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Traditional robotic arms rely on complex programming and predefined
trajectories to operate, which limits their applicability. To improve the
flexibility and adaptability of the robot arm, the research focuses on improving
the grasping performance of the robot arm based on vision technology. Kinect
technology is used to capture human arm movements, and Kalman filter is
introduced to smooth image data, so as to optimize the motion recognition
process. In this study, the residual network model is further improved, and ELU
activation function and pre-activation mechanism are introduced to enhance the
classification accuracy of gesture images. The results showed that the improved
ResNet50 model achieves 95% recognition accuracy after 25 iterations of
training, while the original model is 80%. The application of Kalman filter
makes the motion tracking curve smoother and shows the correction effect
of this method. In simulation tests, the robotic arm is able to identify different
elbow bending angles with 90–96 percent accuracy, while mimicking five
specific hand gestures with 96–98 percent accuracy. These data support the
practicability and effectiveness of the application of vision capture technology
and deep learning model in the field of intelligent control of robotic arms.
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1 Introduction

Kinect device is a human-computer interaction device developed by Microsoft based on
deep camera technology. It can obtain real-time user actions and environmental
information through the combination of sensors and cameras (Alves et al., 2020). The
Kinect device combines a depth camera, an RGB camera, and multiple sensors to capture
human movements, facial expressions, and voice commands. In recent years, Kinect
technology has been widely used in the field of robotics, which analyzes these data to
achieve real-time human-computer interaction. In the field of robotics, especially in the
control and operation of robotic arms, Kinect technology is used to improve grasp accuracy
and efficiency. It can capture the position, shape and attitude of the target object in real time,
and assist the robot arm to grasp it more accurately (Li R. et al., 2021). Traditional robotic
arm grasping techniques typically require tedious programming and calibration, and often
have poor performance in grasping complex shapes and uncertain targets (Malik et al.,
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2020). The Kinect technology provides real-time motion capture,
which is essential for the control of robotic arms that require rapid
response. Kinect integrates depth information, visual information,
and motion capture, which provides more comprehensive data
support for complex grasping tasks. Kinect technology has good
adaptability to objects of different shapes and sizes, which makes it
have wide application potential in the field of robot grasping.
However, Kinect technology still has limitations in the grasp
control of robotic arm. The spatial resolution and depth accuracy
of Kinect sensor are limited, which may affect the recognition and
processing of subtle movements or small target objects. When the
object is partially obscured by other objects, Kinect may have
difficulty accurately capturing the full shape and position of the
target. Therefore, to explore the technical characteristics of Kinect
devices in the field of robotic arm control and improve the accuracy
of robotic arm grasping control, this study is based on Kinect
technology to extract human arm posture images, and constructs
gesture action image recognition and robotic arm grasping models
based on an improved residual network (ResNet) model (Jaroonsorn
et al., 2020). The innovation of the research is that Kinect technology
is innovatively applied to the control of the robot arm, and the depth
camera is used to capture the posture of the human arm, to achieve
accurate control of the robot arm. In the processing of Kinect
captured images, Kalman filter (KF) is used for the first time to
smooth and optimize the image data. By introducing ELU activation
function and pre-activation operation, the ResNet is improved, and
a mapping relationship model between human arm and robotic arm
is constructed to achieve high-precision imitation under different
joint angles and gesture states.

This study is composed of four parts. The first part explores the
research outcomes of domestic and foreign scholars on visual image
capture technology and robotic arm control technology. The second
part preprocesses the human arm posture images extracted by
Kinect technology using the KF method. An improved ResNet is
used to classify the action images of mechanical claws. By
constructing a mapping relationship model between the human
arm and the robotic arm, the goal is to control the motion of the
robotic arm using the angle transformation of the human arm. The
third part conducts performance testing and analysis on the
constructed model. The fourth part summarizes the article and
proposes shortcomings.

2 Related works

Kinect technology can extract information such as the position,
shape, and posture of targets from images, and plays an important
role in the field of machinery. Some experts and scholars have
conducted relevant research based on this. Li et al. constructed a
real-time tracking control method for robots. This method
integrated the position and joint angle information of robot
actuators, achieving real-time estimation of user motion. By
combining Kinect sensors with the robot operating system, the
motion coordinates of each joint of the robot were worked out to
achieve human-machine coordinate conversion. Simulation
experiments have demonstrated that this method had good
robustness and accuracy (Li S. et al., 2021). Ting et al. proposed
a safety strategy based on risk assessment and deceleration

procedures to avoid collisions between robots and humans.
Kinect sensors were utilized to estimate the distance between
humans and robots, to slow down the robot’s speed. It further
modified the robot’s motion by calculating virtual forces in the risk
space. Through experiments, it has been verified that this method
can meet the requirements for robots in human-machine
cooperation (Ting et al., 2020). Anuradha et al. believed that
human following robots can be achieved using various methods,
such as stereo cameras, laser rangefinders, and RFID systems.
Therefore, based on Kinect sensors, human bone views were
recognized and tracked. The experimental results showed that
this technology could accurately detect the position and distance
of people (Anuradha et al., 2020). Wang et al. estimated the motion
of each fingertip based on a combination of RGB images and depth
image data obtained from Kinect sensors, to achieve gesture
recognition. Specific algorithms were used in the proposed
system to calibrate using the camera’s focal length and angle
range. The experimental results demonstrated the robustness and
real-time performance of the system (Wang et al., 2020).

As an indispensable part of the robot structure, the robotic arm
plays an important role in the industrial field, and many experts and
scholars have conducted relevant research on it. Zou Y et al.
constructed a weld tracking method based on near-end strategy
optimization, taking the reference image block and the image block
to be detected as the double-channel input of the network, predicting
the translation relationship between the two images, and correcting
the position of the feature points in the weld image. Offline
simulation results show that the proposed algorithm has strong
robustness and performs well on the noisy surface joint image test
set (Zou and Zhou, 2022). Mikkelstrup AF et al. performed A 3D
scan of the weld to locally determine the gradient and curvature of
the weld surface to locate the weld toe. Based on the weld toe
position, an adaptive robot processing trajectory is generated that
precisely tracks the curvature of the weld toe and adjusts the tool
orientation according to the weld profile. Experiments comparing
adaptive robotic therapy with manual and linear robotic therapy
show that the developed system reduces the overall processing
variance by 26.6% and 31.9%, respectively (Mikkelstrup et al.,
2022). Dongming et al. proposed an analytical method that
derived kinematic and dynamic equations. An impedance control
algorithm has been developed to coordinate and control multiple
robotic arms to capture targets. At the same time, gas jet thrusters
were used to overcome the reaction of the robotic arm and maintain
the position and attitude of the base stably. The experimental results
validated the effectiveness of this method (Dongming et al., 2020).
Nasir et al. proposed a new hybrid strategy by combining spiral
dynamic algorithm and bacterial foraging algorithm. To solve
engineering problems, the proposed algorithm was used to get
and improve fuzzy logic control parameters for wheel angle
tracking in a flexible robotic arm system. Performance testing
analysis showed that the algorithm had significant improvement
in performance, surpassing previous generation algorithms (Huang
and Huang, 2021; Nasir et al., 2022).

In summary, the existing Kinect technology is mainly applied in the
field of robot motion tracking, and only little research focuses on the
control of robotic arm movements. Therefore, the robot arm automatic
graspingmodel based onKinect technology constructed in this study has
important reference value in the field of mechanical control.
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3 Construction of a robotic arm
automatic grasping model based on
visual image capture technology

To ensure the fit between the human arm and the robotic arm
and achieve automatic grasping of the robotic arm, this chapter is
broken into three parts for research. The first part preprocesses the
human arm posture images extracted by Kinect technology using the
KFmethod. The second part uses an improved ResNet to classify the
action images of the mechanical claw, making it easier to control the
grasping action of the mechanical claw. The third part constructs a
mapping relationship model between the human arm and the
robotic arm to realize the goal of using human arm angle
transformation to control the motion of the robotic arm.

3.1 Human arm posture acquisition based on
Kinect technology

Kinect technology is an advanced user interface technology
developed by Microsoft, originally designed for the Xbox
360 gaming platform, and has since been widely used in robotics,
healthcare, education, and other fields. The core function of Kinect is
the ability to capture and recognize human movements, facial
expressions, and voice commands, enabling interaction without
physical contact. Kinect technology has several modules, such as
depth sensing, color camera, microphone array, bone tracking and
gesture recognition. Among them, depth sensing is that Kinect uses
infrared transmitters and depth cameras to capture the depth
information of the object. It builds a three-dimensional image of
the environment by emitting invisible infrared points of light and
using an infrared camera to capture the reflection of these points on
the surface of an object. A color camera is a standard RGB color
camera designed to capture high-resolution color images. This
provides more contextual information in image recognition and
processing. The microphone array is a set of microphones included
in the Kinect device that captures sound signals and supports sound
source location and noise suppression. This allows it to process voice
commands and perform environmental sound analysis. Kinect is
able to recognize and track the bone and joint positions of multiple
users, which allows it to analyze human movement and posture.
This is important for applications such as motion capture, game
controls, and physical therapy. By analyzing depth images and bone

positions, Kinect is able to recognize specific gestures and
movements, such as waving, jumping, and more. This is useful in
interactive games and user interface design. In the research, modules
such as depth camera, infrared irradiation and sound sensor are used
to realize the perception and recognition of users’ movements,
gestures and voices. Kinect hardware structure and data
extraction process are shown in Figure 1.

Due to the different shapes of the human body, it can affect the
accuracy of the figure contour images obtained by Kinect
technology. When processing images, the information
constructed by human edges is prone to occlusion or overlap
(Thomas et al., 2022). At this point, there may be errors in the
coordinates of the human arm joint points, resulting in poor
tracking performance of the joint points. KF is often applied to
the collection and position estimation of target points, and can also
make the coordinates more continuous in the time series. Therefore,
this method is used to smooth the coordinates of human joint points
(Kuo and Tang, 2022). KF is mainly divided into prediction and
correction stages, in which the position of the next second’s
coordinate needs to be predicted by comparing the coordinate
position of the joint point in the previous second (Zhou et al.,
2020). In the correction stage, it is necessary to compare the actual
position coordinates with the estimated position coordinates and
calculate the difference. Repeated updates and iterations are needed
to achieve the minimum error between the predicted and actual
values. Because human arm movements can be approximated as a
linear system (Abdul-Adheem et al., 2021), the established joint
system equation is shown in Equation 1.

x̂k � Fxk−1 + Buk−1 (1)
In Equation 1, x̂k denotes the predicted value of the system for

the joint point, and xk−1 means the predicted value delayed at k-1
time. B represents the input matrix, and uk−1 represents the input
signal at the previous time. F denotes the state transition matrix of
joint point positions. After predicting the joint position at the
current time t, it is necessary to update the covariance matrix of
the joint system, as shown in Equation 2.

P̂k � FPk−1FT + Q (2)

In Equation 2, P̂k indicates the covariance of the prior
estimation error. Pk−1 denotes the covariance of the delay
estimation error at k-1 time. Q represents the uncertainty matrix

FIGURE 1
Kinect device hardware structure and data extraction process.
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of state changes, and T stands for matrix transpose. By combining
the predicted and observed values, the optimal value of the joint
point coordinates at time k can be obtained as shown in Equation 3.

xk � x̂k +Kk zk −Hx̂k( ) (3)

In Equation 3, xk means the optimal estimated value of the arm
joint point at time k. zk indicates the actual value. H expresses the
matrix of the actual value, and Kk represents the KF gain. The
solution expression for Kk is shown in Equation 4.

Kk � P̂kH
T HP̂kH

T + R( )−1 (4)

In Equation 4, P̂k denotes the covariance of the prior estimation
error at time k, and R refers to the uncertainty matrix of the joint
position in the x, y, and z directions. From this, the covariance of the
corresponding error can be calculated as shown in Equation 5.

Pk � I −KkH( )P̂k (5)

In Equation 5, I serves as the identity matrix of Pk. Due to the
fact that Kinect technology collects information about arm joint
points, the coordinates collected are different from traditional
coordinate systems, as shown in Figure 2.

In Figure 2, the horizontal direction facing the human body is
the z-axis, the vertical direction with the camera is the y-axis, and the
horizontal left and right positions of the camera are the x-axis. It sets
the joint point coordinates obtained by the Kinect device to (x, y, z),
and the conversion relationship with the traditional coordinate
system is shown in Equation 6.

x � f0
X1

Y1
y � f0

Y1

Z1
z � Z1 (6)

In Equation 6, f0 means the focal length of the camera.
(X1, Y1, Z1) refers to the coordinates of the device, and the
conversion relationship between this coordinate and the world
coordinate (X2, Y2, Z2) is expressed in Equation 7.

X1

Y1

Z1

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � P Q

0T 1
[ ]

X2

Y2

Z2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

In Equation 7, P represents the orthogonal identity matrix of 3 ×
3, and Q represents the translation vector of 3 × 1. From this, the
conversion equation between (x, y, z) and (X2, Y2, Z2) can be
obtained as shown in Equation 8.

z
x
y
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � AB
X2
Y2

Z2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ (8)

In Equation 8, A denotes the internal parameter of the
coordinate conversion system, expressed as

A �
f0*f1 0 u0 0

0 f0*f2 v0 0
0 0 1 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, where f1 � 1
dx
, f2 � 1

dy
. B represents

an external parameter, with the expression B � P Q
0T 1

[ ]. It

selects any two non-coincident coordinate points A(x1, y1, z1)
and B(x2, y2, z2), and converts them into vectors AB

��→ � (x1 −
x2, y1 − y2, z1 − z2) between the two points. Taking the elbow
joint of the right arm as an example, the angle transformation
information of the elbow joint can be obtained by calculating the
cosine value of the angle between the shoulder joint to the elbow
joint vector and the elbow joint to the wrist joint vector. The angle
expression is shown in Equation 9.

cos θ, β( ) � u1*u2 + v1*v2 + w1*w2����������
u2
1 + v21 + w2

1

√
*

����������
u2
2 + v22 + w2

2

√ (9)

In Equation 9, the vector from the right shoulder to the elbow
joint is θ � (u1, v1, w1), and the vector from the elbow joint to the
wrist joint is β � (u2, v2, w2).

3.2 Construction of a gesture image
recognition model based on
improved ResNet

During the grasping action of the robotic arm, in addition to
controlling the robotic arm, it is also necessary to collect gesture
images and classify them to determine the current gesture status of
the robotic claw (Li and Huang, 2020; Yonemoto and Suwa, 2020).
ResNet is often used in the field of image classification due to its
residual structure, which can effectively reduce the problem of
gradient vanishing or exploding. Due to the fact that the
grasping action mainly includes five states: grasping small
objects, grasping large objects, stopping operation, closing, and
no gesture, without the need for overly complex neural network
structures, ResNet50 is chosen as the basic model, and its model
architecture is shown in Figure 3.

The ReLU activation function is used between convolutional
layers in traditional residual structures, but this function cannot
meet certain requirements when dealing with large datasets (Al-
Dujaili et al., 2020). The ELU activation function still has output
information when the input value is negative, as shown in
Equation 10.

f x( ) � x
f x( ) + a

{ x≥ 0
x< 0

(10)

The ELU activation function and derivative diagram are shown
in Figure 4.

FIGURE 2
Schematic diagramof 3D coordinates extracted by Kinect device.
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From Figure 4, when the input value of the ELU function is
greater than 0, there is a linear relationship between the output
and input values, with a constant derivative of one and the
parameters remaining updated (Xin et al., 2021). When the
input value is less than 0, the output information always exists
and tends to balance, which improves the robustness of the
model compared to the traditional ReLU function. However,
when the input data is directly input into the ELU function, it
will also cause an increase in computational complexity.
Therefore, the residual block will be widened so that some of
the input neurons pass through the ReLU function and some
pass through the ELU function. The expression proof is shown
in Equation 11.

alj � f zlj( ) � μ1f1 zlj( ) + 1 − μ1( )f2 zlj( ) (11)

In Equation 11, μ follows a uniform distribution. f1(zlj) and
f1(zlj)mean the output value through the ELU and ReLU functions,
respectively. The gradient value of parameter weight w is shown in
Equation 12.

∂C
∂wl+1

i,s,m,n

� ∑
j,k

δl+1i,j,k

∂zl+1i,j,k

∂wl+1
i,s,m,n

� ∑
j,k

δl+1i,j,ka
t
s, j−1( )+m, k−1( )+n

� ∑
j,k

δli,j,k(μ1f1 zl+1i,j,k( ) + 1 − μ1( )f2 zl+1i,j,k( ))
(12) In Equation 12, C expresses the loss function, and zl+1i,j,k indicates

the forward propagation convolutional layer. Therefore, the
expression for updating the weights is shown in Equation 13.

FIGURE 3
ResNet50 architecture diagram.

FIGURE 4
ELU activation function and derivative diagram. (A) ELU function diagram (B) ELU derivation plot.

FIGURE 5
Structure diagram of residual blocks before and after
improvement.
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wl+1 � wl − η
∂C
∂wl

(13)

In Equation 13, η expresses the learning rate. From Equation
13, when the learning rate is set too high, wl+1 ≤ 0. During the
backpropagation, the (1 − μ1)f2(zl+1i,j,k) ≠ 0 of Equation 12 can be

used to derive the gradient value ∂C
∂wl+1

i,s,m,n
≠ 0 of the parameter

weight w. Therefore, in forward and backward propagation, the
input signal will not fall into termination in the improved
residual block. At the same time, the learning rate can also be
dynamically adjusted according to Equation 13, which can
improve the generalization performance of image feature
recognition. The residual block structure before and after
improvement is shown in Figure 5.

The dataset of gestures is relatively limited. To better train the
model, BN and RelU layers are added before the convolutional layer
of the ResNet to achieve the goal of model pre-activation (Kuo et al.,
2020). Meanwhile, to visually express the results, the Softmax
function is utilized for classification in the fully connected output
layer, and the expression of the function is shown in Equation 14.

σ z( )j � ezj

∑K
k−1

ezk
(14)

In Equation 14, the numerator represents that the input real
value can obtain an output greater than 0 after ezj processing, and
the denominator represents that all output values are superimposed.
The error between the training value and the true value can be
calculated using the cross entropy loss function, as shown in
Equation 15.

Loss � − y logŷ + 1 − y( )log 1 − ŷ( )[ ] (15)

In Equation 15, y represents the actual output value and ŷ
means the expected output value.

3.3 Mapping model of human arm and
robotic arm

By improving the ResNet model, gesture recognition can be
achieved to control the movement of the mechanical claw. For the
control of a robotic arm, it is first necessary to describe the position
and attitude of the robotic arm (Ashhepkova, 2020). The positional
relationship between the links of the robotic arm can be determined
through a reference Cartesian coordinate system A{ }. In this
coordinate system, the position vector coordinate AP of any
point P in space can be represented as AP � [Px, Py, Pz]T, where
Px, Py, and Pz represent the ordinate components of point P. To
describe the orientation of rigid body B, a local coordinate system
B{ } can be established to rotate relative to A{ }, and the rotation
matrix can be represented by A

BR. The pose is the position and
orientation of the rigid body, denoted as B{ } � A

BR
APB{ }. The

robotic arm mainly includes joints and connecting rods, and the
number of them needs to be determined to represent the motion
relationship between the connecting rods, and finally determine the
changes in posture. The D-H coordinate system is a coordinate
system dedicated to describing the motion relationship between
connecting rods and joints. In this coordinate system, the

transformation relationship between the previous connecting rod
i − 1{ } and the current connecting rod i{ } is shown in Equation 16.

Ti−1
i � Rot x, αi−1( )Trans ai, 0, 0( )Rot z, θi( )Trans 0, 0, di( ) (16)

In Equation 16, ai represents the length of the connecting rod. di
means offset. θi expresses joint angle, and αi−1 represents the torsion
angle of the connecting rod. The structural model of the robotic arm
is shown in Figure 6.

Due to the difference between the length of the human arm and
the joint length of the robotic arm, and the redundant connection of
the robotic arm, it can rotate 360° (Zan, 2022). The maximum
rotation angle between the human arm and shoulder joint can reach
270°, so it is necessary to model the mapping relationship between
the human arm and the robotic arm. It sets the coordinates of the
wrist point to W(Wx,Wy,Wz), the elbow point to E(Ex, Ey, Ez),
and the shoulder point to S(Sx, Sy, Sz) to obtain the joint vector, as
shown in Equation 17.

ES
�→ � Ex − Sx, Ey − Sy, Ez − Sz( )
EW
���→ � Ex −Wx, Ey −Wy, Ez −Wz( )

⎧⎪⎨⎪⎩ (17)

By using Equation 17, the rotation angle of the elbow joint,
which is the angle that the robotic arm needs to rotate, can be
obtained, as shown in Equation 18.

cos θ � ES
�→

×
EW
���→

ES
�→∣∣∣∣∣ ∣∣∣∣∣ × EW

���→∣∣∣∣∣ ∣∣∣∣∣ (18)

According to Equation 18, the mapping value of the angle value
can be obtained as θ2 � cos−1 θ, and similarly, the angles of the
shoulder joint and wrist joint can be obtained. The angle difference
between the human fingers and the extended state is approximately
90°, and a mapping model needs to be established for the degree of
opening and closing between the human hand and the mechanical
claw (Lei, 2022). Taking the middle finger as an example, by setting
the base point coordinate of the back of the hand as B(Bx, By, Bz),
the coordinate of the first joint of the middle finger as
LF1(LF1x, LF1y, LF1z), and the coordinate of the second joint as
LF2(LF2x, LF2y, LF2z), the vector can be obtained as shown in
Equation 19.

LF1LF2
��������→ � LF1x − LF2x, LF1y − LF2y, LF1z − LF2z( )
LF1B
�����→ � LF1x − Bx, LF1y − By, LF1z − Bz( )

⎧⎨⎩ (19)

FIGURE 6
Mechanical arm structure model.
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Similarly, the bending angle of the middle finger can be obtained
through Equation 19 as shown in Equation 20.

cos θ � LF1LF2
��������→

×
LF1B
�����→

LF1LF2
��������→∣∣∣∣∣ ∣∣∣∣∣ × LF1B

�����→∣∣∣∣∣ ∣∣∣∣∣ (20)

According to Equation 20, the mapping value of the bending
angle of the mechanical claw can be obtained as θ4 � θ3 × 1000

θmax
,

where θmax represents the maximum bending angle of the middle
finger, and similarly, the bending angles of the other fingers can
be obtained.

4 Performance testing and analysis of
gesture classification and
grasping models

To assess the performance of the constructed model, this chapter
is broken into two parts for model performance testing and analysis.
The first part uses model testing related parameters to test and
analyze the gesture image classification model based on an improved
ResNet. The second part will conduct experiments on the robotic
arm grasping model under simulation conditions to analyze its
performance.

4.1 Testing and analysis of gesture image
classification model based on
improved ResNet

This experiment was conducted in an environment with Intel I9-
9900K processor, Nvidia RTX2080TI 11 GB graphics card, 32 GB
memory, Windows 10 64bit operating system, Tensorflow GPU
1.14.0, CUDA Toolkit 10.0.130, CUDNN7.6.4, programming
language Python. The hardware used by the gesture simulation
robot includes robot arm, sensor, actuator and power supply. The
robot arm adopts universal Robots UR5. The sensor is divided into
vision sensor, force contact sensor and gyroscope. The vision sensor
uses Intel RealSense D435, the force contact sensor uses ATIMini40,
and the gyroscope uses MPU-6050. The actuator comprises a motor,
a hydraulic cylinder and a pneumatic motor. The motor adopts
NEMA 17 stepper motor, the hydraulic cylinder adopts Bosch
Rexroth R4805, and the pneumatic motor adopts SMC CJP2B16-
5-B. The power supply system includes a power adapter and battery,
the power adapter is the MeanWell LRS-350, and the battery is the
Panasonic NCR18650B. The simulation software was Hardware in
loop, which simulated real-world conditions and allowed
researchers to test how robotic arms and gesture recognition
systems interact with physical elements in real time, which was
critical to ensuring accuracy and reliability in real-world scenarios.
The safety and reliability of the system can be tested without
exposing the hardware to dangerous situations that may arise
early in development. A total of 1,000 gesture data samples were
collected, including 800 training sets and 200 testing sets. Gesture
actions included grabbing small objects, grabbing large objects,
stopping operations, closing, and no gesture states. The size of
the dataset was 224 × 224; learning rate was set to 0.01; Epoch
was set to 25; batch size was set to 80; optimizer was random

gradient descent method. The reason for choosing 25 iterations of
the model was to prevent overfitting of the model. When the model
iterated on the training data too many times, it might begin to learn
noise and details in the data, resulting in overfitting. Training deep
learning models usually requires a lot of computational resources
and time, and limiting the number of Epochs helps to complete the
experiment within a reasonable time frame. To evidence the
accuracy of the optimized ResNet50 model, the original model
was compared with the improved model for accuracy testing.
The results are shown in Figure 7.

From Figure 7, after 25 iterations, the recognition accuracy value
of the original ResNet50 model was 80%, while that of the
ResNet50 model which only introduces the ELU activation
function was 83%, and that of the ResNet50 model without pre-
activation was 89%. The improved ResNet50 model in this study
achieved a 95% accuracy. The results showed that the ELU activation
function can help the network learn and generalize better than the
activation function used in the original model. The ELU activation
function improved the model performance through its
characteristics. The application of activation functions and pre-
activation operations before residual blocks could improve model
performance, and pre-activation could reduce information loss and
alleviate the problem of disappearing gradients, which is especially

FIGURE 7
Accuracy iteration curve.

FIGURE 8
Curve of loss value change of the model.
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important in deep networks. To verify the effectiveness of
dynamically adjusting the learning rate, the learning rates were
set to 0.1 and 0.2, and the initial value of the dynamic learning rate
was 0.1. The loss value change curve of the model is shown
in Figure 8.

From Figure 8, after 25 iterations, when the learning rate was set
to 0.1 and 0.2, the loss value was 0.4 and 0.2, respectively. When it
was set to dynamically adjust the learning rate, the loss value was 0.1.
Therefore, dynamically adjusting the learning rate achieved lower
loss values and had a greater impact on improving model
performance. Dynamic adjustment of the learning rate was used,
with the initial value still set to 0.1 and the remaining parameters
unchanged. The P-R curves of the improved and the original
ResNet50 models for recognizing five gestures are shown in Figure 9.

In Figure 9, the horizontal axis represents recall rate and the
vertical axis represents accuracy rate. The larger the area enclosed by
the horizontal and vertical coordinates, the higher the recall and
accuracy values obtained by the model, and the better the
performance of the model. From the figure, the original
ResNet50 model P-R curve obtained areas of 0.89, 0.92, 0.65,
0.78, and 0.75 for the five states of grasping small objects,
grasping large objects, stopping operations, closing, and no
gesture, respectively. The improved ResNet50 model P-R curve
achieved an area of 0.92, 0.95, 0.90, 88, and 0.80 for the five
states of grasping small objects, grasping large objects, stopping
operations, closing, and no gesture, respectively. The improved
ResNet50 model had a larger area enclosed by the P-R curve,
thus achieving better performance. The comparison of ROC
curves of the improved and the original ResNet50 models is
shown in Figure 10.

In Figure 10, the horizontal and the vertical axes represent the false
positive rate and the true rate, respectively. The ROC value is usually
used to indicate the strength of the model’s generalization ability. When
the ROC value was higher, it indicated that the model had stronger
generalization ability. Figure 10 (a) shows the ROC curve of the original
ResNet50 model. The areas obtained for grasping small objects, grasping
large objects, stopping operations, closing, and no gesture states were
0.75, 0.70, 0.72, 0.73, and 0.68, respectively. Figure 10 (b) shows the ROC
curve of the improved ResNet50 model. The areas obtained for grasping
small objects, grasping large objects, stopping operations, closing, and no
gesture states were 0.88, 0.90, 0.83, 0.88, and 0.85, respectively. Therefore,

the improved ResNet50 model had stronger generalization ability for
image recognition. To verify the advanced nature of the research
method, the proposed method was compared with the methods in
references (Dongming et al., 2020; Nasir et al., 2022) in the experiment,
and the performance of the model was evaluated through the indexes of
control accuracy and control completion time of the robot arm. The
comparison results are shown in Table 1.

In the results of Table 1, in terms of grasping small objects, the
accuracy of the method in references (Dongming et al., 2020; Nasir
et al., 2022) and the improved Kinect technology were 0.97, 0.96, and
0.98, the completion time was 2.32, 2.43, and 2.01 s, respectively.
The results showed that the improved Kinect technology had a slight
improvement in accuracy and a significant reduction in completion
time, showing obvious advancement. In terms of capturing large
objects, the accuracy of the methods in references (Dongming et al.,
2020; Nasir et al., 2022) was 0.96, and the completion time was 3.56 s
and 3.47 s, respectively. The improved Kinect technology has
improved accuracy to 0.98, but the completion time was 3.46 s.
In terms of operation stop, the accuracy of the method in reference
(Dongming et al., 2020) was 0.97, and the completion time was
1.44 s. The accuracy of the method in reference (Nasir et al., 2022)
was slightly higher, 0.98, and the completion time was 1.28 s. The
accuracy rate of the improved Kinect technology was the same as
that of the reference (Dongming et al., 2020), which was 0.97, but the
completion time was 1.08 s. In terms of closure, the accuracy of the
methods in references (Dongming et al., 2020; Nasir et al., 2022) was
0.97, and the completion time was 1.64 s and 1.67 s, respectively.
The improved Kinect technology had a slightly lower accuracy rate
of 0.96 and a completion time of 1.81 s. In the non-gesture aspect,
the accuracy of the method in reference (Dongming et al., 2020) was
0.98, and the completion time was 1.38 s. The accuracy of the
method in reference (Nasir et al., 2022) was 0.97, and the
completion time was 1.51 s. The improved Kinect technology had
an accuracy rate of 0.98 and a completion time of 1.44 s. The results
showed that the improved Kinect technology was the same in
accuracy as the reference (Dongming et al., 2020), but slightly
worse in completion time. Compared with reference (Nasir et al.,
2022), the accuracy was the same but the completion time was
slightly better. In summary, the improved Kinect technology has a
comparable performance with the current method, indicating that
the method has a certain advancement.

FIGURE 9
P-R curve for recognition of five gestures. (A) ResNet50 model (B) Improving the ResNet50 model.
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4.2 Simulation testing and analysis of robotic
arm grasping model

The experiment used a Baxter robot, with a robotic arm with
7 degrees of freedom, including eight links and seven joints, and
a robotic claw with 2 degrees of freedom. The Kinect sensor

adopted version 2.0, with an Intel I9-9900K processor, Nvidia
RTX2080TI 11 GB graphics card, and 32 GB memory. It set the
trajectory of the human right arm to up and down movements
and left and right movements to meet the needs of daily grasping
tasks. To verify the effectiveness of KF correction, the wrist
motion trajectory of the robotic arm after KF correction was

FIGURE 10
Comparison of ROC curves. (A) ResNet50 model (B) Improving the ResNet50 model.

TABLE 1 Performance comparison of different methods.

Action type Reference (Dongming et al.,
2020)

Reference (Nasir et al., 2022) Improved Kinect technology

Accuracy/
%

Completion time/s Accuracy/
%

Completion time/s Accuracy/
%

Completion
time/s

Grab small objects 0.97 2.32 0.96 2.43 0.98 2.01

Grab large objects 0.96 3.56 0.96 3.47 0.98 3.46

Operation stopped 0.97 1.44 0.98 1.28 0.97 1.08

Close 0.97 1.64 0.97 1.67 0.96 1.81

No gesture 0.98 1.38 0.97 1.51 0.98 1.44

FIGURE 11
Motion trajectory before and after correction. (A) Up and down movement (B) Side-to-side movement.
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compared with the motion trajectory before correction, as
shown in Figure 11.

In Figure 11, the blue curve represents the motion trajectory
before filtering correction, and the orange curve represents the
motion trajectory after filtering processing. At the beginning,
there would be significant fluctuations due to a certain buffer
time when the mechanical equipment was opened. As time went
on, the shaking amplitude gradually decreased. Compared with
Figure 11 (a) and (b), the motion curve after KF correction was
smoother, proving the effectiveness of KF correction. To verify the
accuracy of the recognition of the joint angle of the robotic arm
skeleton, five different individuals were selected to collect 10 sets of
data from different angles of elbow joint bending in the same
environment, totaling 250 sets of data. The accuracy values of the
recognition are shown in Table 2.

From Table 2, when the bending angles of the elbow joint
were 0°, 30°, 60°, 90°, 120°, 150°, and 180°, the accuracy of
identifying the joint angles of the robotic arm was 96.0%,
94.0%, 96.0%, 92.0%, 92.0%, 90.0%, and 90.0%, respectively.
The robotic arm has achieved good results in angle recognition
of the elbow joint. To test the accuracy of gesture imitation of the
mechanical claw, five different people were selected to perform
five gesture movements set for grasping in the same
environment. Each action was performed 20 times, totaling
500 sets of data. The similarity of gesture imitation was
determined, and the results are indicated in Table 3.

From Table 3, the imitation accuracy rates for the five gesture
states of grasping small objects, grasping large objects, stopping
operation, closing, and no gesture were 98.0%, 98.0%, 97.0%, 96.0%,
and 98.0%, respectively. Therefore, the robotic arm has also achieved
good results in simulating the five grasping movements.

5 Conclusion

To solve the problem of precise control of robotic arm
grasping gestures based on visual capture technology, this
study preprocessed human arm posture images using the KF
method. Based on an improved ResNet, the action images of
mechanical claws were classified. Finally, a mapping relationship
model was constructed between the human arm and the robotic
arm. The performance test results of the improved ResNet model
and the robotic arm showed that after 25 iterations, the
recognition accuracy value of the original ResNet50 model was
80%. The recognition accuracy of the ResNet50 model that only
introduces the ELU activation function was 83%, while that of the
ResNet50 model without pre-activation was 89%. The
ResNet50 model improved in this study achieved a 95%
accuracy rate. The P-R curve of the improved ResNet50 model
had an area of 0.92, 0.95, 0.90, 0.88, and 0.80 for the five states of
grasping small objects, grasping large objects, stopping operation,
closing, and no gesture, respectively. The ROC curve had an area
of 0.88, 0.90, 0.83, 0.88, and 0.85 for the five states of grasping
small objects, grasping large objects, stopping operation, closing,
and no gesture, respectively. Compared with the original
ResNet50 model, the improved ResNet50 model achieved
better performance. The smoother motion curve after KF
correction proved the effectiveness of KF correction. When the
bending angles of the elbow joint were 0°, 30°, 60°, 90°, 120°, 150°,
and 180°, the recognition accuracy of the joint angle of the robotic
arm was 96.0%, 94.0%, 96.0%, 92.0%, 92.0%, 90.0%, and 90.0%,
respectively. The imitation accuracy of the five gesture states was
98.0%, 98.0%, 97.0%, 96.0%, and 98.0%, respectively. Therefore,
the robotic arm has also achieved good results in identifying joint
angles and simulating the five grasping movements. The main
contribution of this research is not only to improve the accuracy
and efficiency of the grasp and operation of the robot arm, but
also to demonstrate the practical application potential of visual
image capture technology in the field of robotics, especially in
improving the intelligence level of the robot arm. By integrating
advanced image processing techniques and deep learning models,
the research provides an effective solution for the automation and
intelligence of robot grasping and manipulation tasks. However,
there are still shortcomings in this study, which is mainly carried
out in a simulation environment and does not involve complex or
changeable practical application scenarios. Robotic arms and

TABLE 2 Elbow joint recognition accuracy.

Horizontal rotation angle of elbow joint (°) Correct quantity Errors quantity Amount Accuracy

0 48 2 50 0.96

30 47 3 50 0.94

60 48 2 50 0.96

90 46 4 50 0.92

120 46 4 50 0.92

150 45 5 50 0.90

180 45 5 50 0.90

TABLE 3 Accuracy rate of gesture imitation.

Action type Amount Correct quantity Accuracy

Grab small objects 100 98 0.98

Grab large objects 100 98 0.98

Operation stopped 100 97 0.97

Close 100 96 0.96

No gesture 100 98 0.98
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gesture recognition systems may behave differently in real
environments than they do in laboratory conditions.
Therefore, follow-up studies can be tested in real-world
environments to assess the performance and reliability of the
system in complex environments.
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