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Noise mitigation by means of the acoustic black hole (ABH) effect is a well-known
engineering solution. However, the conventional method of applying ABH effect
which requires modification of the structure geometry has various limitations which
encourage the research of virtual ABH concept. In this study, the effect of ABH was
applied through introducing virtual stiffness by a shunt circuit. According to the force-
voltage electric analogy, stiffness has an inverse relationship with capacitance. So that
the ABH effect can be virtually realized by following a power law profile using an array
of independent capacitive shunts. The concept is studied through finite element
simulation developing a macro code in ANSYS Parametric Design Language (APDL).
To evaluate the influence of capacitance profile on the acoustic radiated power,
parametric studies are conducted. Based on the results of the parametric studies, the
capacitance profile is tuned for minimum radiated power. It is revealed that the virtual
acoustic black hole (ABH) effect can offer 10.29%, 6.37%, and 7.47% reduction in the
radiated power from the first to the last targeted mode, respectively. The virtual ABH
effect introduced in this study can be used for semi-active structural noise isolation
without any weight or manufacturing penalty.
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1 Introduction

The increasing requirement for noise management in industries has led to a substantial
research being conducted on noise cancellation methods (Simons and Waters, 2004; Wang, 2010;
Towers et al., 2021). Sound emission can be generally classified to structure-borne and air-borne
noise. Structure-born noise occurs when a mechanism vibrates due to direct mechanical contact
with the vibration source. Air-borne noise is produced by a source which radiates directly to the air
(Berendt et al., 1967). Usually, the structure-borne noise requires significant attention since it is a
low-frequency tonal noise which cannot be controlled by conventional barrier or insulation
methods (Ngai andNg, 2003; FathiahWaziralilah et al., 2018). Passive techniques are often adopted
to dampen the structure-borne noise despite a significant weight penalty often associated.

The effectiveness of electronic damping as a low-cost and lightweight passive technique
is examined for its vibroacoustic attenuation effect by many authors (Park and Inman, 2003;
Zhao et al., 2016; Suryakant et al., 2022). A case study revealed 7 dB reduction in sound
transmission achieved by a shunt circuit for a clamped plate excited by a sound source in the
frequency range of 10–1,000 Hz (Ahmadian and Jeric, 2001). Another study revealed at least
a 57% reduction in radiated noise for a clamped plate excited by a shaker in the frequency
range of 0–245 Hz (Ahmadian et al., 2001).
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Another efficient solution for noise cancellation is the acoustic black
hole (ABH) effect, a passive, lightweight, and economic technique.
According to the ABH effect theory, the vibration wave can be focalized
and diminished to zero due to an exponential reduction in the host
structure thickness (Li and Ding, 2018; Hook et al., 2019; Mousavi et al.,
2022). The thickness exponential function and position of ABH are
determinative factors for the amount of energy trapped (Rothe et al.,
2016; Liang et al., 2022). There exist several restrictions in the
introduction of the ABH effect to the geometry. The dependency of
ABH profile position on its efficiency limits its isolation effect to a few
modes of resonance (Zhang et al., 2019; Gao et al., 2022). Another
shortcoming of the ABH effect is its inadequacy at low frequencies
(Denis et al., 2014; Li et al., 2021; Liang et al., 2021). In one study, the
effective frequency range of ABH is broadened by integrating shunt
damping and transferring the energy from low to high frequencies
(Zhang et al., 2022). An inevitable condition for ABH geometries is that
the host structure must be large enough to allow carving out the power
law profile which is a limitation in vehicle and aero applications (Ji et al.,
2018; Park et al., 2019). This constraint is overcome partially by using
ABH-inspired active electronic dampening in conjunction with the
force-current electric analogy by Maugan et al. (2019).

The use of semi-active systems, also known as adaptive systems,
for noise isolation has received attention in the last decade (Bein
et al., 2008; Zhu et al., 2017; Wrona et al., 2021a). With the help of
semi-active systems, certain resonant peaks can be attenuated while
also adverse impacts of vibration absorbers on non-target modes
may be prevented. Using the shunt technique in an adaptive
manner, one may absorb noise and vibration at various modes
by proper adjustment of the shunt circuit impedances (Soong and
Spencer, 2000; Corr and Clark, 2001; Niederberger et al., 2003; Bein
et al., 2008). Optimizing tuning variable which determines the
control states is a common task for semi-active shunt approach
(Gonzalez-Buelga et al., 2014). The control states can consist of ON
and OFF modes (Wrona et al., 2021b), or it can take several states as
reported by Li and Zhu (2021) using a rheostat to introduce
numerous resistance levels.

Limitations associated with physical ABH execution such as
low-frequency inefficiency (Denis et al., 2014; Li et al., 2021; Liang
et al., 2021), space occupation (Ji et al., 2018; Park et al., 2019), and
tunability to narrow frequency ranges (Zhang et al., 2019; Gao et al.,
2022) motivates the research to apply the ABH effect virtually
through a semi-active strategy.

In the present study, a beam structure is covered by an array
of piezoelectric elements shunted by capacitors to impose the
power law stiffness profile virtually. To attenuate the three
resonant peaks of the beam which contribute in the radiated
noise, the shunt circuit is tuned in terms of power law function.
The present approach can be applied to ultra-thin structures
where physically applying the ABH effect is impossible. To the
best of our knowledge, this is the first study to introduce the
concept of virtual ABH effect integrated with force-voltage
analogy as a semi-active noise mitigation approach.

2 Materials and methods

To explain the ABH effect, consider a wedge whose variable
thickness follows a power law profile as h(x) � εxm (ε and m > 0 ),

shown by Figure 1. If k(x) is the local wave number of a flexural
wave, the total wave transit time through the wedge can be derived
by Eq. 1.

τ � ∫ x

0
k x( )dx (1)

Considering kp as the wave number of quasi-longitudinal waves,
the local wave number can be expressed by Eq. 2 for a wedge with a
power-law profile.

k x( ) � 12
1
4kp εxm( )−1/2 (2)

By substitution of Eq. 2 into Eq. 1, it can be seen that the integral
diverges form≥ 2. It means that if the wedge is designed ideally, the
wave never reaches the edge. This perfect absorption is known as
ABH effect which is imposed by geometry (Krylov and Tilman,
2004).

In the present study it is of interest to introduce the ABH effect
imposed not by geometry but by applying the electric analogy. In
this regard, consider a dynamic system consisting of a mass (m), a
spring (k), and a damper (b) subjected to the excitation f as given by
Figure 2A. Moreover, take a basic electric circuit with resistance (R),
inductance (I), capacitance (C), subjected to a voltage V as given by
Figure 2B.

The force-voltage analogy can be established as

F ≈ V (3)
Eq. 3 can be derived as

m
d2x

dt2
( ) + b

dx

dt
( ) + kx ≈ L

di

dt
( ) + Ri + 1

C
∫idt( ) (4)

Hence, Eq. 4 implies that capacitance is relevant to the reverse of
stiffness (Darleux et al., 2022).

In this regard, the ABH effect imposed by geometry (see
Figure 3A) is virtually defined by considering i number of
piezoelectric elements with equal distances attached on a beam
surface (see Figure 3B). Each piezoelectric element is shunted
independently by a capacitor. The ideal ABH stiffness, ideal
capacitance, and real capacitance for the beam structure are well
noted by k, Ci, and C, respectively (see Figure 3C). Here, two points
should be emphasized for a better understanding of the problem.
First, the lower limit of real and ideal capacitance is always non-zero
which means an artificial thickness is added along the beam. Second,
the maximum value of capacitance is infinite for an ideal ABH (Ci)
shown by Figure 3C. However, the present modeling cannot
simulate an ideal ABH for two reasons: (a) the beam initial
thickness cannot be set to zero, and (b) there is a geometry
constraint that corresponds to the distance between piezoelectric

FIGURE 1
Ideal wedge shape with power law profile.
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patches. So that the maximum capacitance is not infinite but as big
as super capacitors.

By tuning the capacitive shunt technique, maximum capacitance
should be defined at the beam antinode and effective noise isolation
is expected, consequently. Since the antinode position is variable
frommode to mode, a semi-active scheme can be adopted to change
the power law profile, and attenuate several modes. So that the
capacitance values can be switched among various states as depicted
by Figure 4. To absorb the jth mode of resonance, a series of i number
of capacitors can be considered as {C1j, C2j, ..., Cij}, tunable to the
corresponding mode according to power law as indicated by Eq. 5.

Cij � Cmaxai
−n (5)

Where Cmax is the maximum value of capacitance which can be
taken by one or more than one capacitors depending on the target
mode to be tuned. Moreover, ai represents the element of an
arithmetic progression, the first term of which is 1 and the
difference between terms is r as expressed by Eq. 6.

ai � 1 + i − 1( )r (6)

The effectiveness of the proposed semi-active scheme can be
evaluated by solving the harmonic analysis of the cantilever beam.
The vibrating beam excites the surrounding air and emits noise. The
sound power corresponding to the radiated noise can be represented
as the integral of the acoustic intensity along the normal direction on
a given surface Γ as

P � ∫∫
Γ
I
.
.n
.
dΓ (7)

where I is the acoustic intensity, n
.

is the normal vector, and Γ is the
structure-air interface. The power carried by the acoustic wave per
unit area in the normal surface direction is known as the acoustic
intensity given by (Hambric and Taylor, 1994)

I
. � 1

2
RE(p. v.) (8)

where p and v refer to the radiated acoustic pressure, and particle
velocity vector of air, respectively. By establishing continuity of
velocity at the solid/air interface, the structural velocity will be
equaled to air particle velocity as

FIGURE 2
(A) Basic dynamic system, (B) analogeous electrical circuit.

FIGURE 3
(A) physical ABH, (B) virtual ABH, (C) stiffness, and capacitance variations.
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vs,n � vair � p

ρaircair
(9)

where vs,n, vair, ρair (1.2041 kg/m3), cair, and p correspond to the
structure normal velocity, air particle velocity, air density, sound
speed in air, and acoustic pressure, respectively. The equivalent
sound power released from the vibrating structure can be
represented as a function of the structure’s vibration velocity by
substitution of Eq. 9 into Eq. 8. As employed in this study, the
equivalent radiated power (ERP) and its level (ERPL) can be
obtained as (Kim et al., 2019)

ERP � 1
2
ρaircair∫

Γ
vs,n
∣∣∣∣ ∣∣∣∣2dΓ (10)

ERPL � 10 log
ERP

Wref
( ) dB[ ]where Wref � 10−12 W[ ] (11)

The present study proposes a finite element solution using
APDL1 to solve the harmonic problem. By finite element
discretization of the integral in Eq. 10, the power radiated all
over the 3D beam faces can be calculated.

To minimize the radiated power, the power law profile of
capacitance is required to be optimally tuned. By substitution of
Eq. 6 into Eq. 5, the capacitance profile can be expressed as

Cij � Cmax 1 + i − 1( )r( )−n (12)

So that optimization of parameters r and n can offer minimum
radiated noise. The area under frequency reponse curve which has
been used as a performance measure in some studies (Joshi et al.,
2010; Sarigul et al., 2018), is considered as the optimization objective
function. The optimization algorithm is provided by Eq. 13.

MinU

U � ∫ fmax

fmin

ERP df, U min � U Copt( )
fmin + fmax � 2fresonance

⎧⎪⎪⎨⎪⎪⎩ (13)

Where Copt can be obtained based on optimum values of r and n.
Thus, for semi-active noise isolation, the optimization must be
conducted for frequency intervals centered by the resonance
frequency. Then, the semi-active treatment function for a

frequency range including N number of eigenfrequencies can be
expressed as follows.

Csemi−active � ∑N
i�1

CoptiH* + CSHC 1 −H*( )( ) (14)

Where H* is a distribution function defined by Heaviside functions
as given by Eq. 15.

H* � Heaviside f − fmin( ) +Heaviside f − fmax( ) (15)
The semi-active function (Eq. 14) allows to select the frequency

intervals for isolation based on the optimal capacitance profile, and
deselect the frequency intervals where the isolator is not effective by
short-circuiting the piezo-patches. Accordingly, the short circuit
capacitance equals to zero (CSHC). Therefore, the semi-active
treatment function can be expressed as

Csemi−active � ∑N
i�1
CoptiH* (16)

3 Results

At first, a validation study is carried out to check the accuracy of
present numerical modeling. Next, the numerical model for
realization of ABH effect is introduced and considered for
parametric studies. Based on optimization of parametric studies
results, a semi-active noise treatment is applied.

3.1 Validation of numerical modeling

The present numerical model has been validated by comparison
with numerical findings reported by Larbi and Deü (Larbi and Deü,
2019). Using solid elements for the host structure and
Circu94 elements for the piezoelectric patch, calculations have
been made for the eigenanalysis of a cantilever steel beam with a
piezoelectric PIC 151 ceramic patch (see Figure 5) which properties
are given by Table 1. Both open- and short-circuit conditions are
considered to obtain the results for the eigenanalysis. The
discrepancy of results reported by Table 2 attributes to different
finite element modeling techniques as well as different elements type
and number.

FIGURE 4
Capacitive shunts apply semi-active scheme applied to shunted piezoelectric elements.

1 ANSYS Parametric Design Language.
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3.2 Numerical realization of virtual ABH
effect

For the numerical realization of virtual ABH effect, a steel cantilever
beam with Lb = 11.19 cm length, Wb = 5 mm width, and Tb = 1 mm
thickness is assumed. The beam is covered by 20 piezoelectric elements
with Lp = 5mm edge length, and Tp = 0.3Tb thickness positioned at
equal distances to each other. The beam is excited by harmonic out-of-
plane displacement applied at the free end. A structural damping
coefficient of 0.01 is adopted (Devasia et al., 1993).

The ERPL response for the beam structure with shorted shunt
circuit is presented by Figure 6. As a result, the three eigenmodes
dominant in the ERPL response are targeted for attenuation.

3.2.1 Parametric study
Parametric studies are carried out to figure out the influence of

power law formulation constants (n and r) described by Eq. 12, on the
structure response. In this regard, particular capacitance profiles
assigned for the first three modes of resonance which contribute to
the overall radiated noise are given by Figure 7. The capacitance profiles
are minimum and maximum at nodes and antinodes of vibration
displacement mode shape, respectively. Between each node and
antinode, the capacitance varies according to power law formulation.

The results of parametric studies are reported by Figures 8–13. It
is well revealed that the capacitance profile constants (n and r) are
the tuning parameters responsible for the radiated power response.
Compared to the short-circuit case, the application of virtual ABH
effect results a heavily fluctuant response due to trapping the
elastic wave.

3.2.2 Semi-active noise isolation
The results of parametric studies reported by Figures 8–13 are

considered for optimization. So that the optimal values of r and n are
chosen for each mode of resonance. The vibrating beam is treated
semi-actively considering optimal parameters of (r, n) taken as (0.02,
5), (0.04, 5), and (0.05, 4), respectively for the first, the second and
the third targeted modes of resonance. The treatment is applied at
the vicinity of resonance with a radius of 10 Hz. The semi-active
treatment function is expressed as follows.

FIGURE 5
Cantilever beam with piezoelectric element attachment:
dimensions.

TABLE 1 Material properties for the cantilever beam and piezoelectric ceramic
patch.

Material: PIC 151 Pereira Da Silva et al. (2015)

Density 7,780 kg/m3

Elasticity Coefficient {1.683, 1.900, −0.5656, −0.7107, 5.096, 4.497}(10−11)

{SE11 , S
E
33 , S

E
12 , S

E
13 , S

E
44 , S

E
66}

Piezoelectric Coefficient {-9.6, 15.10.12.00} N/Vm

{e31 , e33 , e15}

Dielectric Coefficient {9.82, 7.54}(10−9) F/m

{ϵε11 , ϵε33}

Material: Aluminum Larbi and Deü (2019)

Density 2,700 kg/m3

Elasticity 74 GPa

Poisson’s ratio 0.33

TABLE 2 Verification of numerical simulation for a cantilever with open/short shunt circuit.

Mode type Short circuit frequencies [Hz] Open circuit frequencies [Hz]

Larbi and Deü (2019) Present study Larbi and Deü (2019) Present study

F 71.89 75.296 73.48 75.363

F 379.49 390.83 383.97 392.35

Fi 587.02 602.96 587.02 610.22

F 969.11 981.06 970.05 988.25

T 1048.71 1078.2 1048.71 1078.6

FIGURE 6
ERPL response of the beam when the shunt circuit is shorted.
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FIGURE 7
(A) Capacitance profiles (r = 0.02, n = 4) adopted for different resonance modes, (B) eigenmode shapes.

FIGURE 8
ERPL around the first mode of resonance, n = 4, ̶short circuit, ̶r =
0.02, ̶ r = 0.03, ̶ r = 0.04, ̶ r = 0.05.

FIGURE 9
ERPL around the first mode of resonance, n = 5, ̶short circuit, ̶r =
0.02, ̶ r = 0.03, ̶ r = 0.04, ̶ r = 0.05.

FIGURE 10
ERPL around the secondmode of resonance, n = 4, ̶short circuit, ̶
r = 0.02, ̶ r = 0.03, ̶ r = 0.04, ̶ r = 0.05.

FIGURE 11
ERPL around the secondmode of resonance, n = 5, ̶short circuit, ̶
r = 0.02, ̶ r = 0.03, ̶ r = 0.04, ̶ r = 0.05.

FIGURE 12
ERPL around the third mode of resonance, n = 4, ̶ short circuit, ̶
r = 0.02, ̶ r = 0.03, ̶ r = 0.04, ̶ r = 0.05.

FIGURE 13
ERPL around the third mode of resonance, n = 5, ̶ short circuit, ̶
r = 0.02, ̶ r = 0.03, ̶ r = 0.04, ̶ r = 0.05.
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Csemi−active � C r�0.02,n�5( )* H* f − 315( ) +H* f − 335( )( )
+ . . . C r�0.04,n�5( )* H* f − 1042( ) +H* f − 1062( )( )
+ . . . C r�0.05,n�4( )* H* f − 2180( ) +H* f − 2200( )( )

(17)
The results of this semi-active treatment is represented by Figure 14.

The radiated power is attenuated by the rates of 10.29%, 6.37%, and
7.47% from the first to the last targeted modes, respectively.

In order to assess the influence of loading, harmonic excitations
with u0, and 2u0 amplitudes are imposed. The results reported by
Figure 15 indicate the system is linear for all studied resonances with
and without treatment.

4 Conclusion

A numerical model is developed to realize the ABH effect virtually
with the help of capacitive shunt circuits. The main objective is to
attenuate structure-born noise for several resonance modes by
proposing a semi-active approach. Theoretically, virtually imposing
the ABH effect is feasible through the electrical analogy which equalizes
stiffness with capacitance.

A noteworthy advantage of virtual ABH effect is the potential for
semi-active use which is obviously impossible with the ABH effect
imposed by geometry. In addition, the geometrical restrictions
related to the physical manifestation of the ABH effect do not
apply to the virtual method.

For two main reasons the virtual ABH effect deviates from the
ideal ABH effect: 1. Since the energy conversion rate in piezoelectric

material is not 100%, the ABH effect can never be idealized. 2. The
capacitance profile is discrete along the beam due to the distance
between piezoelectric elements which is unavoidable.

The results of present numerical modeling for the first
eigenmodes which contribute in overall radiated noise revealed at
least 6.37% improvement for noise radiation. The attenuation is well
achieved by breaking down each peak to many more peaks which
results an effective absorption effect. Although the present approach
targets the first three eigenmodes, expanding the effective frequency
range requires an increasing of the number of piezo-patches to tune
the shunt impedance with respect to the eigenmode shapes.

Finally, due to the weight and space limitation in vehicle and
aero applications, the structures are too thin to be carved out for an
ABH geometric profile. Thus, the virtual ABH effect can be
considered as a solution not only to overcome the mentioned
restriction, but also to apply a multi-mode structural noise isolation.
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Nomenclature

ai arithmetic progression element

b damping coefficient

C capacitance

cair sound speed in air

Ci the capacitance corresponding to the ith capacitor

Cmax maximum capacitance

Copt Optimal capacitance profile

Csemi-active Semi-active treatment function

F force

H* A distribution function

I sound intensity

k stiffness

kp wave number of quasi-longitudinal waves

L inductance

l1 and l2 the portions of length on a typical beam

m mass

n the power corresponding to power law

p sound pressure

P sound power

r the common difference between terms in an arithmetic
progression

t time

u displacement

v velocity

vs,n the velocity normal to a surface element

vair air velocity

V voltage

Wref reference power

Γ area

ρair air density

τ wave transit time through a wedge

Subscriptions

ERP equivalent radiated power

ERPL equivalent radiated power level
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