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The main objective of this study is to investigate the impact of ground effects on
the aerodynamic coefficients of a delta wing aircraft model. Since the flow on the
delta wing exhibits vortical flow inherently, it is crucial to examine the influence of
ground effects under these conditions. An experimental study was conducted to
enhance understanding of the aerodynamic behavior of an aircraft model
incorporating a delta wing-body-vertical tail. Experiments were conducted in
a subsonic wind tunnel with a test section measuring 2.8 m × 2.2 m.
Measurements were taken using a sting type balance to determine the
aerodynamic forces and moments. All experimental tests were performed at a
Reynolds number of 1.5 × 106, with the specific aim of examining and identifying
the influence of the ground on aerodynamic coefficients. To investigate how
ground effect affects the aerodynamic performance of the model, a fixed plate
with an adjustable height was placed underneath it. The distance between the
model and the ground was varied, and resulting data indicated that increased
proximity to the ground improved longitudinal static stability. The results revealed
that the presence of the ground plane resulted in a 6% increase in the maximum
lift coefficient. Meanwhile, the lift increases around 25% due to ground effects at
an angle of attack of 14° as it approaches the ground. The lift coefficient was
enhanced across all angles of attack, while the induced drag coefficient
decreased, resulting in an overall increase in aerodynamic efficiency. The lift
curve slope saw a 16.9% increase when themodel’s height from the ground plane
was less than half of the wing span. As the height decreased further, the
aerodynamic center shifted backward, leading to an increase in longitudinal
static stability. The rolling moment and yawing moment coefficients becomes
unstable at angles of attack above 30°.
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1 Introduction

During the past decade, airplane aerodynamic designers have concentrated on
enhancing the lift coefficient (Mirzaei et al., 2012; Taleghani et al., 2012; Salmasi et al.,
2013; Mohammadi and Taleghani, 2014; Abdolahipour, 2023) and lowering the drag
coefficient (Albers et al., 2019; Atzori et al., 2020; Rodriguez et al., 2020; Kornilov, 2021;
Fahland et al., 2023) through active flow control methods in cruise phase. They have also
aimed to improve the aerodynamic coefficients on high-lift devices during takeoff and
landing phases (Abdolahipour et al., 2021; Abdolahipour et al., 2022a; Abdolahipour et al.,
2022b). Despite the importance of the issue of ground effect during takeoff and landing,
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recent years have seen fewer research results published, possibly due
to the short duration of exposure to ground effect. A more
comprehensive investigation is necessary to fully understand the
impact of ground effect on aircraft performance in these critical
phases of flight. When an aircraft flies at a low altitude, the airflow
between the airplane and the ground aligns parallel to the surface,

causing noticeable variations in the airplane’s aerodynamics from
flying at higher altitudes. This phenomenon is referred to as the
ground effect. The ground effect has a significant impact on
conventional airplanes during the landing and take-off phases, as
well as on ground effect airplanes during horizontal flight. A clear
comprehension of ground effects is crucial for advancing modern

FIGURE 1
Schematic of (A) 60° delta wing-body-tail model (dimensions in mm) and (B) Model at normal and inverse positions.
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conventional airplane control systems, designing landing gears, and
creating high-lift devices. In general, when an airplane is near the
ground, the wing produces a greater amount of lift. The examination
of ground effects on a wing can be separated into 2D and 3D effects.
The ground induces a high-pressure distribution on the lower
surface of a two-dimensional airfoil when the angle of attack is
positive. This results in an increase in lift for the airfoil. A three-

dimensional wing at a positive angle of attack also experiences a
decrease in downwash angle and induced drag.

In a wind tunnel experiment, Ahmed et al. (Ahmed et al., 2007)
studied the performance of a NACA4412 airfoil under ground
effect conditions. The outcomes revealed that low angles of attack
(α < 4°) led to reduced lift near the ground. Conversely, the lift
increased in close proximity to the ground for angles of attack
between 4° and 8°. Higher angles of attack result in greater lift near
the ground plane due to the increased pressure on the lower surface
of the airfoil. Ahmed and Sharma (Ahmed and Sharma, 2005)
conducted a study on the NACA 0015 airfoil in ground effect. The
study found that the aerodynamic characteristics were significantly
influenced by both the angle of attack and the distance from the
ground. Additionally, Zerihan and Zhang (Zerihan and Zhang,
2000) conducted a wind tunnel experiment on the Tyrrell-02
airfoil, which is an inverted airfoil with a high camber, to
investigate its ground effect. The researchers observed a gradual
increase in downforce as the distance from the ground plane
decreased, reaching a maximum value before decreasing. An
analysis of the aerodynamic and stability properties of airfoils
under extreme ground effects was conducted by Nirooei (Nirooei,
2018). At low Reynolds numbers, ground effects were studied
around the NACA 4415 airfoil according to He et al. (He et al.,
2018). They used this data to investigate the influence of ground
effects on the aerodynamic performance of the airfoil. The study,
utilizing both numerical and theoretical methods, demonstrated
the influential role of the ground on both primary and secondary

FIGURE 2
Delta wing-body-tail model installation on ground
simulation stand.

FIGURE 3
Variation of aerodynamic coefficients with angle of attack for the aircraft model without the ground plane.
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instabilities of the separated flow surrounding the airfoil in low
Reynolds number conditions.

A numerical simulation was performed to assess the
aerodynamic features of 2D smart flaps while considering the
ground effect (Djavareshkian et al., 2011). A computational
simulation (Qu et al., 2014) was also performed to study the
impact of dynamic ground effects on a NACA 4412 airfoil
during the landing phase. The analysis revealed that at higher
altitudes, the lift experienced in dynamic ground effect (DGE)
remains constant despite the decrease in altitude, and is
equivalent to the lift in static ground effect (SGE). On the other
hand, the lift of DGE increases rapidly as the height decreases in the
small height region. Furthermore, it is substantially higher than the
lift in SGE with the same angle of attack. Gratzer andMahal (Gratzer
and Mahal, 1971) conducted an analysis of the aerodynamics of an
STOL aircraft in ground effect through theoretical analysis and wind
tunnel experiments. They found that as the height from the ground
plane decreased, the slope of the lift curve decreased as well as the
pressure on the upper surface. For the 3D study on ground effect, the
focus has been on the aerodynamics of wingtip vortices. Chawla et al.
(Chawla et al., 1990) conducted an aerodynamics experiment on a
wing with an NACA4415 airfoil and aspect ratio of 2.33, utilizing a
grounded plane. Their research revealed that implementing
endplates improved lift at low heights from the ground plane.
Lee (Lee, 2002) carried out an experimental examination of the
motion of wingtip vortices of a rectangular wing in the ground effect.
The study findings indicate that the presence of the ground plane

causes a deceleration of downward vortices’ motion and their
outward motion towards the spanwise direction as a result of the
ground effect.

In a wind tunnel experiment performed by Harvey and Perry
(Harvey and Perry, 1971), they examined the trajectory of wingtip
vortices in ground effect. Their results indicate that the vortices
descended towards the ground initially before rebounding
downstream. Furthermore, Dakhrabadi and Seif (Tavakoli
Dakhrabadi and Seif, 2016) studied the aerodynamic properties
of the compound wing-in-ground effect with both the main and
outer wings. The study demonstrated that repositioning the outer
wing towards the trailing edge of the main wing enhanced static
height stability, leading to a decrease in tail area. In a study
conducted by Rojewski and Bartoszewicz (Adam and
Bartoszewicz, 2017), the impact of wing-in-ground effects was
assessed on the lift coefficients of airplanes and the downforce
coefficients of cars. Positive angles of attack result in a higher lift
coefficient, while negative angles of attack result in a lower lift
coefficient. Computational simulations were carried out by Sereez
et al. (Sereez et al., 2017; Sereez et al., 2018) using CFD methods to
study the aerodynamic features of the Common Research Model
(CRM). This model represents a typical transport airliner in
proximity to the ground. Wang (Wang, 2005) discovered
significant changes in lateral-directional modes when a slender
object operates close to the ground. Their study examined the
body’s lift and pitching moment relative to its distance from the
ground plane. Their results indicate that lift decreases and nose-up

FIGURE 4
Variation of side force coefficient with angle of attack for the aircraft model without the ground plane.
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pitching moment increases as the distance from the
ground decreases.

The ground effect was investigated by Deng (Deng, 2017) using a
simulation of a three-dimensional wing-body configuration.
Computations were conducted for the DLR-F6 wing-body in
unbounded flow, and compared with experimental data to verify
the accuracy of the simulation approach. As the wing body’s height
from the ground decreased while maintaining a fixed angle of attack,
researchers observed an increase in lift, a decrease in drag, and an
increase in nose-up pitching moment. Similarly, Deng et al. (Deng
et al., 2017) studied the aerodynamics of the DLR-F6 wing body in
unbounded and ground effects. It was discovered that increasing the
angle of attack in the ground effect amplified the blockage effect
while reducing the nose-up pitching moment. The Delayed
Detached Eddy Simulation and Spalart-Allmaras turbulence
model were used to investigate the aerodynamics and flow
physics of a close-coupled canard configuration with a sharp
leading edge in static ground effect (Qin et al., 2017), as well as a
65° sweep delta wing with a sharp leading edge in both static and
dynamic ground effect (Qin et al., 2015; Qin et al., 2016).

In wind tunnel studies of ground effects, static ground effect is
the most frequently used technique. This involves employing a
stationary model at different heights above the ground plane to
simulate the behavior of an aircraft flying at a consistent altitude
near the ground. The static data obtained facilitates the simulation of
an aircraft’s behavior when flying at a uniform altitude close to the
ground. To replicate the rate of descent of a descending airplane at a

specific altitude, a wind tunnel can be utilized. The technique
involves using a model that moves towards either a stationary or
a moving ground plane, commonly referred to as dynamic ground
effect (Chang andMuirhead, 1985; Lee et al., 1987a; Kemmerly et al.,
1988; Lee et al., 1989; Paulson et al., 1990).

The results indicate that defining the ground effects numerically
is complex due to the significant and variable influence of the ground
effect when the height is below a certain threshold. These effects are
non-linear; for instance, the increase in lift force is non-linear when
the height is less than half of the wing span, and these variations
differ among different aircraft. To predict and study the ground
effects, analytical software is commonly employed (McDonnell
Douglas Corporation and USAF Stability and Control DATCOM,
1960). This software utilizes flight data, equations, and tables to
forecast control and stability characteristics.

Recently, Shams Taleghani et al. (Taleghani et al., 2020)
conducted a study to examine how the ground affects
aerodynamic coefficients in different situations involving the
angle of attack and horizontal tail angle. Their research primarily
focused on evaluating the performance of the horizontal tail by
observing changes in lift, drag, and pitching moment coefficients
under various conditions, including ground effect and out-of-
ground effect.

Limited experimental results exist for the ground effect of delta
wings, mainly focusing on airplane-like configurations (Kemp et al.,
1966; Rolls and Koenig, 1966; Lockwood and Phillips, 1968;
Corsiglia et al., 1969; Baker et al., 1970; Snyder et al., 1970; Katz

FIGURE 5
Variation of rolling moment coefficient with angle of attack for the aircraft model without the ground plane.

Frontiers in Mechanical Engineering frontiersin.org05

Shams Taleghani and Ghajar 10.3389/fmech.2024.1355711

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1355711


and Levin, 1984). This study aims to experimentally evaluate the
static aerodynamic properties of a model with a 60° swept delta wing.
The model includes a fuselage and vertical tail, both positioned close
to and above the ground surface.

2 Experimental setup

The experiments were carried out at the National Low-Speed
Wind Tunnel, which features an open test section. The rectangular
test section measures 2.2 m × 2.8 m × 4 m in dimensions. The tunnel
is equipped with a fixed-pitch axial-flow fan powered by a 1.2 MW
electric motor, with a diameter of 4.5 m. The rotational speed of the
fan can be adjusted between 60 and 560 rpm to control the airflow
velocity in the test section, ranging from 10 m/s to 70 m/s. To ensure
a uniform and low turbulence flow, the tunnel incorporates a six-to-
one contraction following a settling chamber. The settling chamber
includes one honeycomb and two metal screens. The tunnel was
calibrated to ensure that the flow parameters, including turbulence
level, flow uniformity, and flow angularity, were within acceptable
limits for this type of wind tunnel. Tomeasure the turbulence level of
the flow in the test section and test section airflow non-uniformity in
velocity, a thermal anemometer (specifically, the DANTEC
55P11 one-dimensional hot wire probe) was used. Using a
traverse mechanism, the whole area is scanned by a hot wire
probe at different test section flow velocities. Hot wire probe
measures turbulence intensity using flow velocity fluctuations

measurement. The turbulence intensity at the center of the test
section remains below 0.13% for velocities exceeding 35 m/s. At a
test section airflow velocity of 50 m/s, the turbulence intensity
remains below 0.2%, except in regions near the free jet boundary.
The test section airflow experiences a non-uniformity of less than
0.2% in velocity. The flow angle in the test section, at the same
airflow velocity, was approximately 0.3°. The velocity of the airflow
in the test section is determined using a pitot-static tube placed on
one of the side walls. This tube is connected to both the data
acquisition system and a precise differential pressure transducer.
The transducer has an accuracy of 0.05% for pressure readings. The
maximum error in measuring the flow velocity measured by pitot-
static tube is 0.1 m/s.

A 6-component internal strain gauge balance is used to measure
the aerodynamic forces and moments on the model. The maximum
range of linear loading for lift, drag and side forces is 150 kg, 50 kg
and 150 kg respectively, and the pitching moment, rolling moment
and yawing moment are all 15 kg-m. This balance is attached to the
model, which is connected to the sting mounted on the vertical and
L-shaped rotated struts of the rig. A vertical strut is driven by an
electric motor and gearbox located on the rotating floor plane of the
wind tunnel test section, which generates the motion of the model.
To conduct static tests, the model and the internal balance are placed
on a test stand. The angle of attack and sideslip angle can be adjusted
manually or in a pre-planned manner using potentiometers. This
experimental setup covers a range of −10°–40° for the model’s
incidence. The setup is mounted on a special platform

FIGURE 6
Variation of yawing moment coefficient with angle of attack for the aircraft model without the ground plane.
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(turntable) with a diameter of 2.0 m, installed on the wind tunnel
test section’s floor plane. By rotating the turntable, the mean sideslip
can be changed based on the orientation of the aerodynamic model.
The wind tunnel’s working section turntable rotation allows for

investigations of sideslip angles from −90° to +90°. All of the
experiments were conducted at zero sideslip angle. This
experimental setup enables the conduct of conventional steady
experiments.

FIGURE 7
Variation of (A) lift coefficient and (B) lift increment with ground heights for the delta wing, delta wing-body-tail and F-106 model at the angle of
attack of 14°.
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High-speed analog-to-digital converters are used to measure
the strain gauge balance signals. A 16-channel data acquisition
system processes all forces and moments, as well as the angles of
attack and sideslip angles, along with the dynamic pressure. These

measurements are then converted to their corresponding physical
quantities using calibration coefficients. The data is acquired at a
frequency of 30 kHz for a duration of 10 s at each mean angle of
attack. This acquisition time allows for flow stabilization, while the

FIGURE 8
Variation of (A) drag coefficient and (B) drag increment with ground heights for the delta wing, delta wing-body-tail and F-106model at the angle of
attack of 14°.
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sampling rate is sufficient to capture the unsteady
flow phenomena.

The present study utilized a model consisting of a delta wing
combined with a body and vertical tail, where the wing was fixed in
the middle position. The aircraft’s wing featured a delta-shaped
design with an aspect ratio of 2.31 and a leading edge sweep of 60°.
The upper surface of the wing was flat, while the leading and trailing
edges were beveled and sharp, forming a 20° angle between the lower
and upper surfaces. The fuselage was cylindrical in shape with an
ogive nose. It consisted of two sections: a tangent ogive nose with a
semi-apex angle of 20°, and a constant diameter section measuring
0.833 m in length. The fuselage had a total length of 1.092 m and a
diameter of 0.1 m. The wing was constructed from a flat plate
section. The wing reference area was 0.433 m2 and the
aerodynamic mean chord was 0.577 m. The pitching moment of
the model was measured at 25 percent of the mean aerodynamic
chord. Figure 1A provides a schematic representation of the 60° delta
wing-body-tail model. Figure 1B shows the model normal and
inverse positions. At inverse position the model is rotated 180°

around its body axis. The dimensions of the model were determined
based on specific criteria, including the dimensions of the wind
tunnel test section and the maximum allowable loads on the balance.
In order to meet the limitations of the wind tunnel test section, the
wing span of the model must be less than 0.80 times the width of the
test section, and the frontal area of the model must be less than
7 percent of the test section area tominimize any effects from the test

section walls. Based on these criteria, the model’s wing span is 1.0 m,
which is less than 0.80 times 2.8 m (the width of the test section).
Additionally, the model’s frontal area at an angle of attack of 40° is
calculated as follows: Wing area × sin 40° = 0.433 × 0.6427 =
0.2783 m2. Considering the test section area is approximately 6.0 m2,
the model’s blockage ratio (0.2783/6.0 × 100) is approximately 4.6%,
which is less than the allowed 7%. Regarding the maximum
allowable loads on the balance, the normal force must be less
than 150 kg. At a velocity of 50 m/s, the normal force is
determined by 0.5× density × velocity2 × wing area × maximum
normal force coefficient (0.5 × 1.1×502 × 0.433×1.5). This
calculation results in a normal force of 893 N, which is
equivalent to 91 kg, and is less than the allowed 150 kg.

The investigation of the ground effect utilized a generic delta
wing aircraft configuration derived from a delta wing-body
setup. The delta wing-body-tail model was affixed to a sting
balance, allowing for vertical transverse movement relative to the
model. The wind tunnel test section had a rectangular cross-section,
which was effectively reduced by the ground plane. Throughout the
test, a constant airspeed of 50 m/s was maintained, corresponding to
a Reynolds number of 1.5 × 106. The delta wing model featured a
cylindrical center body connected to a six-component sting balance.
To analyze the impact of ground effects on the longitudinal
characteristics of the delta wing-body-tail model, the model was
positioned at various heights above the ground simulator plate. The
model was secured on a sting-type support stand in the center of the

FIGURE 9
Variation of lift coefficient with angle of attack for the delta wing, delta wing-body-tail model in ground effect (H/b = 0.3) and out of ground effect
(H/b = 1.6).
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wind tunnel test section, while the ground plane was adjusted
vertically. Figure 2 depicts the installation of the delta wing
model on the ground simulation stand. The six components of
the strain-gauge balance, which were installed on the stand, were
capable of measuring all aerodynamic forces and moments.

Two separate potentiometers on this stand are used to measure
the angle of attack and sideslip angle. The maximum error in
measuring the angles of attack and sideslip angle is 0.1°. This
stand incorporates a fixed plate under the central area of the test
section in order to simulate the ground plane. The model was placed
on the stand and tested at various ground elevations in this
investigation. The measured data is compared with two basic
models that were previously used for the experimental study. The
60° delta wing model was tested by Chang (Chang and Muirhead,
1987), Wentz (Wentz, 1968), and Pal Hung Lee et al. (Lee et al.,
1987b), while the 1/48 scale model of the F-106 was also used.

3 Results

Delta wing-body-tail longitudinal aerodynamic coefficients are
shown in Figure 3. These results are presented for conditions where
the ground plane is absent. The tests were conducted in six runs,
with three runs in the normal position and three runs in the inverse
position of the model. The measured data demonstrate good
repeatability. Model tests in normal and inverse position have

been used to determine the flatness of the flow. Based on the
calibration of equipment, the measurement error of the lift, drag,
and side forces are 0.13%, 0.3% and 0.4% respectively and for the
pitching moment and yawing moments are 0.4%, and for the rolling
moment is 0.7%. To ensure the acceptable reliability of the used data,
the uncertainty of the obtained data has been calculated based on the
variance analysis method. Both systematic error and precision are
considered in these calculations. Sensor errors, changes in flow
density and velocity, changes in static pressure, data acquisition
system errors, pressure sensor errors, etc. Have been investigated.
The uncertainty value of the longitudinal static aerodynamic
coefficient has been calculated using the results of 6 individual
tests. The uncertainty of lift coefficient, drag coefficient and pitching
moment coefficient at a low angle of attack is 0.0051, 0.009 and
0.0025 respectively and at a high angle of attack is 0.0160, 0.0105 and
0.0019 respectively.

In Figure 3, the lift curve slope at the linear region of the angle of
attack is 0.0455 per degree. The curve remains linear up to an angle of
attack of 25° but becomes nonlinear at higher angles due to the
forwardmovement of the vortex bursting location. The angle of attack
at which the stall occurs is approximately 35°. The maximum lift
coefficient is 1.3. The variation of the drag coefficient with the angle of
attack shows the minimum drag coefficient is 0.0095. At an angle of
attack greater than 35°, a stall occurs due to full vortex bursting over
the delta wing. As a result, the lift force decreases, leading to a decrease
in the induced drag (drag caused by lift) and ultimately reducing the

FIGURE 10
Variation of lift coefficient with angle of attack for the delta wing-body-tail, F-106 model in ground effect (H/b = 0.4) and out of ground effect (H/
b = 1.6).
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total drag. The pitching moment coefficient is measured from
0.25 MAC. The pitching moment coefficient curve remains
linear up to the stall angle of attack, with a slope
of −0.0135 per degree. The curve slope with respect to the lift
coefficient is −0.3, indicating that the aerodynamic center of the
entire configuration is located at 0.55 MAC. Figures 4, 5, 6 display
the variation of the lateral and directional aerodynamic
coefficients (side force, yawing, and rolling moment) with the
angle of attack, specifically at zero sideslips. Figure 4 displays the
curve of the side force coefficient relative to the angle of attack at
zero-degree sideslip. The side force coefficient is negligible at low
angles of attack, up to approximately 20°, due to the absence of
sideslip. As the angle of attack grows, the value of the side force
coefficient increases, owing to the unstable vortex flow at high
angles of attack. The positions of vortex bursting on the right and
left wings are not consistent at a certain angle of attack, resulting
in different lift forces on each side due to variations in vortex
strength. The positions of vortex bursting on the right and left
wings are not consistent at a certain angle of attack, resulting in
different lift forces on each side due to variations in vortex
strength. Consequently, the rolling moment coefficient
becomes unstable at high angles of attack. Figure 5 displays
the rolling moment coefficient graph with respect to the angle
of attack at a sideslip angle of zero degrees. The same
phenomenon is observed in the yawing moment coefficient, as
demonstrated in Figure 6. This can be attributed to the instability
of vortex bursting at high angles of attack. Beyond an angle of

attack of 30°, the flow fields on the wing-body-tail combination
become asymmetric.

Figures 7, 8 present static ground effect data. These figures
compare the variations of lift and drag coefficient with ground
heights for the 60° delta wing-body-tail (Figure 2) with the 60° delta
wing and the F-106 model (Lee et al., 1987b) at an angle of attack of
14° (Figure 7A; Figure 8A). In Figures 7, 8 the data related to H/b
larger than 1.6 are related to out-of-ground. As shown in these
figures for lift coefficient for wing-body-tail configuration the lift
coefficient decreases relative to wing alone configuration due to body
(fuselage) presence because at wing-body-tail configuration the real
wing area is less than the wing reference area because of the presence
of the body. But for the F106 model, the fuselage is a lifting body so
the lift coefficient is near to the wing-alone configuration ones. In
other words, the lift of the fuselage compensated for the lift
decreasing due to decreasing the real wing area. In Figure 7B,
Figure 8B, the data are plotted as a percentage increase in lift
and drag coefficient. The findings consistently demonstrate that
lowering the ground height results in higher lift coefficients, lower
drag coefficients, and improved longitudinal stability (as evidenced
by the more negative slope of the pitching moment curve in relation
to the lift coefficient). When the aircraft is not in contact with the
ground, as the angle of attack increases, the delta wing leading-edge
vortices tend to move towards the middle section of the wing. This
reduces wing loading near the wing tips, resulting in a less negative
pitching moment. However, when the ground plane is present, the
power of the leading-edge vortices increases and they move towards

FIGURE 11
Variation of pitching moment coefficient with angle of attack for the delta wing, delta wing-body-tail model in ground effect (H/b = 0.3) and out of
ground effect (H/b = 1.6).
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FIGURE 12
Variation of pitching moment coefficient with lift coefficient for the delta wing-body-tail, F-106 model in ground effect (H/b = 0.4) and out of
ground effect (H/b = 1.6).

FIGURE 13
Variationof drag coefficientwith angle of attack for the deltawing, deltawing-body-tailmodel in groundeffect (H/b=0.3) andout of groundeffect (H/b= 1.6).
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the external part of the wing. Consequently, the pitching moment
becomes more negative in the ground effect.

Figures 9, 10 depict the changes in lift coefficient concerning the
angle of attack for the delta wing-body-tail combination under
ground effect in comparison to out-of-ground effect conditions.
The graph includes data from the 60° delta wing model and the F-
106 model (Lee et al., 1987b). At low angles of attack, a linear
relationship exists between the coefficients of lift and pitching
moment and the angle of attack (Figures 11, 12). However, at
higher angles of attack, the lift coefficient and moment curves
become nonlinear due to the influence of leading-edge vortices.
In the case of a delta wing-body-tail combination, as the height from
the ground decreases at each angle of attack, the lift coefficient value
and the slope of the lift curve increase. The presence of the ground
increases the maximum lift coefficient from 1.3 to 1.38. Overall, the
results indicate that reducing the ground height leads to increased
lift coefficients and lift curve slope (Figures 9, 10), decreased drag
coefficients (Figures 13, 14), and increased longitudinal stability
(Figures 11, 12).

4 Conclusion

Gaining a comprehensive understanding of the aerodynamic
characteristics of a delta wing aircraft in ground effect is vital for
optimizing its performance and ensuring safe flight conditions. The
purpose of this investigation was to examine the influence of ground
effects on the aerodynamic coefficients of a model delta wing aircraft.

Through conducting experiments, valuable insights were gained into
the aerodynamic behavior of an aircraft model equipped with a 60°

delta wing-body-vertical tail, under various ground effect conditions.
The results of the experimental tests, which were carried out in a
subsonic wind tunnel, unveiled a number of important findings. One
key finding was that increasing the proximity to the ground led to
improved longitudinal static stability. When the model’s height from
the ground plane was less than half of the wing span, the lift curve
slope increased by 16.9%. Additionally, the study demonstrated that
ground effect resulted in elevated lift coefficients at all angles of attack.
Specifically, at an angle of attack of 14°, the lift increased by
approximately 25% due to ground effects. When the delta wing
model was in close proximity to the ground, there was a 6%
increase in the maximum lift coefficient. These variations were
particularly significant when the distance from the ground plane
was less than half of the wing span.

Moreover, the research emphasized the importance of considering
the design of the vertical tail in delta wing aircraft operating under
ground effect conditions. The vertical tail plays a crucial role in
maintaining stability and control, especially in the presence of
altered flow patterns caused by ground effects. This study shed
light on the optimal design parameters for the vertical tail, thereby
contributing to the overall performance and safety of the aircraft. It
further emphasized the significance of incorporating ground effects
into the design and optimization of delta wing aircraft, as it has the
potential to significantly enhance lift generation capabilities. The
presence of a ground plane has the added benefit of strengthening
the flow of leading-edge vortex towards the outboard section of the

FIGURE 14
Variation of drag coefficient with lift coefficient for the delta wing-body-tail, F-106model in ground effect (H/b = 0.4) and out of ground effect (H/b = 1.6).
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wing. This, in turn, results in a more negative pitching moment,
causing a steeper decline in the pitching moment curve. As a result,
there is an increase in static longitudinal stability and a shift backward
in the aerodynamic center. Additionally, reducing the distance between
the ground plane and the wing leads to a decrease in the total drag
coefficient for all angles of attack. This decrease is primarily due to a
reduction in the induced drag coefficient. Consequently, there is a
significant improvement in the aerodynamic efficiency parameter (L/D)
when the distance from the ground plane is decreased. These findings
have important implications for the control and stability of delta wing
aircraft, especially at high angles of attack. However, it is crucial to note
that the study identified a stability issue with the rolling moment and
yawing moment coefficients becoming unstable at angles of attack
above 30°. This highlights the necessity for further research and analysis
to address this instability and ensure the safe operation of delta wing
aircraft in high-angle-of-attack scenarios. Further research in this field
is encouraged to explore additional variables and circumstances that
may affect the aerodynamic coefficients under ground effects. This will
enhance the comprehensive understanding of delta wing aircraft
behavior and aid in the development of improved design strategies
for heightened performance and safety in low-altitude flight operations.
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Nomenclature

b Wing span (m)

CL Lift coefficient

CD Drag coefficient

Cs Side force coefficient;

Cm Pitching moment coefficient

Cl Rolling moment coefficient

Cn Yawing moment coefficient

H Height from Ground plane (m)

N Fan revolution per minute (rpm)

Tu Turbulence intensity (%)

Uo Test section flow velocity (m/s)

α Angle of attack (degree)

Re Reynolds Number

WIG Wing in Ground

MAC Mean Aerodynamic Chord
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