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Kidney allograft rejection is associated with infiltration of inflammatory CD11b+ leukocytes.
A CD11b agonist leukadherin-1 (LA1) increases leukocyte adhesion, preventing their trans-
migration and tissue recruitment in vivo. Here, we test the extent to which LA1-mediated
activation of CD11b/CD18 enhances kidney allograft survival in a mouse model of fully MHC-
mismatched orthotopic kidney transplantation, where C57BL/6J (H-2b) recipients received
kidney allografts from Balb/c mice (H-2d). Isograft control recipients received a kidney from
a littermate. Control isograft and allograft recipients were treated daily with cyclosporine
(CsA) for 2 weeks, while the test group received CsA therapy and daily LA1 injections
during week 1 and alternate days during weeks 2–8. LA1 treatment reduced interstitial
leukocyte infiltration in the allograft, reduced neointimal hyperplasia and glomerular dam-
age, and prolonged graft survival from 48.5% (CsA only) to 100% (CsA and LA1) on day
60. Serum creatinine levels showed significantly improved kidney function in LA1-treated
mice compared to CsA-treated allograft controls [0.52±0.18 mg/dL vs 0.24± 0.07 mg/dL
(n=5), respectively]. Furthermore, combination therapy reduced macrophage infiltration
and increased the frequency of FoxP3+ Tregs in the allograft. These findings indicate a
crucial role for CD11b/CD18 in the control of leukocyte migration to the transplanted kid-
ney and identify integrin agonist LA1 as a novel potential therapeutic agent for kidney
transplantation.
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INTRODUCTION
Kidney transplantation is the treatment of choice for majority
of patients with end stage renal disease (ESRD) and provides a
significant survival advantage over chronic dialysis (1). Success
rates of transplantation and engraftment of kidney allografts in
patients have also significantly improved in the last several decades,
led by major scientific and technical advancements in the field.
Newer immunosuppressive drugs that efficiently target the adap-
tive immune system have dramatically reduced the incidence of
acute rejection, providing improved quality of life and survival for
patients. However, long-term graft survival rates have not changed,
with mean half-life of kidney allografts from cadaveric donors
currently still at <9 years (2). Kidney allograft failure accounts
for >25% of patients with ESRD and prior allograft recipients
currently represent one in five kidney transplants performed in
the US (3–7). The leading cause of kidney allograft failure after
the first year is a clinicopathologic finding often referred to as
chronic allograft nephropathy (8), which develops in a major-
ity of kidney allograft recipients. Chronic allograft nephropathy
is characterized by a progressive loss of kidney function that is
associated with pathologic changes in the kidney glomeruli, the

blood vessels, interstitium, and the tubules. Additionally, chronic
vascular inflammation in the allograft results in neointima forma-
tion and narrowing of the lumina, leading to vasculopathy, also a
significant long-term complication of the transplantation (9).

It was recognized early that T-cells and the adaptive immune
system play a critical role in allograft rejection, which resulted
in the development of remarkably effective immunosuppressive
agents for use in various transplantation procedures (10). In addi-
tion, cells of the innate immune system, such as macrophages, have
also been recognized for their role in promoting acute rejection
(11–16). The level of macrophage infiltrate in patient grafts is pre-
dictive of kidney allograft survival and the development of chronic
allograft nephropathy (11) and it also predominates in renal vas-
cular rejection (17, 18). Recent studies also show that, by directly
recognizing and damaging allografts, the innate immune cells play
a role in chronic rejection as well (19) and, thus, serve as alternative
therapeutic targets to overcome acute and chronic rejection (20).
Interstitial macrophage infiltration has been shown to promote
acute kidney allograft rejection even in the setting of aggressive
T-cell depletion therapies (21, 22). Macrophages promote smooth
muscle and endothelial cell injury that provoke vascular damage
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resulting in intimal proliferation and luminal occlusion and ulti-
mately allograft rejection (23). Moreover, macrophages infiltrate
thickened intima of renal arteries (24, 25) and cardiac allografts
(26) and contribute to transplant vasculopathy, further contribut-
ing to chronic rejection. Indeed, macrophage depletion reduces
kidney allograft rejection (12, 27) and the development of car-
diac vasculopathy post-transplantation (26). Antibody-mediated
blocking or genetic ablation of macrophages decreases intimal
thickening in experimental models of inflammatory injury (28).
These data suggest that targeting of inflammatory macrophages
may provide significant therapeutic benefit in kidney allograft
transplantation. However, there are few effective agents available
in the clinic that directly targets these cells.

The β2 integrin CD11b/CD18 (also known as Mac-1 and
CR3) is expressed in an inactive conformation primarily in
innate immune cells including macrophages, neutrophils, and
dendritic cells (DCs) (29–32). Upon inflammatory stimuli (33–
35), CD11b/CD18 is rapidly activated via a conformational switch
to mediate leukocyte migration from circulation to the inflamed
tissue by binding to ICAM-1 (CD54) (36–38) on the surface
of vascular endothelial cells that is also upregulated in injury
(39). CD11b promotes allograft rejection (40) and targeting
CD11b/CD18 or its ligand ICAM1 with antagonists that block
the adhesion of leukocytes to endothelial cell surfaces reduces
inflammatory injury (28, 41, 42), suggesting that the integrin
CD11b/CD18 is an important innate immune cell target for
developing novel therapeutics against inflammation and trans-
plant rejection. However, antagonists have had limited success in
treating inflammatory or autoimmune diseases in patients (43,
44). We recently reported an alternative therapeutic approach for
mitigating inflammation that involves the activation, rather than
inhibition, of CD11b/CD18-dependent cell adhesion using novel
small molecule agonists. Our CD11b/CD18 agonists enhance cell
adhesion and significantly reduce leukocyte migration into the
inflamed tissue resulting in significant decrease in inflammatory
injury in multiple experimental models (45–47).

In the present study, we utilized our lead CD11b/CD18 ago-
nist compound leukadherin-1 (LA1) to test whether LA1 treat-
ment would also decrease macrophage infiltration in kidney
allografts and whether that would result in a functional bene-
fit, such as decreased neointimal hyperplasia, enhanced kidney
function, and prolonged allograft survival. We utilized a recently
described murine model of kidney allograft transplantation using
fully MHC-mismatched orthotopic kidney transplant, in which
C57BL/6J (H-2b) recipients received kidney allografts from Balb/c
mice (H-2d) that closely mimics clinicopathologic findings of
human kidney transplants (9), and compared the efficacy of stan-
dard immunosuppressive cyclosporine (CsA) therapy with that of
CsA in combination with LA1 for up to 8 weeks. These findings
identify the CD11b/CD18 agonist LA1 as a novel therapeutic agent
for improving kidney transplantation.

RESULTS
REJECTED HUMAN KIDNEY ALLOGRAFTS SHOW INCREASED CD11b+

LEUKOCYTE INFILTRATION
Kidney allograft transplantation leads to an influx of a variety of
leukocytes into the graft. Macrophages account for the majority

of infiltrating leukocytes in acute rejections (48). We hypothe-
size that pharmacological blockade of macrophage recruitment to
the allograft using our novel CD11b agonists (45) will prolong
allograft survival and enhance allograft function (Figure 1A). To
confirm that rejected human kidney allografts contain a high num-
ber of CD11b-expressing leukocytes (48), which could be targeted
with LA1, we used fluorescence confocal microscopy to analyze
biopsy tissue from healthy patient kidneys and from rejected allo-
grafts stained with antibodies specific for CD45 (a pan-leukocyte
marker), CD11b, and CD3 (Figure 1B). We observed higher num-
bers of CD45+, CD11b+, and CD3+ cells within the glomeruli
and interstitium of the rejected allografts, while leukocytes were
absent in the healthy kidneys. Additionally, enhanced trichrome
staining in the rejected allograft tissue suggested increased fibrosis
(Figure 1B).

LA1 TREATMENT, IN COMBINATION WITH CsA, PROLONGS ALLOGRAFT
SURVIVAL AND PRESERVES KIDNEY FUNCTION
LA1 administration reduces leukocyte recruitment and kidney
injury in a model of anti-GBM nephritis (45). Furthermore,
LA1 treatment provided significant protection of WT B6 mice
from renal ischemia-reperfusion injury (IRI) (Figure S1 in Sup-
plementary Material). These data suggest that LA1 has signifi-
cant reno-protective effects in an acute setting. Next, we inves-
tigated the efficacy of LA1 on kidney allograft function and
survival. As previously described (9), the left kidney in the recip-
ient C57BL/6J animal was removed and was replaced with a
donor Balb/c kidney and the animals (n= 4-5 per group) were
treated with CsA for 2 weeks post transplantation to prevent acute
allograft rejection (Figures 2A,B). The native right kidney was
removed 1 week later. Kidney function and graft survival was
monitored in animals for up to 8 weeks post-transplantation,
as described in the Section “Concise Methods.” One group of
animals (LA1 group) were treated intraperitoneally (i.p.) with
LA1 (2.5 mg/kg) daily for 1 week and every other day for the
remaining weeks until the end of the study (2–8 weeks post-
transplantation). The isograft control group comprised C57BL/6J
(H-2b) recipients that received a kidney from a C57BL/6J (H-
2b) littermate. Recipient survival is significantly reduced in this
model, with a measureable decline in kidney function begin-
ning at 3 weeks post-transplantation (9). The results show that
approximately 50% of CsA-treated animals were lost during the
8 weeks of the experiment due to loss of the transplanted allo-
graft, whereas all animals with isografts survived (Figure 2C).
Surprisingly, CsA+ LA1-treated animals showed 100% survival
and graft protection. Serum creatinine levels indicated signifi-
cantly improved kidney function in LA1-treated mice compared
to allograft controls treated with CsA (0.52± 0.18 mg/dL of cre-
atinine for CsA group vs 0.24± 0.07 mg/dL for CsA+ LA1 group
at end-point, Figure 2D). Similarly, urinary analysis showed a
much higher level of proteinuria in the CsA only treated ani-
mals versus the CsA+ LA1 group (11.7± 6.6 mg/mg of albu-
min/creatinine for CsA group vs 3.6± 0.4 mg/mg for CsA+ LA1
group at end-point).

Downregulation of synaptopodin (synpo), a hallmark of dif-
ferentiated podocytes, has been associated with proteinurea and
serves as a prognostic indicator of human glomerulopathies (49,
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FIGURE 1 | Inflammatory leukocyte infiltrates are present in rejected
human allografts. (A) Schematic diagram illustrating our working
model. In response to ischemic kidney injury or inflammation upon
allograft transplantation, CD11b+ leukocytes are recruited into the
tissue, where they induce an adaptive response and further recruitment
of innate and adaptive immune cells. Increased inflammation results in
progressive tissue damage, nephropathy and, eventually, graft failure.
Given that CD11b+ leukocyte infiltration into the allograft is an early
event, blocking influx of these innate immune cells via novel small
molecule CD11b agonists is expected to reduce inflammation, decrease
progressive tissue damage and prolong allograft survival.

(B) Representative micrographs of human kidney tissue sections (from a
healthy cadaveric donor or a rejected allograft) after histochemical and
immunofluorescence analyses. Sequential sections from each tissue
were stained with periodic acid-Schiff (PAS) or trichrome and imaged
using light microscopy. Sections were also stained with antibodies
specific for CD45, CD11b, or CD3, as indicated, followed by fluorescently
labeled secondary antibodies and then imaged using a confocal
microscope. The rejected allograft shows enhanced trichrome staining
(indicating an increase in interstitial fibrosis) and increased numbers of
CD45+, CD11b+, and CD3+ immune cells as compared to the healthy
kidney (n=4–5/group). Scale bar=50 µm.

50). Next, to investigate if the improved kidney function in
CsA+ LA1 group is associated with reduction in damage to the
glomeruli, we stained kidney sections from the two groups of
animals with an antibody against synpo and analyzed the expres-
sion using confocal fluorescence microscopy. We found that the
allografts treated with CsA showed remarkably weaker expres-
sion of Synpo as compared to the CsA+ LA1-treated allografts
(Figures 3A,B), suggesting that LA1 administration protected
glomeruli from damage. We also analyzed the kidney sections
using trichrome staining to study any changes in the level of fibro-
sis (Figure 3C). Quantitative analysis revealed similar amounts of
interstitial collagen deposition of approximately 10–15% of the
medulla and cortex in both the LA1 treated and control allografts
(Figure 3D), suggesting that LA1 treatment did not significantly
reduce the level of fibrosis in this study. Given that the study period
was only 8 weeks, it is possible that this time frame is not long
enough to provide information on interstitial fibrosis,which might
require longer, future studies to determine if LA1 treatment can
also affect fibrosis. Overall, the results presented here confirm that
mismatched kidney allograft recipients that are treated with LA1
have improved kidney function and prolonged allograft survival
as compared to CsA only treated allograft controls.

LA1 TREATMENT REDUCES LEUKOCYTE INFILTRATION AND
DECREASES NEOINTIMAL HYPERPLASIA
We previously reported that this murine model shows strik-
ing resemblance to the intrarenal vasculopathy characterized by
perivascular leukocytic infiltration and neointimal hyperplasia
that is observed in rejected patient allografts. Here, we analyzed
kidney sections from allograft recipients to assess the effect of
LA1 treatment on leukocyte infiltration and neointimal hyper-
plasia. Hematoxylin-eosin (H&E) staining of graft tissue sections
revealed extensive infiltration of leukocytes in kidney tissue of the
CsA-treated allograft controls (Figure 4A), which was drastically
reduced with LA1 treatment. Importantly, periodic acid-Schiff
(PAS) histological analysis revealed that LA1-treated allograft
recipients developed reduced perivascular leukocyte infiltration
and reduced neointimal hyperplasia, which are both manifes-
tations of transplant arteriosclerosis (9). Quantitative analysis
for neointimal hyperplasia in intrarenal arteries revealed that
the allograft recipients treated with CsA alone had significantly
higher level of neointimal hyperplasia as compared to LA1-
treated animals, which were comparable to isograft controls (9)
{40.98± 4.41% for CsA group vs 16.11± 5.99% for CsA+ LA1
group [P-value= 0.001 (n= 5)], Figure 4B}. This suggests that
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FIGURE 2 | LA1 treatment prolongs transplant survival and increases
kidney function. (A) A flow diagram describing the mouse model of
chronic allograft nephropathy utilized in this study. (B) Schematic
representing the timeline of treatment with CsA and/or LA1 and the
allogeneic kidney transplant surgery as described in the Section
“Concise Methods.” The chemical structure of LA1 is also shown on the
top. (C) A Kaplan–Meier plot of graft survival for isografts (non-filled
circles, n=3) or allografts treated with either CsA alone (triangles, n=4)
or a combination of CsA and LA-1 (squares, n= 5) over time (in weeks).

Significance was determined using the Log-rank (Mantel–Cox) test.
**P <0.01 (D) A plot showing LC-MS/MS-based quantification of serum
creatinine levels in various samples at the indicated time points. Whole
blood was collected at the indicated time points via retro-orbital puncture
from experimental animals from isograft group (non-filled circles) or
allograft groups treated with either CsA alone (triangles) or a combination
of CsA and LA-1 (squares). Data shown are mean±SEM (n=5/group).
Significance was determined using a two-tailed Student’s t -test and the
calculated P -value is shown. *P <0.05.

LA1 treatment reduces vascular injury in the setting of kidney
allografts.

ADMINISTRATION OF LA1 REDUCES INFILTRATING MACROPHAGES
WITHIN THE ALLOGRAFT AND BOOSTS NUMBER OF FOXP3+
REGULATORY T-CELLS IN THE GRAFT
LA1 treatment reduces CD11b+ macrophage recruitment to the
site of inflammation (45). To test whether the LA1-mediated pro-
tection of kidney allografts and the reduction in allograft vascular
injury was associated with a decrease in CD11b+ macrophage
influx, we quantified the immune cell subsets using immuno-
fluorescence staining and confocal microscopy. Immunofluores-
cence microscopy revealed that the extensive perivascular leuko-
cytic infiltrate observed in the CsA-treated allografts was mainly
composed of CD11b+ macrophages (Figure 5A) (9). LA1 treat-
ment resulted in a significant twofold reduction in total CD45+

leukocytes within the allograft as compared to allograft controls.
More importantly, a simultaneous twofold reduction in allo-
graft infiltrating CD11b+ and F4/80+macrophages was observed
in the LA1-treated recipients as compared to control allografts
(Figure 5B). Furthermore, immunofluorescence staining and
analysis of T-cells showed that LA1 treatment had no effect on
the number of CD8+ and CD4+ T-cells infiltrating the allograft
(Figures 6A,B).

FoxP3+ regulatory T-cells (Tregs) have been reported to medi-
ate allograft tolerance and are expanded in stable kidney allo-
grafts (51–54). Macrophages recruited to the site of inflammation
become potent producers of proinflammatory cytokines includ-
ing IL-1β, which prevents the induction of de novo Tregs and also
convert existing Tregs into proinflammatory Th17 cells (55–57).
To study whether the LA1-mediated reduction of macrophages in
the allograft affected the frequency of Tregs in the allograft, we
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FIGURE 3 | LA1 treatment protects glomerular synaptopodin
expression but does not reduce interstitial fibrosis in the allograft.
(A) Representative images from allograft kidney sections of control (CsA
alone) and LA1-treated (CsA+LA1) animals (upper panels) showing
glomeruli after staining tissue sections with PAS and imaged using light
microscopy or (lower panels) after staining with an antibody against the
podocyte marker synaptopodin (synpo, green) [nuclei were stained with
DAPI (blue)] and imaged using a fluorescence microscope. Images are
representative of five independent samples per group. Scale bar=25 µm.
(B) A plot showing quantification of synpo staining in the allograft glomeruli
as shown in (A) (as percent glomeruli that showed diminished synpo
staining per tissue section) from animals treated either with CsA or with a

combination of CsA and LA-1. Data shown are mean±SEM (n=5/group).
Significance was determined using a two-tailed Student’s t -test. **P <0.01.
(C) Representative images from allograft kidney sections of control (CsA
alone) and LA1-treated (CsA+LA1) animals showing the cortex, medulla,
and the intrarenal arteries, as labeled. Images are representative of 4–5
independent samples per group. Scale bar=50 µm. (D) A plot showing
quantification of collagen deposition in whole trichrome-stained kidney
sections as shown in (C) and analyzed using an Aperio ScanScope (shown
as percent collagen staining per tissue section) from animals treated either
with CsA alone or with a combination of CsA and LA-1. Data shown are
mean±SEM (n=4–5/group). Significance was determined using a
two-tailed Student’s t -test. ns: not statistically significant.

stained and quantified Tregs in the two groups of allograft kid-
ney sections using immunofluorescence. Surprisingly, we found
that LA1 treatment resulted in a significant fivefold increase in
the number of intrarenal FoxP3+ regulatory T-cells in the allo-
graft tissue as compared with the CsA only treated allografts
(Figures 6A,B). These data clearly indicate that LA1 treatment
resulted in an anti-inflammatory intrarenal immune cell signa-
ture (fewer macrophages and more Tregs) that is indicative of a
stable allograft.

DISCUSSION
Kidney allograft rejection remains an important post-
transplantation complication and is in critical need of newer
therapeutic approaches. Drug development efforts over the last
several decades have solely focused on modulating the adaptive
immune system, which plays a critical role in rejection, result-
ing in several extremely effective anti-rejection therapeutics that

are currently in wide use in the clinic. Infiltration of innate
immune cells, primarily macrophages, has also been identified
in the allograft biopsies of murine and human kidney transplants
(13). Decreased graft survival is associated with increased presence
of macrophages, while they are extremely rare in stable transplants
surviving long term (13), suggesting that targeting of macrophages
could also provide additional benefits, especially in the setting of
chronic kidney rejection. Yet, effective therapeutics for reducing
macrophage influx in allografts are sorely lacking. The leukocytic
integrin CD11b/CD18 plays a vital role in the multistep process
of infiltration and accumulation of macrophages in the inflamed
tissue. During the past several years, studies have focused on reduc-
ing leukocyte infiltration to the inflamed tissue by using blocking
antibodies that hinder the binding of CD11b/CD18 to their lig-
ands (28, 41, 42) on the vascular wall or by specifically deleting
myeloid cell subsets by genetic ablation of CD11b (30) or CD18
(58). Although these approaches have been successful in decreasing
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FIGURE 4 | LA1 treatment reduces leukocyte infiltrate and neointimal
hyperplasia. (A) Representative H&E stained micrographs of allograft
kidney tissue sections from control (CsA alone) and LA1-treated
(CsA+LA1) animals showing significant reduction of mononuclear cell
infiltrates with LA1 treatment. Images are representative of five
independent samples per group. Scale bar=100 µm (in the H&E 10×
panels) and 25 µm (in the H&E 40× panels). (B) Representative
PAS-stained micrographs of allograft kidney tissue sections from control
(CsA alone) and LA1-treated (CsA+LA1) animals showing extensive
perivascular leukocyte infiltration and intrarenal arterial neointimal
hyperplasia in CsA-treated mice that is significantly reduced with LA1
co-treatment. Images are representative of five independent samples per
group. Scale bar= 25 µm. Below, a plot showing quantification of
neointimal hyperplasia in the intrarenal arteries, as shown in (B) and
quantified as described in the Section “Concise Methods,” from animals
treated either with CsA alone or with a combination of CsA and LA1. Data
shown are mean±SEM (n=5/group). Significance was determined using a
two-tailed Student’s t -test. **P <0.01.

the severity of inflammatory responses in several animal models,
such blocking reagents have failed in clinical trials (43, 59) and
have been withdrawn from the market (60).

In a previous study, we reported an alternative approach of
inhibiting leukocyte migration by enhancing the activation of inte-
grin CD11b/CD18 with agonist LA1 (as compared to the use of
integrin antagonists in the literature) (45). LA1-mediated inte-
grin activation decreased inflammation in several experimental
models and preserved organ function upon injury. Similarly, clin-
ical trials utilizing blocking antibodies in the kidney transplant
setting have resulted in a high incidence of lethal infections and
relapses as a result of long lasting immunodeficiency (61) with no
difference in the incidence or severity of graft rejection (62–64).
Unlike antibodies, small molecule leukadherins are orally avail-
able and are rapidly cleared which, while potentially requiring
more frequent dosing in the patients, offers the flexibility in dos-
ing and tight control over unwanted immunosuppression (45).
Additionally, anti-adhesion therapies (when combined with other
immune-suppressive drugs) have also been linked with progres-
sive multifocal leukoencephalopathy (PML) in patients, which
was another reason for the initial withdrawal of some of these
drugs from the market (60). PML is associated with re-activation
of the normally latent JC virus in the patients. Some of the
anti-integrin agents target integrin α4β1 and block adhesion of
α4β1 expressing cells (such as T-cells, hematopoietic stem cells,
and immature B-cells) to ligand VCAM-1. The increased inci-
dence of PML in the anti-adhesion therapy treated patients has
been postulated to be likely due to increased escape of progen-
itor and immature cells from their bone marrow niche (where
they are held via α4β1:VCAM-1 interaction) into circulation,
carrying JC virus with them. Additionally, it has been postu-
lated that T-cells that normally restrict the JC virus, are unable
to cross the blood-brain barrier to contain it in the tissue. We
believe that our integrin agonist LA1 will have a significantly
lower risk of PML in patients for two reasons: (a) because it
enhances CD11b/CD18-dependent cell adhesion (thus reducing
risk of CD11b+ progenitors escaping into circulation, without
affecting other cell types) and (b) because it primarily targets
innate immune cells vs T-cells, thus may not affect migration of
T-cells to fight-off JC virus, in case of its re-activation in the brain
tissue. However, future studies are needed to fully address this
issue.

Here, we studied the ability of LA1 to enhance the effects of
CsA treatment in a mouse model of kidney transplantation. CsA
is a potent immunosuppressive agent often used in transplanta-
tion to prevent acute rejection by dampening T-cell responses.
Its immunosuppressive action is mediated through the block-
ade of cytokine production, which, in turn, modulates immune
activation and T-cell proliferation (65). We report that LA1, in
combination with CsA, significantly prolongs kidney allograft sur-
vival and function as compared to treatment with CsA alone.
LA1 treatment resulted in a dramatic reduction of interstitial
as well as perivascular inflammatory infiltrates and significantly
reduced neointimal hyperplasia. These data show that LA1 treat-
ment reduces transplant arteriosclerosis, which is a significant
long-term complication of kidney transplantation and predictor
of late graft failure (66, 67).
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FIGURE 5 | LA1 treatment reduces perivascular infiltration of
macrophages. (A) Representative micrographs of kidney allograft tissue
sections from control (CsA alone) and LA1-treated (CsA+LA1) animals after
immunofluorescence analyses. Sequential sections from each tissue were
stained with antibodies against CD45, CD11b, or F4/80, as indicated,
followed by fluorescently labeled secondary antibodies and then imaged
using a confocal microscope. Inset shows image of an area of 60×

magnification. Images are representative of 4–5 independent samples per
group. Scale bar=50 µm. (B) Plots showing quantification of number of
positive cells/area for each marker, as shown in (A). Three random areas per
tissue were evaluated at 60× magnification by manually counting positively
stained cells. Data shown are mean±SEM (n=4–5/group). Significance
was determined using a two-tailed Student’s t -test. ***P <0.001;
****P <0.0001.

More comprehensive immune cell phenotyping indicated
that the allograft leukocytic infiltrate was mainly composed of
macrophages as indicated by CD11b+ and F4/80+ immunos-
taining. We also determined that LA1 treatment did not change
the number of CD4+ or CD8+ T-cells infiltrating the allografts.
This can be due to the already dampened T-cell responses tar-
geted by the immunosuppressive CsA. There was, however, an
increase in the number of FoxP3+ regulatory T-cells infiltrating
the LA1+CsA-treated allograft tissue as compared to CsA-treated
controls. The reasons for this observation are unclear. One possible
explanation is that the reduction of macrophages in the allo-
graft results in a decrease in proinflammatory cytokines including
IL1, IL6, and TNF-α, which have been reported to impair the
differentiation and function of FoxP3+ Tregs (68). Indeed, LA1
treatment directly reduces the production of IL1, IL6, and TNF-α
by CD11b+ myeloid cells in both in vitro and in vivo inflam-
matory settings (unpublished data). Taken together, our results
indicate that LA1 treatment, together with standard CsA immuno-
suppression, alters the balance between CD11b+ inflammatory
macrophages (twofold decrease) and regulatory Foxp3+ Tregs
(fivefold increase) resulting in an overall immunosuppressive

effect. The alteration of the profile of immune cells in the allograft
may underlie the efficacy of LA1 in prolonging kidney transplant
survival. For example, LA1 treatment might influence the levels
of macrophage phenotypes (M1 vs M2) in the renal compart-
ment. Another possibility is that LA1 affects the function of DCs
that are key drivers of immune response against allo-antigens,
either the DCs that are resident within the kidney and/or those
residing within the secondary lymphoid organs. This could be
via LA1 reducing the proinflammatory cytokine levels in the tis-
sue (due to reduced number of macrophages being recruited and
activated locally) or due to direct effects on DC migration into
the tissue and their activation, given that DCs also express integrin
CD11b/CD18. We hope that our planned future studies will clarify
this mechanism.

Future studies will determine the details of such cellular phe-
notype modulation by LA1 in vivo. Additionally, it has pre-
viously been shown that agonist Mn2+-mediated activation of
CD11b/CD18 on antigen presenting cells inhibits T-cell activa-
tion (69). More studies are needed to determine if LA1-mediated
pharmacological activation of CD11b/CD18 has a similar effect.
Finally, the present study used a dosing regimen that was initiated
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FIGURE 6 | LA1 treatment does not affect the number of CD8+ and
CD4+T-cells infiltrating the allograft but increases the frequency of
infiltrating FoxP3+ regulatoryT-cells. (A) Representative micrographs of
kidney allograft tissue sections from control (CsA alone) and LA1-treated
(CsA+LA1) animals after immunofluorescence analyses. Sequential
sections from each tissue were stained with antibodies against CD8, CD4,
and intracellular FoxP3 in allografts, as indicated, followed by fluorescently
labeled secondary antibodies and imaged using a confocal microscope.

Inset shows image of an area at 60× magnification. Images are
representative of 4–5 independent samples per group. Scale bar=50 µm.
(B) Plots showing quantification of the number of positive cells/area for
each marker, as shown in (A). Three random areas per tissue were
evaluated at 60× magnification by manually counting positively stained
cells. Data shown are mean±SEM (n=4–5/group). Significance was
determined using a two-tailed Student’s t -test. ns: not statistically
significant. ****P <0.0001.

immediately prior to injury. Whether such pharmacologic modu-
lation of innate immune cells can stabilize, treat, or reverse estab-
lished disease is an important question that would be addressed
in future studies. Similarly, future studies will be needed to define
the consequences of withdrawing LA1. It would be interesting to
study whether the imparted tolerance can be maintained in such
a scenario.

In summary, we have presented here an alternative approach
for kidney transplant immunosuppression that involves activation,
rather than the blockade of CD11b/CD118, ultimately resulting in
the reduction of leukocyte recruitment to the allograft and inflam-
mation. We suggest that targeting integrins with small molecule
agonists may improve the long-term outcome of human trans-
plants and may also provide therapeutic benefit in inflammatory
and autoimmune diseases.

CONCISE METHODS
HUMAN BIOPSY SAMPLES
Nine kidney biopsies were selected with at least seven glomeruli
in the block available for sectioning, regardless of diagnosis. Four

were native kidneys and five were allografts. All allografts had
been diagnosed with chronic allograft nephropathy involving 15–
90% of the cortex (average 37.0% cortex± 30.1%). The average
age was 60.7± 12.9 years (41–76 years). This study was approved
by the Institutional Review Board (IRB) committee at the Rush
University Medical Center.

ANIMALS
Male C57BL/6J (H-2b) and Balb/cJ (H-2d) mice were purchased
from Jackson Laboratories and were housed under pathogen-
free conditions in the Animal Facility at either the University of
Alabama at Birmingham or at University of Miami Miller School of
Medicine. All animal experiments were performed in accordance
with the institutional guidelines under Institutional Animal Care
and Use Committee approval. Renal IRI model was performed in
C57BL/6J animals as previously described (10).

ORTHOTOPIC KIDNEY TRANSPLANTS
Vascularized orthotopic kidney transplants were performed in
mice as previously described (9). Three groups were evaluated.

Frontiers in Medicine | Nephrology November 2014 | Volume 1 | Article 45 | 8

http://www.frontiersin.org/Nephrology
http://www.frontiersin.org/Nephrology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Khan et al. A β2 integrin agonist improves allograft survival

In the isograft group, C57BL/6J (H-2b) recipients received a kid-
ney from a C57BL/6J (H-2b) littermate. In the CsA alone treated
allograft group (control), C57BL/6J (H-2b) mice received a kid-
ney from an MHC-mismatched Balb/cJ (H-2d) mouse. In the
experimental CsA+ LA1-treated group (test group), C57BL/6J
(H-2b) mice were pre-injected with 1 mg/kg of LA1 intravenously
2 h before they received a kidney from a completely mismatched
Balb/cJ (H-2d) mouse. These were mice subsequently received
daily intraperitoneal injections (2.5 mg/kg) of LA1 during week
1 and every other day during weeks 2–8. Both the isograft and
allograft recipients received CsA at a dose of 10 mg/kg daily subcu-
taneously for 14 days post-transplantation to prevent acute injury.

MEASUREMENT OF KIDNEY TRANSPLANT FUNCTION
Whole blood was collected through retro-orbital bleeding and
urine was collected at the indicated time points to assess transplant
function. Serum creatinine levels were measured as previously
described using LC-MS/MS (70). Urine protein was measured
using an albumin specific sandwich ELISA (Bethyl Laboratories,
Montgomery, TX, USA).

HISTOLOGIC ANALYSIS AND IMMUNOHISTOCHEMISTRY
Grafts were harvested at 8 weeks post-transplantation or at the
time of rejection. One part of the removed kidney was fixed in
10% formalin and embedded in paraffin and another part was
immediately frozen in liquid nitrogen. Tissue sections (4 µm) were
stained with H&E, PAS, or Masson trichrome. Histological analy-
sis was performed on digital images that were acquired with a
whole slide Aperio Scanner (Leica Biosystems, Buffalo Grove, IL,
USA) and analyzed using the ImageScope software. The Aperio
Scanscope allowed scanning and quantitation of the whole slide
using a 20× objective lens. The ImageScope Colocalization Algo-
rithm was used to quantify whole trichrome-stained kidney tissues
for collagen deposition. The Blue (color 1) and Red color (color
2) channels were used. The Blue threshold was set at 210 and Red
at 180. In order for a pixel to be considered fibrotic, it had to
meet the threshold for Blue but not for Red (% area blue/total
area). Neointimal hyperplasia in intrarenal arteries was calculated
as described previously (9) using the formula [(neointimal hyper-
plasia area− lumen area)/neointimal hyperplasia area]× 100 and
expressed as a percentage.

IMMUNOFLUORESCENCE STAINING AND CONFOCAL MICROSCOPY
For frozen sections, human or mouse kidney tissue was embedded
in OCT, snap frozen in liquid nitrogen and stored at−80°C. Tissue
sections were cut and fixed in −20°C acetone before immuno-
fluorescence staining. Sections were blocked at room tempera-
ture for 1 h and incubated with the primary antibodies – CD45
(anti-mouse: Clone 30-F11, 550539,BD Pharmingen, anti-human:
Clone HI30, 14-0459-82, eBioscience), CD11b (anti-mouse and
anti-human: Clone M1/70, 101202, Biolegend), CD4 (Clone RM4-
5,5505319,BD Pharmingen), CD8 (CloneYTS.169.4,MBS520216,
Mybiosource), F4/80 (Clone CI:A3-1, MCA497GA, AbD Serotec),
CD3 (anti-human: Clone OKT3, 70-0037, Tonbo Biosciences),
WT1 (polyclonal rabbit, SC-192, Santa Cruz), and synaptopodin
(polyclonal goat, SC-21537, Santa Cruz) in blocking buffer at 4°C
overnight. Sections were incubated with the appropriate secondary

antibody (Invitrogen Life Technologies, Grand Island, NY, USA)
and mounted with medium containing DAPI to visualize nuclei
(Vector Laboratories, Burlingame, CA, USA). Fluorescence images
were acquired using a Zeiss 700 LSM confocal microscope with an
iLCI Plan Neofluar 63×/1.3 Oil Imm Corr M27 with a AxioCam
camera and analyzed using the Zen software (Carl Zeiss Group,
Hartford, CT, USA).

STATISTICAL ANALYSIS
All statistical analyses were performed using Graphpad Prism 6.
Data are expressed as means± SEM. The two-tailed Student’s t -
test was used for comparison between two groups. Kaplan–Meier
survival curves were analyzed with the log-rank (Mantel–Cox) test.
P values< 0.05 were considered statistically significant.
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