis is constructed using a partitioned set of vibro-

acoustic coupled modes, while the construction of the GBMS

does not take into account the vibro-acoustic coupling. With two

numerical case studies, it is shown that the extended BMS and

GBMS methods enable strongly accelerated vibro-acoustic

dispersion curves computations while preserving a good

accuracy. Due to the accelerated dispersion curve predictions, the

presented methodology is particularly interesting in cases where

numerous dispersion curve calculations are required, e.g.

optimization of bandgap designs, assessment of design variants etc.
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