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Past decades featured significant advancements in additive and
micromanufacturing that facilitated the creation of functional patterned
surfaces with impressive spatial resolutions. However, these techniques are
expensive and require a considerable amount of time and energy, and hence
lack scalability to practical surfaces. Recent techniques employing spinodal
decomposition and instabilities amplified via centrifugal acceleration offer
viable and cheaper alternatives. The patterns created by those techniques,
however, vary randomly in geometry. When interfacing those patterned
surfaces with other components and under self-contact scenarios, geometric
variations lead to stress concentration and abrupt failure around the contact. In
this study, we investigate numerically real contact areas, contact tractions, and
stress concentration. We generate patterned surfaces in congruence with actual
surfaces created by those techniques. Then, we conduct normal-contact analyses
of those surfaces boundary element method (BEM) under nominal mean
pressures ranging from 0.001E* to E*, where E* is the contact modulus. We
record real contact areas and stress concentration as a function of nominal mean
pressures. We compare these values with the analytical solutions from
sinusoidally-patterned and randomly rough surfaces. Randomness in pattern
geometry is primarily influenced by the processing parameters such as the
degree of anisotropy in spinodal decomposition and acceleration in amplified
instabilities. To understand the influence of the processing parameters, we
perform a parametric study. We find isotropic spinodal decomposition creates
patterns that deliver contact area and traction distributions similar to randomly
rough surfaces, and lead to high-stress concentrations. Such high-stress
concentrations are expected to occur under self-contact loading scenarios,
and thus can explain the compromised resilience and strength in recently-
proposed spinodal metamaterials. For patterned surfaces created by amplified
instabilities, high-stress concentrations are obtained for the surfaces created at
high accelerations. At high accelerations, increased elastic instabilities and
stochastic growth result in a more skewed and broader distribution in heights.
Therefore, high-stress concentrations are inevitable. To account for combined
loading scenarios, we conduct additional simulations on the same surface
patterns with frictional pre-sliding contacts. We find the frictional tractions play
a secondary role in stress concentrations where the primary factor is the
processing parameters determining the degree of randomness in pattern
geometry.
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1 Introduction

Surface patterning has found widespread use in tailoring contact
properties such as wettability (Bico et al., 2001), adhesion (Davis and
Crosby, 2011), stiffness (Perris et al., 2021), and friction (Eriten et al.,
2016; Afshar-Mohajer and Zou, 2020). Conventional methods of
surface patterning such as additive manufacturing (Askari et al.,
2020), micro/nanofabrication (Dong et al., 2018; Wang et al., 2022),
and ultra-precision machining (Yu et al., 2011) require a significant
amount of resources, energy and time. Hence, alternative patterning
techniques are currently sought for more sustainability, scalability,
energy efficiency, and cost-effectiveness. Several examples of such
methods include selective etching during spinodal decomposition
(Hodge et al., 2007; Lee and Mohraz, 2010), amplified Rayleigh-
Taylor instabilities during sol-gel transitions (Marthelot et al., 2018;
Jambon-Puillet et al., 2021), pulsed laser patterning (Chen et al.,
2020), patterns induced by plate buckling (Holmes et al., 2008; Davis
and Crosby, 2011), and force-triggered patterns in mechano-
responsive hydrogels (Matsuda et al., 2019; Mu et al., 2022).
However, surface patterns obtained by these efficient and scalable
techniques inherently have randomness in geometry, and geometric
randomness deters their performance under contact loading. For
instance, taller asperities with smaller curvatures co-exist with
shorter and blunter asperities due to inherent randomness in the
manufacturing process. This randomness is expected to lead to a
reduction in the real area of contact and thus high-stress
concentrations and failure in contact applications.

In this paper, we simulate the contact performance of surfaces
created by two of those alternative surface patterning techniques,
namely, spinodal decomposition and Rayleigh-Taylor instability
methods, and study the influence of processing parameters on
the real area of contact, contact tractions, and stress
concentration factors. Surface patterns created by spinodal
decomposition are the product of the decomposition of two
phases interrupted at an arbitrary time and the removal of one of
the phases selectively. Spinodal architectures are shown to facilitate
multifunctionality and tunability in stiffness when used in 3D
lattices, metamaterials, and cellular materials (Vidyasagar et al.,
2018; Guell Izard et al., 2019; Hsieh et al., 2019; Kumar et al.,
2020; Portela et al., 2020). As a clear advantage over conventional
microstructures (e.g., discrete walls and beam struts), the spinodal
topography reduces stress concentrations and promotes resilience in
those metamaterials. However, the spinodal microstructures are
prone to self-contact loading. For instance, unconfined
compression tests on metamaterials with various spinodal
topography (Portela et al., 2020) deliver nearly fully-recoverable
strains under cyclic loading, and thus validate resilience. When
examined carefully, however, self-contact among internal structures
and failure around contacts are observed in several of those tests.
Those internal failures clearly compromise the load-bearing capacity
of those materials at subsequent loading cycles. Our study will reveal
the performance of spinodal topographies under contact loading.

The other patterning technique we will study is the amplified
Rayleigh-Taylor instability method. In this method, patterns are

seeded as droplets in thin films of polymer blends, and centrifugal
accelerations are adjusted by a rotating drum to amplify instabilities
during the sol-gel transition and control heights and curvatures of
hairs extending from initial droplets (Marthelot et al., 2018; Jambon-
Puillet et al., 2021). In Ref. (Jambon-Puillet et al., 2021), the
probability density functions (PDF) of the initial droplet heights
and final hair heights formed at different rotating speeds are
reported. The initial droplets form patterns with narrow height
distribution; i.e., more uniform heights whereas the hair heights
formed after additional rotations possess much broader distribution;
i.e., random heights. This broadening in PDF of heights is expected
to decrease the real area of contact and increase stress concentrations
under contact loading.

Inspired by those observations, this paper investigates
numerically the real area of contact, contact tractions, and stress
concentration factors of patterned surfaces formed by spinodal
decomposition and amplified instabilities. We first generate
patterned surfaces in congruence with actual surfaces created by
those processing techniques (Section 2.1). Then, we conduct normal
and tangential-contact analyses of those surfaces via the boundary
element method (Section 2.2 and Section 2.3). At each simulation,
we record the real area of contact and stress concentration factor as a
function of nominal mean pressures (Section 3). We then compare
these values with the analytical solutions from the sinusoidally-
patterned and randomly rough surfaces. Randomness in pattern
geometry is primarily influenced by the processing parameters such
as the degree of anisotropy in spinodal decomposition and
acceleration in amplified instabilities. To understand the
influence of the processing parameters and combined loading on
contact tractions, we also present a parametric study (Section 4). To
our best knowledge, systematic analysis of the performance of
surfaces patterned by efficient and scalable manufacturing
methods is currently missing in the literature.

2 Materials and methods

2.1 Generation of the surface geometry

First, we employ Numerical Python (NumPy) package to
generate surface geometries consisting of the patterns created by
two methods: i) spinodal decomposition and ii) amplified
instabilities via material acceleration.

2.1.1 Spinodal decomposition
Surface patterns created by spinodal decomposition are the

product of the decomposition of two phases interrupted at an
arbitrary time and the selective discarding of one of the phases.
The Cahn-Hilliard equation governs the spatiotemporal diffusion
and evolution of phases, which can be quantified by the local
concentration ϕ(r, t) at position r on the surface and time t
(Cahn, 1961), where the magnitude of ϕ ranges from 0 to 1 and
0 and 1 denote distinct material phases, Γ is the penalty parameter
for interphases, D is the effective diffusivity, and f(ϕ) is the free
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energy functional quantified by the total energy of a particular phase
distribution in space.

∂ϕ r, t( )
∂t

� D∇2 df ϕ r, t( )( )
dϕ r, t( ) − Γ∇2ϕ r, t( )( )[ ] (1)

While creating the surfaces via spinodal decomposition, the partial
differential equation given in Eq. 1 should be numerically solved for
ϕ(r, tf) where tf is an arbitrarily long time, and then one of the
phases, say close to 0 values, are spatially eliminated. In practice, the
elimination process involves a selective material removal process
such as chemical etching, and thus perfect separation of phases is not
possible, especially around the interphases where 0<ϕ(r, tf)< 1.
Therefore, this imperfect etching will result in surface patterns.
Here, we assume that the height of those surface patterns will scale
with the magnitude of ϕ(r, tf), i.e., the spots with ϕ(r, tf) � 1 will
constitute the surface peaks thanks to no etching and the spots with
ϕ(r, tf) � 0 will experience maximum etching and thus form the
valleys. The bottleneck in the generation of surfaces in this manner is
the long simulation times needed for sufficient spatiotemporal
evolution of phase distribution, and the sensitivity of the final
patterns to the initial values. Cahn had shown that solution to
Eq. 1 can be approximated by a superposition of Fourier
components growing or diminishing according to their
wavelengths (Cahn, 1961). Assuming slowly-varying amplitudes
for those components, spatial variation of phase can be
approximated as a Gaussian random field (spinodoid) as done
elsewhere (Kumar et al., 2020), where ni and Γi are the direction
and phase angles of the ith component of the series, k is the wave
number that we set to 2π, and m is the number of waves taken as
1,000 in this study.

ϕ r( ) �
��
2
m

√ ∑m
i�1

cos kni · r + Γi( ) (2)

Obviously, the approximate series representation given in Eq. 2
provides the concentration ϕ(r) and thus surface heights much
quicker than the full Cahn-Hilliard equation does. Besides,
Kumar et al. (2020) showed that limiting the directions of the
components ni would lead to anisotropic patterns, and thus the

creation of various topographies is possible with a single expression.
To generate the concentrations as a function of position, we first
select the direction vector ni residing on the surface spanned by e1
and e2 basis vectors in x and y directions. Direction vector has a unit-
norm and can be described by a single angleΘi = cos−1 (e1 ·ni) as ni =
(cosΘi, sinΘi) in e1 and e2 basis. Thus, the selection of the direction
vector is reduced to the choice of the angle Θ. If that angle is chosen
randomly within the range [0, π/2], then the direction of wave
components will be randomly distributed in the first quadrant
defined by x > 0 ∧ y > 0 surface plane and the resultant surface
patterns will be isotropic. Limiting the upper bound of that range to
a particular angle θ, in contrast, will lead to strong directionality and
thus anisotropy in the concentrations and surface patterns. After
selecting the direction vector, phase angle Γi is randomly assigned
from the range [0, 2π] to each wave. Summing the expressions for all
waves as in Eq. 2 then yields the concentration ϕ(x, y) over the
discretized surface plane. We then scale the concentrations
uniformly to obtain a target of 0.1 [a.u.] for the root-mean-
square (rms) of surface heights; i.e., h (x, y) = Cϕ(x, y) such that
hrms = 0.1. The surface plane xy is 10 × 10 [a.u.] in dimension so that
surface slopes ≈ 0.1/10 are practically sound. Since k = 2π yields
wavelengths of unity in each wave component, 10 × 10 surface plane
will guarantee about 10 surface peaks per direction and thus enable
statistical analyses of the contact parameters, especially in isotropic
surface case (≈ 100 surface peaks). The xy plane is discretized into
512 × 512 points, which is a compromise between accuracy and
computational efficiency in the contact analyses compared to the
finer discretizations (e.g., mesh convergence study reveals less than
5% difference from the finest discretization of 2048 × 2048). Figure 1
shows the surface heights h (x, y) for two representative surfaces
created by this procedure. All physical lengths in x and y directions
and height h (x, y) in Figure 1 are normalized by window size L,
10 [a.u.]. As shown in Figure 1A, limiting the angle Θ ≤ θ = π/180
delivers an anisotropic surface geometry where height variations in y
direction are minimal compared to the variations in x. That surface
as an extreme example resembles a 2D sine wave profile. When the
direction vector is selected randomly in all possible directions;
i.e., Θ ≤ θ = π/2, isotropic distribution of the surface heights is
achieved (Figure 1B).

FIGURE 1
Surface heights h (x, y) generated by spinodal decomposition. (A) The surface with θ ≈ 0° (anisotropic surface). (B) The surface with θ = 90° (isotropic
surface).
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2.1.2 Amplified instability
Surfaces generated by amplified instability employ dynamics of a

rotating drum to amplify instabilities and pattern formation in thin
films of polymer blends such as polydimethylsiloxane (PDMS) and
vinylpolysiloxane (VPS-8) (Jambon-Puillet et al., 2021). Here, we
simulate this pattern formation by following the physical processes
and corresponding equations reported in (Marthelot et al., 2018;
Jambon-Puillet et al., 2021). In this process, one first coats a drum of
radius R with a thin layer of polymer melt (PDMS + VPS-8) with
surface tension γ and density ρ. Then, the drum is rotated at a slow
speedΩ1 to induce Rayleigh-Taylor instabilities in the polymer melt
and form an initial hexagonal array of “pendant droplets”. The
wavelengths and heights of this initial pattern depend on the
characteristic length lc �

��������
γ/(ρRΩ1)

√
, a measure of capillary

length for the melt (Marthelot et al., 2018). The profile of
individual droplets can be found by the Young–Laplace equation
Eq. 3 that describes the balance of hydrostatic pressure due to the
centrifugal acceleration and the effect of the surface tension of the
melt (Ku et al., 1968), where s is the arc length, φ(s) is the angle
between the tangent vector to s and the vertical axis, and r(s) and z(s)
are the radial and height coordinates defining the droplet as shown
in Figure 2.

d2φ s( )
ds2

� −cosφ s( )
ℓ
2
c

+ d

ds

cosφ s( )
r s( )( ), dz s( )

ds
� cosφ s( ),

dr s( )
ds

� sinφ s( ) (3)

Solving Eq. 3 with properly selected boundary conditions delivers
the axisymmetric initial droplet profile, z(s) and r(s). As in (Jambon-
Puillet et al., 2021), we use the following boundary conditions: φ(0) =
φ(sf) = −π/2, r (sf) = 0, z (0) = 0, and z (sf) = h0, where sf is the total arc
length and h0 is the maximum height of the initial droplet. The first
two of those boundary conditions relate to vanishing slopes of the
profile at the edge (s = 0) and symmetry axis (s = sf) of the profile,
and the last three follow from the coordinate definitions and
instability-driven initial height, h0 at the axisymmetry axis.

Setting h0 to a given value, one can use the shooting method to
solve Eq. 3 and initially unknown total arc length sf, and obtain
individual droplet profile as shown in Figure 2. Note that rf denotes a
radial extent of the initial droplet. Marthelot et al. (2018) and
Jambon-Puillet et al. (2021) show that theoretical solution to Eq.
3 captures well the profile of experimentally manufactured droplet by
Rayleigh-Taylor instability. Because we assume the initial droplets
are perfectly axisymmetric, we can simply render 3D shape of
droplets h (x, y) in discretized xy plane for a single unit: there
exists (xi)0≤ i< 2n−1 and (yj)0≤ j< 2n−1 such that, for any a = 0, 1, 2, . . .,
n−1 satisfies {h(xi, yj) | ra ≤ ((xi − xn)2 + (yj − yn)2)0.5 < ra+1} �
z(ra+1)−z(ra)

ra+1−ra (((xi − xn)2 + (yj − yn)2)0.5 − ra) + z(ra), where xi
and yj denote the ith point of x and jth point of y, respectively,
on the discretized xy plane (i.e., linear interpolation). The half-profile
of droplet shown in Figure 2 is discretized with n number of points,
and ra denotes the ath point in discretized r, e.g., z (r0) = h0 and z
(rn−1) = 0. There is no droplet growth between the droplets, and the
film thickness of the elastomers after droplet generation is very thin,
so we assume the surface patch between the droplets and hairs is
perfectly flat; i.e., for any i, j which does not satisfy
ra ≤ ((xi − xn)2 + (yj − yn)2)0.5 < ra+1, h (xi, yj) = 0. Repeating
this procedure for many such droplets and distributing them in a
hexagonal array over the surface would form the initial pattern. In
line with the experimental findings of (Jambon-Puillet et al., 2021),
we select h0 from a log-normal distribution with 0.034lc of mean and
0.36lc of standard deviation and obtain the profile of 115 droplets.We
then repeat those droplets with a wavelength of Λ � 2π

�
2

√
lc over the

surface with 10Λ × 10Λ area 0.0373 m × 0.0373 m in physical
dimensions). The surface is discretized into 1,024 × 1,024 points.
This discretization is determined by the comparison with the case of
2024 × 2024 discretization in the same manner for the spinodal
surface.A subsequent increase in the rotational speed of the drum
leads to a further increase in the heights of the initially seeded
droplets. Increasing acceleration promotes this growth while
simultaneous curing and thus the formation of elastic resistance
balances inertial forces and prevents stripping of partially-cured

FIGURE 2
Representative profiles of the initial droplet and stretched hair. The initial droplet is given at Ω1 = 41.9 rad/s, and the stretched droplet is obtained at
geff = 137 m/s2. h0 and rf denote the maximum heights and radial extent of the profiles of an initial droplet, respectively.
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polymer blend from the drum surface. Resulting droplet profiles look
like elongated versions of the initial profiles, “stretched hairs”
(Jambon-Puillet et al., 2021) (see Figure 2 for an example).
Jambon-Puillet et al. (2021) utilized minimization of energy and
provided an estimation for the ratio of final to initial maximum
heights of the droplets, ε � h0*/h0, as a function of effective
acceleration defined by geff � R(Ω2

2 −Ω2
1) where Ω2 is the

increased rotation speed of the drum, where β ≈ 0.29 and α =
ρgeffh0/G is a nondimensional parameter estimated for each droplet
of height h0 and shear modulus G.

ε α( ) � 1
3

βα + g α( ) + β2α2

g α( )( ),
g α( ) �

���������������������������
β3α3 + 3/2( ) 9 +

����������
12β3α3 + 81

√( )3

√
(4)

Note that α is a measure of acceleration-induced pressure in terms of
the elasticity of the partially-cured blend. Assuming lubrication
theory, droplet shapes forming under the influence of gravity and
surface tension were previously discussed in (Lister et al., 2010). In
particular, the profile of an individual droplet at equilibrium can be
expressed as Eq. 5, where J0 is the Bessel function of the first kind of
order 0 and rf is the total radial length.

z r( ) � εh0
J0 rf/lc( ) − J0 r

�
ε

√ /lc( )
J0 rf/lc( ) − 1

(5)

Jambon-Puillet et al. (2021) found that Eq. 5 approximated the
measured profiles of the stretched hairs reasonably well. We employ
Eq. 5 to obtain the profiles of individual stretched hairs as shown in
Figure 2. To obtain the final surface patterns (e.g., Figure 3B), we
repeat this procedure for all 115 droplets. The histogram of the peak
heights of the stretched hairs shown in Figure 3B agrees reasonably
well with the measured histograms reported in (Jambon-Puillet
et al., 2021). Thus, our assumptions on the acceleration-induced
shape changes of initial droplets deliver surface patterns similar to
the ones obtained in practice. Note that the stretch ε, the growth
factor of the peak height for each droplet Eq. 5 is a strong function of
the parameter α and thus effective acceleration. As detailed by
Jambon-Puillet et al. (2021), axisymmetric profiles given by Eqs

3–5 are obtained when α ≲ 8. Therefore, in this study, we investigate
surface patterns for effective acceleration values residing within that
limit. Lastly, the initial and final profiles of the droplets simulated by
this process (Figure 3) exhibit clear differences. All physical lengths
in x and y directions and height h (x, y) in Figure 1 are normalized by
window size L, 0.0373 m. The stretch in heights due to increased
acceleration is accompanied by shrinkage in radial extent as
illustrated for an individual droplet in Figure 2. Both of those
changes in geometry lead to an increase in curvature. Hence,
effective acceleration as a surface processing parameter is
expected to have a prominent influence on contact mechanics.
We will study this more in Section 4.

2.2 Normal contact analysis

2.2.1 Numerical simulations
To simulate the elastic response of patterned surfaces under normal

contact, we employ TAMAAS, an open-source C++-based Python
Library developed by the Computational SolidMechanics Laboratory at
EPFL (Frérot et al., 2020).We simulate non-adhesive elastic contact and
so utilize the conjugate gradient-based contact scheme (Polonsky and
Keer, 1999) and boundary integral method. For that, as explained in the
previous section, we first generate surfaces simulating the patterns
created by the spinodal decomposition and amplified instability.
Patterned surfaces are treated as rigid punches repeating periodically
outside the xy domain to be pressed on elastic half-space. We assign
1 [a.u.] for Young’s modulus E and 0.5 for Poisson’s ratio ] of the elastic
half-space. We then impose the nominal mean contact pressures p0
ranging from 0.001E* to E* and solve for the contact pressures at each
grid point, p (x, y). All pressure units are normalized to the contact
modulus E* = E/(1 − ]2).

Figure 4 shows representative contact pressure distributions
obtained from the isotropic spinodal patterned surface and the
initial surface generated by the amplified instability. Both surfaces
are imposed to nominal mean contact pressures p0 of 3.16 × 10−2E*.
One can see that only a minute portion of the nominal contact area is
load-bearing and local contact pressures can attain very high values up
to 2.5E* at the peaks of both surface patterns hinting at inevitable stress

FIGURE 3
The images of the surface patterns generated by amplified instability. (A) The surface generated by Rayleigh-Taylor instability at the initial drum
rotation speed ofΩ1 = 41.9 rad/s. The surface has 115 droplets. (B) The surface generated by increasing the drum rotation speed further at geff = 271 m/s2.
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concentrations and potential failure. Both features are signatures of
randomly rough surfaces. We will show in Section 3 that surface
patterning via the two methods mentioned in the previous section
can lead to a reduction in contact areas and stress concentrations
comparable to randomly rough surfaces. To quantify the real area of
contact Ar, we estimate the sum of grid areas with non-zero pressures,
and obtain the real mean contact pressure pr as

p0A0

Ar
. Since peak heights

and curvatures vary within nominal contact areas of both patterns, there
will be local areas with much larger pressures than pr. To study stress
concentrations at those locations, we define pconc � pr+3prms(x,y)

p0
, where

prms denote the rms of contact pressures. This definition captures stress
concentrations well without potential amplification and error due to
discretization (especially under light loading).

2.2.2 Theoretical contact models
To verify, compare and contrast our numerical results with

existing contact theories, we will adopt the following models for
different cases.

• For comparison to the anisotropic spinodal surface, we will use
2D-sinusoidal contact formulations (Johnson, 1985). This
choice is apparent from Figure 1A, which is created by
limiting the direction vector to within θ ≈ 0° and thus
surface heights vary along the x-axis only. The ratio of real
to nominal areas of contact Ar/A0 and the contact pressures
p(x) for 2D-sinusoidal surface h (x, y) ≈ z(x) = Δ cos (2πx/λ)
are given as Eqs 6, 7, where a is the half contact width at each
peak, and p* = πE*Δ/λ;

Ar

A0
� 2a

λ
�

2
π
sin−1

��
p0

p*

√⎛⎝ ⎞⎠ p0 <p*

1 p0 ≥p*

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

p x( ) � max
2p0 cos

πx

λ
( )

sin2 πa

λ
( )

������������������
sin2 πa

λ
( ) − sin2 πx

λ
( )√

, 0
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ p0 <p*

p0 + p* cos 2πx/λ( ) p0 ≥p*

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (7)

• For comparison to isotropic spinodal surfaces, we adopt
discrete Greenwood-Williamson model (GW model)
because randomly-sampled spinodal surfaces tend to
possess an average wave number of k = 2π (Eq. 2) leading
to well-separated surface peaks, and thus we can describe the
curvature of the peaks separately and treat them as non-
interacting asperities under light loading (Greenwood and
Williamson, 1966). Assuming elliptical Hertzian contact for
each peak, the normal load Ps

i carried by asperity i and the
contact area of asperity i, As

i , follow as Eq. 8, where Rs
e,i, h

s
i and

δi � hsi − d are the effective radius of curvature, height, and
compression of asperity i, d is the separation between the
mean of surface patterns and the undeformed surface of the
half-plane, and N is the number of load-bearing asperities.

Ps
i �

4
3
E* Rs

e,i( )1/2 δi( )3/2, As
i � ∑N

i�1
πδiR

s
e,i (8)

The effective radius of curvature Rs
e � 1/Ks is defined as

[κ1κ2(κ1+κ2
2 )]−1/3, where κ1 and κ2 are the relative principal

curvature of the contact (Greenwood, 1997). Note that in our
case κ1 and κ2 are equal to the principal curvatures of the
generated spinodal surface because the counter elastic surface is
ideally flat. This effective radius of curvature definition delivers
accurate estimations for mildly elliptical contacts as the majority of
the contact areas obtained from the spinodal patterns. The asperities
are identified by a 9-point peak-picking algorithm.

• For comparison to surfaces generated by the amplified
instability method, we adopt discrete GW model for the
same basis as in the isotropic spinodal surface: The droplets
and hairs created by this method can be assumed as isolated
asperities. We can estimate the normal load Ps

i carried by
asperity i and the contact area As

i of asperity i by using Eq. 8.
We should note that for this case the effective radius of
curvature Rs

e � 1/κ is obtained from κ � |z″|/(1 + z′2)3/2,
where z = z(r) is axisymmetric. The profiles of the initial
droplets and subsequent hairs are given by Eqs 3–5.

FIGURE 4
The images of the local pressures over the surfaces. (A) The local pressure for the surface generated by spinodal decomposition at θ = 90° (isotropic
surface) (B) The local pressure for the surface generated by amplified instability at Ω1 = 41.9 rad/s.
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2.3 Tangential contact analysis

We conduct the combined normal and tangential contact
analysis via Tamaas to study the effect of shear tractions on the
stress concentration factor. We simulate the 3D non-adhesive
elastic contact under combined normal and tangential loading by
the conjugate gradient method (Polonsky and Keer, 1999). The
mechanical properties are the same as the normal loading
simulations. The value of 0.5 for Poisson’s ratio allows us to
remove the elastic mismatch (Patil and Eriten, 2015) and enables
us to verify the numerical simulations against the theoretical
Cattaneo–Mindlin model for a sphere-on-flat contact (Johnson,
1985). To limit shear tractions, Coulomb friction model with
friction coefficient μ is used. We assign boundary conditions with
two nominal tractions: mean pressure p0 in z direction (normal to
the surface); and mean shear traction qx in x direction (in our
case, qy = 0). In tangential contact analysis, we set the mean
pressure p0 at 0.0316E* and mean shear traction at qx = 0.7 μp0.
Note that this selection of mean shear traction delivers significant
contributions to stress concentrations without leading to gross
sliding.

After each simulation, we obtain x, y, and z components of
tractions, namely, tx (x, y), ty (x, y), and tz (x, y), and compute an
equivalent traction |t(x, y)| �

���������
t2x + t2y + t2z

√
at each grid point in

contact. Then, we define pconc � tr+3trms
p0

, where tr and trms denote
the mean and standard deviation of equivalent tractions. To
simulate the influence of the increasing shear tractions on the
stress concentration, we vary the friction coefficient μ from 0 to
0.625. Note that perfect elastic similarity, fully-recoverable
deformations, and no damage assumptions of the model result
in contact areas being unaltered during the shear loading.
Therefore, the definition of stress concentration is congruent
to the one for the normal contact analysis when tx = ty = 0; i.e., μ =
0 case.

3 Results

3.1 Real area of contact and mean contact
pressures

3.1.1 Spinodal decomposition
Figures 5A, B show the real area of contact normalized by the

nominal area Ar/A0 and real mean contact pressure pr as a function
of mean pressure p0 for two extreme cases: θ ≈ 0° and θ = 90°. Note
that those cases correspond respectively to the most anisotropic (2D
sinusoidal) and isotropic patterns shown in Figure 1. For each case,
20 randomly sampled surfaces are realized with randomly selected
direction vectors and phase angle per wave components Eq. 2. The
mean and ± 1 standard deviation of the responses of those
20 surfaces are shown in Figure 5 and the subsequent figures. As
expected for both cases, the real area of contact is less than a few
percent of the nominal area at light loading (p0 ≈ 10−3E*). Around
that light-loading asymptote, discrete GW simulations overlap
nearly perfectly with the numerical solutions, which further
verifies the numerical modeling. 2D sine contact theory correlates
with the numerical solutions of the anisotropic case even at heavier
loads reaching up to p0 ≈ E*. At that level of loading, complete
contact condition is attained; i.e., Ar ~ A0. 2D sine contact theory
also predicts that complete contact is reached when p0 = p* = πE*Δ/
λ, which is ≈ 0.55E* for the 2D surfaces rendered. At p0 = 0.55E*, the
mean of numerical solutions is Ar/A0 ≈ 0.85 suggesting 15%
deviation from the theory, which is pretty close to the complete
contact. This comparison with theory confirms our expectation on
anisotropic cases resembling 2D-sinusoidal wavy patterns whereas
isotropic cases delivering contact performance similar to randomly
rough surfaces.

Reduction in the real load-bearing areas leads the inevitable
increase in real mean contact pressures. Figure 5B shows the real
mean contact pressures pr obtained from the simulations and

FIGURE 5
(A) The real area of contact Ar and (B) the real mean contact pressure pr as a function of nominal mean pressure p0 for the surfaces generated by
spinodal decomposition with θ ≈ 0° (anisotropic) and θ = 90° (isotropic).
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contact theories. The real mean contact pressures at light loading
(p0 < 0.01E*) are constant around 0.3E* for the isotropic patterns.
Discrete GW model predicted similar values. The continuous form
of GWmodel with randomly rough surfaces also predicts a constant
real mean contact pressure independent of the applied load. This is
thanks to the proportional increase of load-bearing areas with
increasing load. For the anisotropic case, real mean contact
pressures increase nonlinearly with the applied load and 2D
sinusoidal contact solution captures that change reasonably well.
At heavier loads (p0 > 0.1E*), both anisotropic and isotropic patterns
deliver similar real areas of contact and mean contact pressures. At
that asymptote, sensitivity to the initial patterns is lost through long-
range interactions, shape alterations, and mergers among contact
patches. Similar observations were reported elsewhere with detailed
numerical analysis of sinusoidal contacts (Yastrebov et al., 2014).

3.1.2 Amplified instability
Figures 6A, B show the real area of contact and the real mean

contact pressure for the surfaces generated by amplified instability.
Numerical simulations and corresponding discrete GW model
predictions are plotted for three different instability cases. The first
case is the initial surface rendered atΩ1 = 41.9 rad/s, and the second and
third cases are created with incrementally increased rotating speeds
corresponding to effective accelerations of geff = 137 m/s2 and geff =
271 m/s2, respectively. The second and third surfaces are originated
from the same initial surfaces. Note that initial heights are selected
randomly from an experimentally-measured distribution, which then
leads to a slightly different set of peaks for each surface patterns. Twenty
surfaces are rendered at each case to determine statistically-relevant
contact parameters numerically. The discrete GWmodel is obtained for
one of those surfaces delivering mean values of the contact parameters
shown in Figure 6. The shaded area represents the mean ± 1 standard
deviation of numerical results for 20 surfaces per case. Similar to

spinodal surfaces, all of the cases deliver contact areas much smaller
than the nominal area under light loading. Besides, the real area of
contact seems proportional to the applied load, which leads to constant
real mean contact pressures at that extreme (p0 < 0.01E*). The real area
of contact is consistently the smallest for high effective acceleration cases
and highest for the initial surfaces, and vice versa is true for the real
mean contact pressure. As the effective acceleration increases, so do the
stretch of initial droplets and the height of individual hairs. Besides, the
curvature for stretched hairs increases with the effective acceleration as
shown in Figure 2. Both of those changes in geometry lead to less
contact area and more stress concentration.

The real mean contact pressure pr for the initial surfaces and the
surfaces created at low geff is almost constant from 0.35E* to 0.45E*,
while the surfaces created at high geff show decreasing real mean
contact pressure for p0 < 0.1E*. This will be discussed in detail in
Section 4 with the asperity curvatures and asperity heights. In Eq. 4,
the stretch ε increases as α increases, and α is linearly proportional to
the initial droplet height h0. Consequently, the variance in the initial
surface’s asperity heights may result in a wider range of variance in
amplified surfaces. We can see the shaded area is getting larger as the
increased rotating speed Ω2 is getting higher.

3.2 Stress concentration

The real mean contact pressures shown above ranged from
0.05E* to 2.0E* at light loading. Such high pressures can be
accommodated without failure only by highly flexible soft
materials. The stress concentration at the peaks of surface
patterns discussed above, however, will result in actual contact
patches experiencing much larger pressures than pr, and thus
permanent deformation and catastrophic failure is possible even
for soft materials. Here, we investigate the stress concentrations pconc

FIGURE 6
(A) The real area of contact Ar and (B) the real mean contact pressure pr as a function of nominal mean pressure p0 for the surfaces generated by
amplified instability at three stages: after initial rotation, after low and after high effective acceleration geff.
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over the surfaces generated by the spinodal decomposition and
amplified instability.

3.2.1 Spinodal decomposition
Figure 7 shows the evolution of stress concentration pconc on

anisotropic and isotropic spinodal surfaces as a function of applied
nominal pressure p0. As defined in Section 2, pconc is essentially the
ratio of maximum and real mean contact pressures. The stress
concentration for both the anisotropic and isotropic surface patterns
starts at values ranging from 200 to 800, decreases monotonically
with increasing nominal pressures, and converges to about 2 under
heavy loading. The factor of 2 is common to any wavy pattern at the
inception of complete contact. Except for that heavy-loading
asymptote, isotropic patterns experience higher stress
concentration than anisotropic patterns.

3.2.2 Amplified instability
Figure 8 shows the evolution of stress concentration pconc on the

surfaces created by amplified instability as a function of applied nominal
pressure p0. Three cases of amplified instability are investigated as
above: after initial rotation, after low, and after high effective
acceleration. Similar to the spinodal surfaces, stress concentration
starts at high values ranging around from 103 to 104 under low
nominal pressures, decreases monotonically, and approaches 2 under
high nominal pressures. The patterns created at high effective
acceleration (geff = 271 m/s2) exhibit higher stress concentration than
the other patterns. This is because the initial droplets get taller and
sharper as effective acceleration increases (see, for example, Figure 2).

4 Parametric study and discussion

Surface patterns created by the spinodal decomposition and
amplified instability deliver contact responses that inherently
depend on processing parameters. For instance, limiting the
spinodal decomposition by angle θ controls the degree of

anisotropy in the resulting patterns. As shown in Figure 7,
isotropic patterns experience about 2.5 times the stress
concentration that fully anisotropic (2D-sine wave) patterns do
under light loading. For patterns created by amplified instability,
increasing effective acceleration results in taller and sharper peaks
and that leads to more than 3-fold increase in stress concentration
compared to the initial droplets under light loading (Figure 8).
Those differences vanish under heavy loading due to all surfaces
approaching complete contact conditions. Next, we conduct a
parametric study to determine the sensitivity of the contact
responses to the above-mentioned processing parameters.

4.1 Influence of anisotropy in spinodal
decomposition

To investigate the influence of anisotropic spinodal
decomposition on the contact response, we simulate 20 surfaces
generated using Eq. 2 at θ � 0.02°, 15°, 30°, 60°, 90°{ }. Recall that as θ
increases, the resulting surfaces evolve from 2D-sinusoidal to
isotropic random patterns. We study the contact response under
a low nominal contact pressure, p0 = 0.001E* since the sensitivity to
surface patterns is maximum at light loading. Figure 9A shows the
real area of contact Ar (left y-axis) and the real mean contact
pressure pr (right y-axis) for all surfaces as a function of θ. The
real area of contact decreases monotonically as θ increases. That
reduction in load-bearing areas is naturally accompanied by the
increase in the real mean contact pressures and the stress
concentration. As seen in Figure 9B, the stress concentration is
close to 200 for the anisotropic patterns (θ ≈ 0°) and 800 for the
isotropic patterns (θ = 90°). The sensitivity of the real contact
pressures and stress concentration on the degree of anisotropy,
i.e., parameter θ stems from the decomposition patterns. For low θ

values, the phase decomposition occurs preferentially along a single
axis, and thus resulting patterns possess peaks with two very
contrasting curvatures. Very high peak curvatures are obtained

FIGURE 7
The stress concentration for the surfaces generated by spinodal decomposition.
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along the direction where decomposition is possible, and very low
curvatures (nearly flat) along the orthogonal direction where
decomposition is suppressed. Therefore, even though the surface
heights are scaled to the same rms height values, the peaks of the
patterns are sharper for isotropic cases than the ones for anisotropic.
Eventually, the sharper peaks experience higher stress and thus
higher stress concentrations. To illustrate this on the simulated
surfaces, we plot in Figures 9C, D the rms of the peak heights σs and
the mean effective curvatures �Ks for different θ. The rms of peak
heights is almost the same for all of the cases except for θ ≈ 0° cases.
For that case, the surface pattern is an almost perfect 2D sine wave,
and thus peak picking and statistics on heights and curvatures are
not reliable. In contrast, the average effective curvature increases
significantly from θ = 15° case to 60° and settles to a plateau
afterward. This stark increase in average effective curvatures leads
to sharper peaks and higher real contact pressures. Note that GW
model assuming a random distribution of peak heights also predicts
that pr ≈ χE*(σs �Ks)0.5, where χ is a constant that depends on peak
height distributions. Normal distribution captures well the
distribution of the peaks for all the θ cases, so χ = 0.25. In
Figure 9A, we show that a simple expression of pr given by the
GW model captures the trend of numerical simulations for all θ
cases. That in turn informs us that surfaces created by spinodal
decomposition nearly always possess peaks with a degree of
randomness in their heights and curvatures, which then lead to
contact response similar to randomly rough surfaces. The only way
to prevent this is to inhibit decomposition perfectly along certain
directions and thus obtain more deterministic patterns like the 2D
sine waves shown in Figure 1A.

4.2 Influence of acceleration in amplified
instability

The extent of stretch ε by effective centrifugal acceleration
is a function of α = ρgeffh0/G. For identical material and droplet

height, α is proportional to the effective centrifugal
acceleration geff, but inversely proportional to the elastic
resistance of the drop G. The elastic resistance of the drop G
depends on curing time and temperature, and thus determining
its value is difficult during processing. Because of those
difficulties, we will use the combined nondimensional
parameter ρgefflc/G instead in the parametric study, where
the characteristic length lc �

��������
γ/(ρRΩ1)

√
at a given initial

rotating speed Ω1. The combined parameter will be more
sensitive to the effective acceleration applied during
patterning, and thus can be treated as a processing
parameter. We create 5 different surfaces using Eq. 5
corresponding to the nondimensional parameter ρgefflc/G =
{1.48, 2.24, 3.14, 4.04, 4.92} and simulate it under light loading
p0 = 0.001E*. Lower bound 1.48 and upper bound 4.92 are the
cases amplified at low geff and high geff in Figure 6, respectively,
and those correspond to the actual surfaces with hair height
pdfs reported by (Jambon-Puillet et al., 2021) in Figures 4B, C.
For the largest ρgefflc/G case at 4.92, the average α is 5.44 < 8,
which guarantees that most of the hair patterns exhibit
stretches in line with the Eq. 4. Figure 10A shows the real
contact area Ar (left y-axis) and the real mean contact pressure
pr (right y-axis). The real contact area gets smaller as ρgefflc/G
increases, and the real mean contact pressure and stress
concentration increase. The stress concentration at ρgefflc/
G = 4.92 is about four times the stress concentration at
ρgefflc/G = 1.48 (Figure 10B). Those trends in the real
contact area, real mean contact pressure, and stress
concentration can be linked to the rms peak height and
curvature variations with ρgefflc/G parameter. At small
values of ρgefflc/G corresponding to effective accelerations,
the hair heights are fairly uniform (Figure 3A), whereas at
high ρgefflc/G the hair heights are widely distributed as shown
in Figure 3B, which leads to higher rms peak heights
(Figure 10C). Moreover, as the droplet is stretched under
higher effective acceleration, the reduction in the radial

FIGURE 8
The stress concentration for the surface generated by amplified instability from numerical results.
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extent of the droplet leads to a sharper peak; i.e., increased
curvature (Figure 10D). At high ρgefflc/G, the patterned
surfaces feature highly-contrasting tall and sharp hairs
coexisting with short and flat hairs. This can be directly
observed from the increase of standard deviations in rms
asperity heights and curvatures with increasing effective
acceleration. Since tall and sharp hairs bear most of the load
under light loading, real contact pressures are significantly
high. With increasing load, shorter and flatter hairs start load
bearing and the pressures drop. For highly-contrasting hairs as
at high ρgefflc/G, recruiting more of those shorter and flatter
hairs with further loading could lead to steep increase in real
contact areas and thus reduction in real contact pressures. This
can be seen in Figure 6B where pr decreases with applied
nominal pressures until close to a complete contact
condition. As GW model predicted pr for the spinodal
surface, it also predicts pr for the surface generated by amplified
instability reasonably well. Unlike the distribution of asperity heights
for spinodal surfaces, the exponential function captures the
distribution of asperity heights for amplified instability, so χ =
0.56. In Figure 10A, the predicted pr indicated by an arrow
compares well with the BEM estimations.

4.3 Influence of tangential loading

Lastly, we study the influence of combined loading on the above-
mentioned stress concentration factors. Figure 11 shows the percent
increment of stress concentration factors as a function of friction
coefficient μ for three surface patterns: the isotropic spinodal
patterned surface (θ = 90°), the anisotropic spinodal patterned
surface (θ ≈ 0°) and the initial droplets generated by the
amplified instability. Note that we simulate each surface at a
mean pressure of p0 = 0.0316E* and a mean shear traction of
qx = 0.7 μp0, which corresponds to pre-sliding contact globally.
Therefore, increasing friction coefficients simulate an increase in
applied shear traction. Since the percent increment is estimated with
respect to the stress concentration factors under pure normal
loading, pconc,0, it reveals the influence of added shear traction. It
can be observed that the stress concentration factors increase with
increasing shear tractions for all cases, but the increment is limited
to 5% compared to the values for pure normal loading. Those
findings confirm that the frictional tractions play a secondary
role in stress concentrations where the primary factor is the
processing parameters determining the degree of randomness in
pattern geometry.

FIGURE 9
(A) The real area of contact (left, blue) and real mean contact pressure (right, orange), (B) the stress concentration, (C) the rms asperity height, and (D)
the average effective curvature of asperity vs. directional parameter θ.
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FIGURE 10
(A) The real area of contact (left, light blue) and real mean contact pressure (right, orange), (B) the stress concentration, (C) the rms asperity height,
and (D) the average curvature of asperity vs. ρgefflc/G.

FIGURE 11
Percent increment of stress concentration as a function of friction coefficient in three representative surfaces.

Frontiers in Mechanical Engineering frontiersin.org12

Lee and Eriten 10.3389/fmech.2023.1253207

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1253207


5 Discussion and conclusion

In this paper, we have studied the real contact areas and tractions
on the patterned surfaces generated by spinodal decomposition and
amplified instability and reported how geometric randomness in the
resulting patterns leads to stress concentrations under contact loading.
On the surfaces generated by spinodal decomposition, the isotropic
patterns deliver smaller real contact areas and thus higher real mean
contact pressures and stress concentrations compared to the
anisotropic patterns. Commonly, surfaces and metamaterials
produced by spinodal decomposition are made of metals or
ceramics. The stress concentration factors we report here suggest
that nominal stresses are amplified by orders of magnitude in such
surfaces under external or self-contact loading. Hence, local yielding
or fracture is inevitable. Those local failures will hinder mechanical
strength and resilience, and thus durability of the materials. On the
surfaces generated by amplified instability, a similar reduction in the
real contact area and increase in stress concentrations occur with
increasing effective acceleration during patterning. At higher effective
accelerations, the hair patterns exhibit broader variation in both
height and curvature, and thus some hairs carry tractions that are
3 orders of magnitude higher than the nominal mean contact
pressures. In general, the amplified instability method is used in
patterning gels and elastomers. Both groups of materials have specific
material formulations that can sustain large deformations without
permanent failure. For instance, ultra-stretchable double network
hydrogels can be synthesized to withstand stretches up to 100.
Such hydrogels would be safe under contact loading even when
patterned at the highest effective acceleration.

It is noteworthy that the stress concentrations reported here
should be taken as an upper bound since we simulated linear elastic
contact but in practice nonlinear material properties and failure
would limit local tractions and deformations. The authors are
currently working on experimental investigation of the above-
mentioned surface patterns and the subsequent modeling will
incorporate relevant material and failure models to inspect
contact response more realistically.
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