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Introduction: As an important part of ship manufacturing, parts are of great
significance in the calculation of its reliability level.

Methods: To achieve rapid damage detection of ship parts, a method for measuring
the reliability level of ship casting and forging parts based on spectral subtraction and
vibration-acoustic principles was proposed. This method improves the spectral
subtraction method by adding a percussion vibration signal and time-frequency
analysis, and uses the principle of resonance acoustics to complete the construction
of the test platform to obtain the natural frequency of the part and achieve non-
destructive testing of the part.

Results: The results show that using the Fabric data set as the task data set for
experiments, the accuracy of the research method is 98.54%; the uncertainty is
5.58; the sensitivity detection is 0.26 μm. In the comparison of the spectrogramof
the sound signal after noise reduction, this method has fewer yellow spots
remaining on the spectrogram of the noise reduction sound signal, and
almost no excess noise remains. In the comparison of modal simulation data
of ship parts, themaximum relative error between the simulation data obtained by
this method and the natural frequency value obtained from the experimental data
is 2.3%, and there is no value exceeding 2.5%, so the error is small.

Discussion: The above results show that this method can obtain more accurate
natural frequencies of parts, can effectively calculate the reliability level of ship
casting and forging parts, and provides a new method reference for the safe
operation of ships.
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1 Introduction

With the rapid advancement of the global shipping industry and modern technology, the
Internet era has begun to arrive, and intelligentmanufacturing technology has begun to be widely
used in various fields. As an important manufacturing industry in my country, the shipbuilding
industry’s parts reliability level plays a vital role in ensuring maritime traffic safety, improving
transportation efficiency, and reducing operating costs (Danjuma et al., 2022; Chauhan et al.,
2024a). However, during long-termmaritime voyages, ships will inevitably be affected by various
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environmental factors, leading to structural damage and performance
degradation. At the same time, ship manufacturing is inseparable from
tens of thousands of parts, and its reliability must be reflected in the
quality of the parts. However, in the parts that make up the ship,
manufacturing defects such as inclusions, shrinkage holes and cracks are
still difficult to avoid, which can easily have serious adverse effects on the
safety of the ship (Liu et al., 2021a). Therefore, how to accurately evaluate
the reliability level of ship manufacturing parts and promptly discover
potential safety hazards has become an urgent problem in the shipping
field. Traditional detection technology mainly relies on manual
inspection and maintenance. This method has low detection
efficiency and is difficult to monitor the ship’s operating status in
real time (Vashishtha et al., 2021). For another example, in the
current inspection methods, ultrasonic imaging technology is difficult
to clearly image parts with complex structures, while other inspection
methods such as X-rays have problems such as being too costly or time-
consuming (Vashishtha and Kumar, 2023). In recent years, with the
advancement of acoustic signal processing technology, detection
technology based on vibroacoustic principles has begun to become a
research hotspot. At the same time, Spectral Subtraction (Spectral
Subtraction, SS), as an effective part noise suppression technology,
has been widely used in related fields such as acoustic signal
processing, but its application in ship parts reliability testing is still in
its infancy. In view of this, the research innovatively improved the
traditional SS method, and combined with the principles of
vibroacoustics to form a new rapid detection technology, which is
expected to further improve the ship reliability level measurement effect.

The novelty of the experiment is to use a test platform built based
on vibroacoustic principles to obtain the natural frequencies of ship
parts; then the SS method is improved, and the SS method is used to
reduce the noise of the acoustic vibration signals generated by the parts
to improve the noise detection of ship parts accuracy and real-time.

The main contribution of the experiments can be divided into two
parts. First, the SSmethod and vibroacoustic principles are combined to
optimize the characteristics of reliability assessment of ship
manufacturing parts, and a set of innovative testing processes and
methods are proposed to effectively improve the accuracy of ship parts
reliability level measurement. Second, theory and practice are combined
to verify the detection effect of parts production at different scales.

The research consists of four main sections. The first section
provides an overview of the current domestic and international
status regarding the reliability level of mechanical operations, SS
techniques, and the application of resonance acoustics principles.
The second section focuses on constructing an experimental
platform using resonance acoustics and implementing the
improved SS method to evaluate the effectiveness of ship parts
detection. The third section involves the analysis of the performance
and practical application effects of the developed detection platform.
Finally, in the fourth section, a comprehensive summary and
evaluation of the performance and practical application effects of
the research institute’s built platform are presented.

2 Related works

With the advancement of science and technology, vibroacoustics
and SS techniques have found extensive applications across various
domains. DenisovMS et al. proposed a noisemodel based on an optimal

recursive filtering algorithm to address the complexity introduced by
harmonic noise in source data processing. This method successfully
eliminated harmonic noise through SS and realized noise model
prediction for different order harmonics. In the practical application
of vibroseis data, the algorithm effectively separated harmonic noise,
demonstrating its efficacy (Denisov et al., 2021). Li C. et al. (2021a)
introduced SS as a solution for music noise reduction, incorporating an
optimized iterative SS. This approach processed the noise signal of each
frame by leveraging the correlation between different frames. The noise
was subsequently classified into speech frames and mute frames using a
predetermined threshold. Experimental results revealed that thismethod
outperformed most baseline methods, particularly at low SNR (Signal-
Noise Ratio, SNR) levels (Li C. et al., 2021a). In the field of petroleum
seismic exploration, Li Z. et al. (2021b) conducted research on the
repeated removal process of seismic waves, which proved crucial for
underground structure imaging. They treated adaptive SS as a nonlinear
problem andminimized network parameters during training tomitigate
overfitting. Through testing on a data set, their method achieved a
remarkable 20.5 dB improvement in SNR, confirming the effectiveness
of their research (Li Z. et al., 2021b). Yadav andMehta (2021) discussed
the impact of DC bias in DC transmission lines on transformers, leading
to increased noise and vibration. To address this, they developed an
expansion model for high voltage DC converter transformers based on
vibroacoustics and analyzed the model accordingly. Through various
optimization techniques, they enhanced the fitting process to obtain the
most suitable method (Yadav and Mehta, 2021).

With the continuous advancement of vibroacoustics and SS, these
techniques have demonstrated significant advantages in mechanical
fault detection. Pang et al. (2022) proposed a fault damage detection
technology for rolling bearings based on vibroacoustics. By introducing
mode decomposition recording in vibroacoustics, they successfully
extracted characteristic components from composite signal
components, resulting in enhanced analysis capabilities compared to
other advanced resonance analysis and detection technologies (Pang
et al., 2022). Liu Y et al. presented an onlinemethod for power transistor
fault detection based on vibroacoustics. They utilized a mathematical
model based on vibration acoustics to solve the driving signal, enabling
fault type identification through actual state comparison. Experimental
results showcased the broader diagnostic range of this method (Liu and
Wang, 2021). Kyriakos et al. (2022) introduced an innovative
unsupervised subspace fault detection approach. Leveraging
vibroacoustics, robust damage detection was conducted by deploying
vibration response sensors under unquantifiable conditions. This
method effectively eliminated the interference of human factors and
demonstrated a simple and automatic performance. In comparison to
other robust damage detection methods, it exhibited excellent detection
capabilities (Kyriakos et al., 2022). Vashishtha’s team proposed a single-
valued cross-entropy method (ACMD) based on adaptive chirp mode
decomposition to diagnose centrifugal pump impeller defects. The
ACMD method can help select prominent models to enhance their
own performance. The results show that the performance of this
method is significantly superior to other traditional techniques
(Vashishtha et al., 2022). Vashishtha et al. proposed a fault diagnosis
method based on improved wavelet transform to analyze the health
status of the impact wheel. During the experiment, principal
component analysis based on expectation maximization and extreme
learning machine were used to reduce the dimensionality of the feature
matrix, and other artificial intelligence methods were combined to
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eliminate redundant data generated by the impact wheel. The data
shows that the calculation time of training and testing of this method is
small, and it has high detection accuracy (Vashishtha and Kumar,
2022). In order to analyze the friction force experienced by titanium
alloy during wear, Chauhan and other scholars proposed a detection
technology based on the improved lobster algorithm and support vector
machine. The experiment selected the CEC2014 benchmark function to
conduct quantitative and qualitative analysis of the algorithm. The
results showed that the overall accuracy of friction detection by the
algorithm was greater than 95%, and the calculation time was only
26.85 s (Chauhan et al., 2024b). Researchers such as Chauhan proposed
improving the slime mold algorithm and evolutionary algorithm in
parallel and serial ways. After the improvement, the global search
capabilities and efficiency of these two algorithms are significantly
improved, and their performance is very superior (Chauhan and
Govind Vashishtha, 2023).

In conclusion, besides its application in noise removal, SS and
vibroacoustics demonstrate robust exploration and analysis
capabilities in the field of fault detection. While previous research
has yielded some results, there is a scarcity of studies focusing on
ship parts detection, which plays a crucial role in enhancing ship
reliability and safety. Consequently, a novel detection technology
based on SS and vibration acoustics is proposed to address this
gap. This technology aims to detect mechanical parts of ships and
improve the overall level of ship reliability.

3 Reliability level detection technology
of ship parts based on spectral
subtraction and vibro acoustic principle

With the rapid development of China’s economy, the
shipbuilding industry has experienced significant growth. As a
result, enterprises have gained increased purchasing power, and
both buyers and manufacturers have raised their quality
standards for ships. Consequently, effectively detecting the
reliability level of ships has become a top priority. In light of
this context, a detection technology based on SS and the vibration
principle is proposed. This innovative approach aims to achieve
rapid and accurate nondestructive detection of ship reliability
levels, meeting the growing demand for high-quality ships in
the industry.

3.1 Experimental detection technology
based on vibro acoustic principle

Nondestructive testing technology refers to a method of
inspection and testing that relies on modern technology and
instruments. It involves analyzing changes in the response of
materials, parts, and equipment without causing damage or
affecting the performance and internal structure of the tested
object. Vibration is inherent in various aspects of daily life and is
particularly prevalent in mechanical fields such as automobile and
ship manufacturing (Festa et al., 2021). Recognizing the significance
of this phenomenon and the need to mitigate its negative effects,
numerous scholars have delved into the study of mechanical
vibration and vibration systems. As an illustration, let’s consider

a single-degree-of-freedom system, where the primary forces acting
upon it are depicted in Figure 1.

In Figure 1, k is the stiffness of the spring; F(t) indicates external
incentive force; x represents the displacement of the object; c
represents the damping of the object; m indicates the mass of the
object. When the object in the system in Figure 1 is in the
equilibrium position, the resonance force formula can be
obtained through the equilibrium conditions, as shown in Eq. 1.∑Fx � 0, mg − kδt � 0 (1)

In Eq. 1, δt is the spring static deformation. At the same time,
when the object is excited by the outside, the system will deviate
from the equilibrium position. At this moment, the formula of the
system is mx

..
. Assuming that there is no damping in the system,

pn �
��
k
m

√
, the vibration differential formula of undamped SDOF

system can be obtained in Eq. 2.

x
.. + p2

nx � 0 (2)

In Eq. 2, p represents the natural frequency obtained by system
vibration. Equation 3 is the calculation of natural frequency based
on Eq. 2.

fn � 1
T
� pn

2π
� 1
2π

��
k

m

√
(3)

In Eq. 3, fn is the natural frequency. Integrating the above
formulas, the differential motion formulas of the undamped system
with n freedom degrees can be obtained. It is assumed that the
special solution of the differential formula of motion for the free
vibration of an undamped system of degrees of freedom is xi �
Ai sin(pt + φ)(i � 1, 2, 3,/, n) or x � A sin(pt + φ), where
A � (A1, A2,/, An)T. KA − p2MA � 0 can be obtained through
the matrixMx

.. + xK � 0. Frequency formula of the system is shown
in Eq. 4.

K − p2M
∣∣∣∣ ∣∣∣∣ � 0 (4)

In Eq. 4, the obtained frequency formula is actually a p2

polynomial of n degree, and natural frequencies n can be
obtained by calculation (Tsalera et al., 2021). The vibration
system with corresponding n degrees of freedom has a n natural

FIGURE 1
Schematic diagram of object SDOF.
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frequency, and all frequencies are sorted from small to large as
follows 0≤p1 ≤p2 ≤/≤pn. Among the above frequencies, p1

refers to the first natural frequency of system vibration, and p2

refers to the second natural frequency. The relationship between the
object studied by this method and the outside world is shown
in Figure 2.

In Figure 2, it can be observed that during experimental modal
analysis, it is essential to collect complete sets of data pertaining
to system excitation and response. By utilizing this
comprehensive input and output information for parameter
identification, the frequency response function can be
obtained, followed by the determination of modal parameters.
Equation 5 is the specific expression representing the
relationship.

H ω( )[ ] � ∑n
i�1

ϕ{ }i ϕ{ }Ti
Ki − ω2Mi + jωCi

(5)

In Eq. 5, Mi is the modal mass matrix; Ki is the modal stiffness
matrix; Ci is the modal damping coefficient matrix. The study uses
the hammering method to obtain the natural frequencies of ship
parts. The experimental system diagram of the hammering method
is shown in Figure 3.

On the basis of all the above experiments, ANSYS, abaqus, and
other simulation software are used to carry out modal analysis

experiments. The ultimate purpose is to obtain the natural frequency
of ship reliability (Sudo et al., 2021). For a continuous initial signal,
the calculation obtained by Short-Time Fourier Transform (STFT)
is shown in Eq. 6.

F t, f( ) � ∫x τ( )ω τ − t( )e−j2πftdτ (6)

In Eq. 6, x(τ) represents the signal waiting for analysis; ω(τ)
represents the window function; F(t, f) represents the spectrum
distribution of the signal x(τ) at the time t. However, during the
actual manufacturing and operation of ships, computers and
embedded devices can only read and process discrete digital
signals, and the expression of discrete STFT is shown in Eq. 7.

X n,m( ) � ∑∞
−∞

x m( )ω n −m( )e−jωm (7)

In Eq. 7, x(m) represents the input signal; ω(m) represents the
window function; X(n,m) represents a two-dimensional function
defined on the sample time and frequency; n indicates the number of
samples; Finally, the time-frequency diagram formula of input signal
is obtained as S(n,ω) � |X(n,ω)|2.

3.2 Noise reduction method design for ship
reliability acoustic vibration signal

The research conducted on the Vibroacoustic nondestructive
testing reliability platform, which utilizes the hammering method to
obtain the natural frequency of parts, focuses on analyzing the sound
signals captured by high-precision microphones.

However, during the actual quality inspection of ship parts,
various types of interference may be present, necessitating the
implementation of suitable methods to mitigate noise and
enhance the quality of acoustic vibration signals. In this regard,
SS is introduced as a noise reduction technique. Considering that the
acoustic signal generated by knocking in the production process of
ship parts constitutes a non-stationary and time-varying signal, it is
necessary to perform framing to appropriately process the signal. It
is assumed that in one frame, y(n) is the input initial sound signal;

FIGURE 2
Experimental modal analysis.

FIGURE 3
Example of figure consisting of multiple charts.
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x(n) is pure sound signal; S(n) indicates a noise signal. At the same
time, FT is used to express the relationship in Eq. 8.

y n( ) � x n( ) + s n( )
Y ω( ) � X ω( ) + S ω( ){ (8)

In Eq. 8, Y(ω) is initial sound signal; X(ω) is pure sound signal;
S(ω) is a noise signal in the environment. The above relationship is
optimized by power spectrum in Eq. 9.

Y ω( )| |2 � X ω( )| |2 + S ω( )| |2 +X ω( )S ω( )− +X ω( )−
S ω( )

Y ω( )| |2 � X ω( )| |2 + S ω( )| |2 + 2Re X ω( )S ω( )−{ }⎧⎪⎨⎪⎩ (9)

In Eq. 9, S(ω)−
and S(ω)−

represent the complex conjugate of
S(ω) and X(ω); |X(ω)|2, |S(ω)|2 represent the short-time power
spectrum of pure sound signal and noise signal; 2Re X(ω)S(ω)−{ }
represents a cross item. When s(n) represents zero mean, s(n) and
x(n) are not related to two parameters, the cross term is 0. This
relationship is simplified in Eq. 10.

Y ω( )| |2 � X ω( )| |2 + S ω( )| |2
X ω( )| |2 � Y ω( )| |2 − S ω( )| |2{ (10)

In the process of ship parts manufacturing and production,
sound signal quality is closely related to frequency amplitude
spectrum generated by the parts, and there is no obvious
relationship with frequency phase diagram. Therefore, this study
retains the frequency phase spectrum of initial sound signal to
replace frequency phase spectrum of pure sound signal, and then
estimates power spectrum of the noise. The expression of noise
reduction processing for sound signal is shown in Eq. 11.

X
∧

ω( )
∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2 � Y ω( )| |2 − S

∧
ω( )

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2
Y ω( ) � Y ω( )| |e−jφy ω( )

S ω( ) � S ω( )| |e−jφs ω( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (11)

In Eq. 11, |S(ω)|2 is power spectrum of noise signal estimated
as |S∧(ω)|2; |X∧ (ω)|2 is that of pure sound signal; |Y(ω)| is
amplitude spectrum of noisy signal; φy(ω) represents phase
spectrum; |S(ω)| is the amplitude spectrum; φs(ω) is the phase
spectrum. After the pure power spectrum is squared, pure sound
signal of this frame can be obtained by FT combined with the

frequency and phase spectrum φy(ω) of noisy sound signal, and
pure sound signal after noise reduction of the whole sound signal
can be obtained by iterating all the obtained frames. Basic
reduction principle is shown in Figure 4.

In Figure 4, during the production of ship parts, when applying
the SSmethod for noise reduction, certain challenges may arise, such
as the occurrence of noise residue due to overestimation of the noise
spectrum. Additionally, issues like “music noise” can occur when the
noise level is too low. To address these concerns, the parameters are
optimized based on an enhanced SS method and a platform noise
reduction module that effectively mitigates noise interference
is developed.

To overcome the problems of noise residue and “music noise”,
an improved SS is proposed. The formula for resolving the negative
value issue resulting from excessive noise reduction using the
improved SS is presented in Eq. 12.

DX ω( ) � X
∧

ω( )
∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2, DY ω( ) � Y ω( )| |2, DS ω( ) � S

∧
ω( )

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2
letDX ω( ) � DY ω( ) −DS ω( )
D′

X ω( ) � DX ω( ) if,DX ω( )> 0
0 otherwise

{
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (12)

In the process of noise reduction using improved method, over
subtraction factor and threshold parameter of the lower spectral
limit are introduced to reduce residual noise and reduce “music
noise” perception. Equation 13 is the noise reduction formula after
introducing factors.

letDX ω( ) � DY ω( ) −DS ω( )
D′

X ω( ) � DS ω( ) if, DS ω( )> βDS ω( )
βDS ω( ) otherwise

{
withα≥ 1, 0< β≪ 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (13)

In Eq. 13, α represents the over subtraction factor; β indicates the
lower limit threshold parameter of the spectrum. In the
implementation of improved method, over subtraction factor
value is not fixed, and the factor value must be determined
according to SNR of each audio frame in Eq. 14.

α � 5 for, SNR≤ − 5
α � −0.16*SNR + 4.2 for ≤ SNR≤ 20
α � 1 for, SNR≥ 25

⎧⎪⎨⎪⎩ (14)

FIGURE 4
Noise reduction process.
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In Eq. 14, SNR stands for signal-to-noise ratio. When SNR is
low, α is larger; When small, α is small. Threshold parameter of the
lower spectrum limit depends on SNR of input signal. Equation 15 is
the specific calculation.

β � 0.06 for, SNR≤ − 5
β � −0.011*SNR + 0.005 for, −5≤ SNR≤ 0
β � 0.003*SNR + 0.005 for, 0≤ SNR≤ 5
β � 0.02 for, SNR≥ 25

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

By introducing the over subtraction factor to increase the subtraction
of noise spectrum, and limiting minimum value of spectrum to βDs(ω)
by β, the trough between the peaks began to level off, and finally
successfully reduced the perception of “music noise”. The improved
spectral subtraction process obtained is shown in Figure 5. In Figure 5,
during the implementation process of improved spectral subtraction, the
value of the super-subtraction factor is not fixed and needs to be adjusted
according to each audio frame. The signal-to-noise ratio is used to
determine the appropriate value. When the signal-to-noise ratio is low,
the over-reduction factor is larger; when the signal-to-noise ratio is high,
the over-reduction factor is larger. The reduction factor is smaller.

4 Measurement model performance
test and application effect of ship parts’
detection reliability level

Parts are important in reliability level of ship operation. To better
analyze functions of prepared ship parts detection experimental platform,
this section discusses the performance of the ship parts detection
experimental platform and the application value of the platform.

4.1 Reliability level calculation model
performance test for ship parts inspection

A ship is a complex floating structure that encounters various
dynamic and static loads, including waves, wind, cargo loads,
machinery, and more. The condition of individual structural

components within a ship plays a vital role in ensuring its
overall reliability. To enhance the detection and assessment of
a ship’s structure and reliability, the experiment involves
gathering historical data related to maintenance, repairs, and
accidents of the ship. Through the application of failure mode
and effect analysis, key structures and potential failure modes of
the ship are identified, enabling a comprehensive understanding
of its integrity.

After the optimization of the reliability level measurement
system for ship parts detection, it is necessary to compare the
performance of the research algorithm in the actual operation
process to test its effectiveness. To ensure fairness and rationality
of overall process, Spectral Subtraction (Spectral Subtraction, SS),
the Improved Wavelet Transform (IWT), and the methods and
research methods in literature (Liu et al., 2021b) were selected for
performance comparison. Except for the special experimental
parameters, the experimental parameters of all other algorithms
are the same as those of the research method. The number of
iterations of all algorithms is set to 150, and then the performance of
different models is analyzed based on the German dagm-2007 data
set and fabric data set. The convergence of four different algorithms
is shown in Figure 6.

Figure 6A shows the convergence comparison on the dagm-2007
data set in Germany. As iterations of the system increased, the fitness
of all algorithms showed an increase in varying degrees,
accompanied by the upward and downward fluctuation of the
curve. When the iteration runs to 150 times, SS, IWT and
literature (Liu et al., 2021b) do not reach a stable change trend.
When the iteration runs to 91 times, the maximum fitness value of
the research method is 97.2, and then it keeps stable operation.
Figure 6B shows the experiment of convergence on the fabric data
set. During the operation of the system, the fitness values of all
algorithms change rapidly and tend to be stable within
100 generations of iteration. When the iteration runs 15 times,
the fitness value of the research method starts to approach 99.9;
When the operation times are 105, 110 and 89 respectively, the
fitness values of IWT, literature (Liu et al., 2021b) and SS methods
begin to tend to be stable, which are less than the research methods.

FIGURE 5
Basic process of improved SS.
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In summary, the research method has the highest fitness value and
faster convergence.

Then, the German dagm-2007 data set is used as the main data
set to expand the performance test, and the accuracy and recall rates
of the four algorithms are compared. The specific PR (Precision
Recall) line is shown in Figure 7.

The comparison of PR curves in Figure 7 shows that when the
accuracy rate of the algorithm is 0.900, the recall rate of the
corresponding research method is 0.712; The recall rates of SS,
IWT and literature (Liu et al., 2021b) were 0.532, 0.585, and 0.632,
respectively. On the contrary, when the recall rate of all models is
0.800, the accuracy rate of the corresponding research method is
0.821; The accuracy rates of SS, IWT and literature (Liu et al., 2021b)
were 0.667, 0.698, and 0.724, respectively. The results above show

that when the accuracy rate or recall rate is the same value, recall rate
and accuracy rate of the research method are the largest. This also
means that the research method has a higher accuracy in the optimal
selection of the reliability level measurement system for ship parts
detection, and can provide a more comprehensive service for ship
parts detection. At the same time, a higher recall rate can improve
the overall utilization rate of ship reliability level measurement in
the market.

The research compares the reliability detection accuracy,
uncertainty, sensitivity and confidence interval of different
models under the fabric (Fabric) data set test, as shown in Table 1.

As shown in Table 1, under the fabric (Fabric) data set test, the
accuracy of the research method is 98.54%; the uncertainty is 5.58;
the sensitivity detection is 0.26 μm; the confidence intervals of the
four algorithms are all 95%. Among the other three algorithms, the
IWT algorithm has the best performance. The accuracy of this
algorithm is 97.78%, the uncertainty is 6.94, and the sensitivity is
0.25 μm. The accuracy of the literature [21] and the SS method are
97.89% and 96.77% respectively, which is far less than the accuracy
of the method constructed in the study. From the comparison, it can
be seen that the research method has a higher accuracy in detecting
ship parts, and the correct prediction of parts detection accounts for
a larger proportion, which is consistent with the change trend of the
PR curve, which further proves that the research method can
maintain good robustness during operation.

To more comprehensively verify the robustness of the
constructed method, the Fabric data set was then used as the
main task data set to analyze the F1 values of the four
algorithms for comparison. The results are shown in Figure 8.

As can be seen in Figure 8, as the number of iterations increases,
the F1 value of the research method has always been at the
maximum, approaching 1.00. And the F1 value is greater than
0.5 at the beginning of the iteration. The F1 values of the
remaining three algorithms have always been smaller than the
research method, and the values fluctuated greatly. The final
F1 value was also far smaller than the F1 value of the research
method. This shows that the error in ship parts detection under the

FIGURE 6
Comparison of convergence of four algorithms running on different datasets.

FIGURE 7
PR curve changes corresponding to four algorithms.
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operation of the research method is small and has excellent
robustness.

4.2 Reliability level detection model
application effect for ship parts

To simulate environmental noise during the actual operation of
the ship, this study mixes the blower, voice dialogue and low
amplitude high-frequency noise to briefly simulate the industrial
noise that will appear on the assembly line of the ship parts quality
inspection workshop, and uses the research method for noise
reduction. To carry out regular testing and evaluation of ship
parts smoothly, this experiment selects Ultrasonic Testing (UT)
and Radiographic Testing (RT) to assist in testing the reliability level
of ship parts. In the reliability level detection of ship parts, the
application of high-frequency eigenmode or modal analysis can
provide engineers and maintenance personnel with the location of
ship cracks and defects, ship material degradation, contact and
friction problems, and loosening of bolt joints Interference with
parts, etc. In conclusion, high-frequency eigenmode or modal
analysis provides an effective tool for reliability level detection of
ship components and can help diagnose various potential structural
and material problems. The research method is applied to noise
reduction in the actual environment. The sound signal waveform
changes before and after SS noise reduction are shown in Figure 9.

Figure 9A is a noise-free speech signal; Figure 9B is a noisy
speech signal; Figure 9C is the spectrogram of the noise-reduced
speech signal. Comparing the three spectrograms, it can be found
that the spectrogram obtained after using the improved spectral
subtraction method to de-noise the sound signal has fewer
residual yellow spots and almost no excess noise remains. This
shows that the research method is significantly better than the
noise speech signal processing effect. This may be because this
research method uses vibroacoustic principles to preprocess
noise before noise reduction.

Meanwhile, to more accurately show the advantages of the
research method, improved SS method can compare
spectrograms of noise-reduced sound signals, as shown in Figure 10.

Figure 10A is a noise-free speech signal; Figure 10B is a noisy
speech signal; Figure 10C is the spectrogram of the speech signal
after noise reduction. Comparing the three spectrograms, it can be
found that the spectrogram obtained after using the improved
spectral subtraction method to de-noise the sound signal has
fewer residual yellow spots and almost no excess noise remains.
This shows that the research method is significantly better than the
noise speech signal processing effect. This may be because this
research method uses vibroacoustic principles to preprocess noise
before noise reduction. Using the sound function in MATLAB to
monitor and detect the signal, it can be found that the sound signal
after the improved SS de-noising basically has no noise residue and
“music noise”. Results show that improved SS has high feasibility in
noise reduction. Figure 11 shows the time domain comparison of
three kinds of knocking signals.

Figure 11A is the amplitude diagram of the noiseless tapping
signal; Figure 11B is the amplitude diagram of the noise tapping
signal; Figure 11C is the amplitude diagram of the noise-reduced
tapping signal. It can be found that the amplitude of the noise in the
sound signal after noise reduction processing has been reduced to a
very low level, and there is basically no difference compared with the
noiseless tapping signal. This means that the research method has
eliminated most of the noise signals. From the above results,
research method has superior detection performance for ship
parts detection, and can realize the accurate detection of parts
through noise reduction, so as to ensure the calculation of ship
reliability level. Finally, the modal simulation data of ship parts are
compared with the experimental data through the experimental
platform. Based on the above experimental results, this experiment
generates simulation data by fitting the model to the existing data
and using the model to predict the future situation.

In the experiment, six structural elements including ship deck,
mast, keel, cabin, propeller and double bottom were selected for

TABLE 1 Comparison of four indicators of different models.

Model Accuracy/% Uncertainty Sensitivity (μm) Confidence interval (%)

Research methods 98.54 5.58 0.26 95

IWT 97.78 6.94 0.25

Literature [21] 97.89 7.11 0.17

SS 96.77 6.96 0.10

FIGURE 8
Comparison of F1 values of four algorithms.
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natural frequency detection. The specific results obtained are shown
in Table 2.

As shown in Table 2, the difference between the natural
frequencies obtained by the simulation data and the experimental
data is small, and the smallest natural frequency difference is the keel
component of the ship, and the natural frequency difference is only
0.01; and the largest natural frequency difference is for the double
bottom element of the ship, the natural frequency difference is 60.00.
At the same time, due to the inevitable errors in the process of
modeling, it can be considered that the ship parts detection platform
under the research method can obtain the accurate natural
frequency of parts and ensure structure reliability level in the
process of ship operation.

The natural frequency obtained in the experiment is relatively
high. For ship components, the high natural frequency may mean
that the component is not easy to enter the resonance state when
it is subjected to common external disturbances (such as waves,
wind, etc.), which is beneficial. However, that doesn’t mean
detecting tiny flaws on ship components isn’t useful. Here are
a few reasons: First, the natural frequency of a part may change
over time due to environmental factors, material aging, or other
reasons. These changes can be accelerated if a tiny defect exists on
a part. Second, although natural frequency is an important

parameter, there are many other factors that need to be
considered when evaluating the performance and integrity of
ship components. This also means that even if the natural
frequencies of the experimentally detected ship parts are high,
it still makes sense to regularly inspect the parts and repair
minor defects.

5 Conclusion

The advancement of ship intelligence has raised the bar for
calculating its reliability level. Firstly, addressing issues like
noise residue and “music noise” resulting from traditional SS
noise reduction, we optimized parameters and constructed a
platform noise reduction module. An oversubtraction factor is
introduced to increase the subtraction of the noise spectrum,
effectively reducing the perception of “music noise.”
Additionally, a nondestructive testing test platform is
developed by combining the hammering method and the
principle of resonance acoustics, enabling rapid detection of
ship parts. The results show that in the German DAGM-2007
data set, the proposed method has a maximum fitness value of
97.2 when iterations are run to 91 times. In the time domain

FIGURE 9
Sound signal waveform before and after SS processing.
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FIGURE 10
Comparison of speech spectrum of sound signal after noise reduction of research method.

FIGURE 11
Time domain comparison of three different knocking signals.
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comparison of different tapping signals, the amplitude of the
noise in the sound signal processed by this method has been
reduced to a very low level, and there is basically no difference
compared with the noiseless tapping signal. In the comparison of
simulation data and experimental data, the relative errors of this
method are all below 2.5%. The above results all show that the
proposed method is more accurate in the optimization selection
of ship parts inspection reliability level measurement system; it
can reduce time costs and resource costs, is suitable for rapid
inspection and production of different parts batches, and helps
to promote ship parts Realistic developments in the parts
industry. However, the current experiments have only
completed relevant tests in the laboratory, and have not
conducted research on the effects of actual factory
environment, temperature, noise, and vibration. The real
environment may be more complicated. Therefore, in the
future implementation process, corresponding changes must
be made according to the actual environment. At the same
time, various situations will occur during the actual operation
of ships, and subsequent research can also be conducted on the
reliability of ship parts for different autonomous navigation.
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