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In recent years, tumor budding in colorectal cancer has gained much attention as an indica-
tor of lymph node metastasis, distant metastatic disease, local recurrence, worse overall
and disease-free survival, and as an independent prognostic factor.Tumor buds, defined as
the presence of single tumor cells or small clusters of up to five tumor cells at the peritu-
moral invasive front (peritumoral buds) or within the main tumor body (intratumoral buds),
are thought to represent the morphological correlate of cancer cells having undergone
epithelial–mesenchymal transition (EMT), an important mechanism for the progression of
epithelial cancers. In contrast to their undisputed prognostic power and potential to influ-
ence clinical management, our current understanding of the biological background of tumor
buds is less established. Most studies examining tumor buds have attempted to recapitu-
late findings of mechanistic EMT studies using immunohistochemical markers. The aim of
this review is to provide a comprehensive summary of studies examining protein expres-
sion profiles of tumor buds and to illustrate the molecular pathways and crosstalk involved
in their formation and maintenance.
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INTRODUCTION
The hallmark of malignant disease, namely the ability of a tumor
to disseminate and colonize distant sites, requires an arsenal of cel-
lular characteristics. In colorectal cancer and a growing number
of solid tumors, epithelial–mesenchymal transition (EMT) is pro-
posed as a fundamental mechanism for epithelial cells to acquire
such a “malignant” phenotype (1, 2). Tumor buds, defined as the
presence of single tumor cells or small groups of up to five tumor
cells at the invasive tumor front or within the main tumor body
[termed intratumoral buds (3)] are thought to be the histomor-
phological correlate of cells to undergo EMT in colorectal cancer.
Indeed, high-grade tumor budding is strongly and independently
associated with many adverse features such as vascular invasion,
lymph node, and distant metastases and is detrimental to overall
and disease-free survival (4–12).

From a morphological point of view, tumor buds tend to
appear more atypical than their counterparts in the main tumor
body [hence the previous term “tumor dedifferentiation” (13)]
Tumor buds may be difficult to detect on H&E stained slides,
as they are, per definition, single tumor cells or small clusters
of tumor cells that have broken off from the main tumor body
and “blend” into the tumor microenvironment, often obscured by
peritumoral inflammatory reaction. At high power, it may be dif-
ficult to distinguish tumor buds from reactive stromal cells, which
may also appear large and atypical. Pancytokeratin immunos-
tains are of great help in the accurate identification of tumor
buds (Figures 1A,B), and have been demonstrated to significantly
improve interobserver agreement in tumor bud assessments (14).

As tumor buds are visualized in a histological “snapshot,” stud-
ies using immunohistochemistry have been pivotal in improving

our understanding of tumor buds and their protein expression
profiles (15). A distinct heterogeneity in immunohistochemical
expression profiles among different tumor compartments (cen-
ter vs. invasive front and tumor buds) has contributed to our
appreciation of the consequences of EMT (15).

MOLECULAR BACKGROUND OF TUMOR-BUDDING
PHENOTYPES
It is well-recognized that “colorectal cancer” encompasses funda-
mentally different molecular phenotypes following various path-
ways of carcinogenesis (16). As a consequence, colorectal cancers
arising from different pathways differ in terms of biological behav-
ior, histomorphological features, and protein expression (17, 18).
One of the major and most well-studied pathways involves muta-
tion of the APC gene, activating the WNT/wingless signaling path-
way. Its major downstream effectors, β-catenin, and E-cadherin,
are considered integral components of EMT (1). Therefore, it is
not surprising that high-grade tumor budding is strongly asso-
ciated with tumors arising from the tumors with mutation of
the APC gene (19). In contrast, tumors with microsatellite insta-
bility, another well-studied pathway of colorectal carcinogenesis,
are inversely correlated with tumor budding (19, 20). To date,
only few studies have systematically assessed differences in tumor
bud expression profiles taking into account the molecular back-
ground of tumors. In MMR-deficient tumors, reduced β-catenin
expression in tumor buds was demonstrated in comparison to
MMR-proficient tumors (21), leading to the speculation that
mechanisms other than only Wnt signaling may lead to the forma-
tion of tumor buds in MMR-deficient cancers. Also, buds arising
in MMR-deficient tumors may represent a less aggressive budding
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phenotype, highlighted by reduced expression of the cell locomo-
tion protein laminin5γ2 in buds and in line with the generally
milder clinical course of these tumors (21). On the other hand,
adenocarcinomas with “serrated” morphology, which did not
display histological features associated with microsatellite insta-
bility, were shown to have increased expression of laminin5γ2
and decreased expression of nuclear β-catenin and E-cadherin in
tumor-budding cells compared to matched “conventional” adeno-
carcinomas (22). Unfortunately, the classification of these tumors
was made based on morphology alone, hence their true molecular
background remains presumptive [serrated morphology without
features of MSI-high tumors being most suggestive of BRAF-
mutated, CIMP-high, MMR-proficient tumors, which are known
to behave aggressively (23, 24)].

Wnt SIGNALING
Activation of WNT signaling leads to stabilization of mem-
branous/cytoplamasmic β-catenin and its translocation to the
nucleus. Located at the cell membrane, β-catenin complexes with
E-cadherin and is crucial for maintaining cell–cell adhesion and
epithelial cell polarity (24). However, mutations in the APC gene
lead to nuclear translocation of β-catenin, where it binds to
members of the Tcf/LEF family, and functions as an oncogenic
transcription factor. Therefore, preservation of membranous E-
cadherin and β-catenin are indicative of an epithelial phenotype,
whereas loss of E-Cadherin and nuclear expression of β-catenin
are considered hallmarks of EMT. Due to their well-established
role in EMT, β-catenin and its transcriptional targets represent
the most extensively studied group of proteins in tumor buds.
Increased nuclear expression of β-catenin in tumor buds in com-
parison to the main tumor body has been demonstrated in several
studies (21, 22, 25–29) as has loss of E-Cadherin (4, 28, 30, 31)
(summarized in Table 1). However, canonical Wnt signaling and
β-catenin alone appear not to be the sole driving force behind
tumor budding, as nuclear β-catenin at the invasive tumor front
did not necessarily predict budding (32, 33) and although up to
90% of all colorectal cancers have dysregulation of Wnt signaling
and 60% harbor APC mutations (34), high-grade budding is only
seen in a proportion of these (around 40%), depending on case
mix and evaluation methods (9, 14, 35–37).

The functions of proteins encoded by WNT target genes confer
characteristics of a malignant mesenchymal phenotype. Proteins
involved in the degradation of the extracellular matrix, such as
MMP-9 and Cathepsin B have been shown to be overexpressed
in buds (38). Several studies have demonstrated expression of the
cell locomotion protein laminin5γ2 in buds (21, 22, 39, 40).

Other cell adhesion proteins such as EpCAM have been impli-
cated in the budding process, with loss of membranous expression
identified in tumor buds (25). EpCAM is activated by proteoly-
sis by tumor-necrosis factor alpha (TNF α) converting enzyme,
resulting in release of EpICD into the cytoplasm, which becomes
part of the h-catenin and LEF transcriptional complex (41). The
neuronal cell adhesion molecule L1 has also been identified as
a β-catenin target gene and is preferentially expressed in tumor
buds where it is co-regulated with ADAM10, a metalloprotease
involved in cleaving and shedding L1s extracellular domain (42).
L1 has recently been demonstrated to induce NFκB signaling in

colorectal cancer cells (52), NFκB being implicated in EMT (53).
These studies demonstrate the degree of crosstalk between Wnt
signaling and EMT.

Modulators of Wnt signaling have also been detected in tumor
buds, such as the AAA+ protein family member pontin (29), which
has been implicated in enhancing the effect of Wnt signaling by
binding to the β-catenin/LEF complex.

TUMOR BUDS, EMT, AND “STEMNESS”
The stem-cell concept is centered on the notion that tumor pro-
gression is driven by a primarily undifferentiated population of
tumor-initiating cancer cells. After initially being described in
acute myeloid cancers, cancer stem cells (CSCs) have been iden-
tified in a myriad of solid tumors including colorectal cancers.
CSCs display aggressive features such as increased invasiveness,
chemoresistance, and the ability to mediate angiogenesis and resist
apoptosis, with the ability to re-differentiate at metastatic sites
(54). It would therefore stand to reason that tumor buds may
represent a population of migrating CSCs (55). Indeed, there is
increasing evidence linking CSCs to EMT. For instance, forced
expression of the EMT transcription factor snail in CRC cell lines
leads to increased expression of the putative stem-cell markers
CD133 and CD44 (43). Alleged stem-cell markers in colorectal
cancer include EpCAM (alongside its role as a cell adhesion mole-
cule), CD133, CD44, ABCG5, CD90, CD24, CD166, LGR5 (a Wnt
pathway target), and ALDH1 (49). Several studies have exam-
ined the immunohistochemical expression of stem-cell markers
in different compartments of colorectal cancer. CD133 has been
reported to be preferentially expressed at the invasive tumor front
but not within tumor buds themselves (44). Hostettler et al. (49)
found expression of CD133, 166, CD44, and CD90 to be a rare
event in tumor buds, but cytoplasmic EpCAM and ABGC5 were
frequently expressed in tumor-budding cells. Both of these mark-
ers were demonstrated to have a negative effect on survival, and
expression of ABCG5 in buds was associated with worse prognosis
in node-negative colorectal cancer patients. A study examining the
expression of Lgr5 found a small subset of buds to be positive for
this putative stem-cell maker but 6- to 11.5-fold higher expres-
sion rates in distant metastases were detected (56). Taken together,
the above results support the notion that expression of stem-cell
markers appears to be heterogeneous among buds and that only
small populations of tumor cells (low-frequency subclones) may
be perpetrators of metastatic disease.

CELL CYCLE-RELATED PROTEINS
There is accumulating evidence indicating that the driving force
of colorectal cancer progression may not be attributable to tumor
cell proliferation alone. Generally, it is thought that EMT-derived
tumor cells are hypo-proliferative, underlining the significance of
aggressive cellular machinery to exert their malignant properties
(57). The cell cycle regulators cyclin D1 and p16 are Wnt signaling
targets and their activation is a suggested mechanism of EMT-
induced growth arrest. Under normal circumstances, nuclear p16
is a direct inhibitor of cyclin D1, arresting the cell cycle. However,
located in the cytoplasm, p16 is thought to bind with CDK4, block-
ing its transport to the nucleus. CDK4 is required for cyclin D1
activation. Therefore, in the absence of CDK4, cyclin D1 forms an
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Table 1 | Summary of studies examining tumor buds by immunohistochemistry.

Biological role Reference Markers and methods Cohort Budding

systematically

assessed?

Scoring method

(reference)

Results/relevance

Wnt signaling Gosens (25) EpCAM: three different antibodies

(Ber-EP4, 311-1K1 and a polyclonal

antibody), double staining for

β-catenin and Ep-CAM. mRNA in situ

hybridization of Ep-CAM, WTS

133 rectal cancers (Dutch

RT +TME trial), Stage II–IV

Yes (Ueno) (9) Tumor buds showed lack of membranous and

increased cytoplasmic Ep-CAM staining and

nuclear expression of β-catenin. Reduced

Ep-CAM staining at the invasive margins

correlated with tumor-budding, grade, and

increased risk of LR

Wnt signaling Brabletz (27) β-catenin, WTS 44 Stage I–III CRC No Expression of nuclear β-catenin in 54% of all

cases. Strong nuclear staining predominantly at

tumor front (80–100%) with strongest staining in

tumor buds. Tumor center often without nuclear

staining but with retained membranous staining

Wnt signaling El-Bahrawy (28) E-Cadherin, α-, β-, and γ-catenin (each

immunohistochemistry and mRNA),

WTS

30 Dukes A-C CRC No Cytoplasmic accumulation of E-cadherin and

catenins in over 80% of cases. Increased staining

of β-catenin toward tumor front

Wnt signaling Lauscher (29) Pontin, β-catenin, WTS. Pontin

western blot on six cases

34 CRC Stage I–IV No Cytoplasmic pontin expression in all cases,

additional nuclear positivity in 50% of cases.

Nuclear pontin correlated with nuclear β-catenin

in all cases. Nuclear pontin staining stronger at

invasive margin and tumor buds in comparison to

tumor center (41.2 and 37.9% of cases). Sample

size insufficient for significant correlation to stage

Wnt signaling Garcia-Solano (22) β-catenin, e-cadherin, p-cadherin,

laminin5γ2, SMAD4, WTS

20 SAC (defined by

histomorphologic criteria, no

features of MSI-high tumors) with

stage matched 20 CAC

Yes (Ueno) Increased expression of laminin5γ2, decreased

expression of nuclear β-catenin and membranous

e-cadherin in tumor buds of SAC in comparison

to CAC

Wnt signaling Shinto (21) laminin5γ2, β-catenin (assessed in

tumor buds), MUC2, MUC5AC

(assessed on entire tumor), WTS.

Laminin5γ2 promoter methylation

80 CRC with high-grade budding:

9 sporadic MMR-deficient, 7 Lynch

MMR-deficient and 64 sporadic

MMR-proficient, Stage n/a

Yes (Ueno) 3/9 sporadic MMRd laminin5γ2 compared to

46/64 sporadic MMRp (p 0.05) and 2/7 Lynch

(p = 0.03). Nuclear β-catenin more frequent in

MMRp than MMRd cancers (p 0.01). No

difference in methylation among subsets but

correlation between methylation and negative

laminin5γ2

(Continued)
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Table 1 | Continued

Biological role Reference Markers and methods Cohort Budding

systematically

assessed?

Scoring method

(reference)

Results/relevance

Cell differentiation

cell cycle

Harbaum (30) CK7, CK20, E-cadherin, MUC2, and

MIB1. CK7: 370 cancers on

multi-punch TMA, CK7 positive cases

re-evaluated on WTS with all markers

370 CRC Stage I–IV Yes (Ueno) 32 cases positive for CK7. CK7 positivity prevailed

in tumor buds, these cells were positive for CK20

and negative for E-Cadherin, MUC2 and MIB1 on

serial sections. Raises the notion of “EET”

(epithelial–epithelial transition)

Wnt signaling Brabletz (31) CK18, β-catenin, e-cadherin, Ki-67,

WTS

72 CRC Stage n/a No Nuclear β catenin in tumor buds accompanied by

reduced E-cadherin and Ki-67 reactivity, inverse

immunoprofile in main tumor and metastases

Wnt signaling Horkko (32) Tumor-budding margin on all cases,

β-catenin (108 cases), MNF116 (53

cases to assess separately for

budding), WTS

466 CRC Dukes A-D Yes (Ueno) Nuclear β catenin increased at invasive front and

in tumor buds, but no correlation between

expression presence/absence of budding

Wnt signaling Guzinska-

Ustymowicz (38)

MMP-9 and cathepsin B, WTS 55 pT3 G2 CRC Yes (Morodomi) (37) Expression of MMP-9 and Cathepsin B associated

with lymph node involvement (p < 0.01)

Wnt signaling Rubio (39) MNF116, Ki-67, laminin5 6 CRC (preliminary report), Stage

n/a

Hotspot on HE Mean positivity of buds in comparative fields:

MNF 116: 86.2, Ki-67: 9.7, laminin5: 9.3

Wnt signaling Gavert (42) β-catenin, L1, ADAM10, WTS 25 CRC, Stage n/a No L1 not detected in main tumor body, but at

invasive front and tumor buds, co-localization with

ADAM10, and nuclear β-catenin

Wnt signaling Gavert (52) NFκB, L1, ezrin, WTS 25 CRC, Stage n/a No Tumor buds co-express ezrin, nuclear NfKb and

L1, central tumor regions with relative lack

immunoreactivity. Together with functional data

supports hypothesis that L1-mediated activation

of NFkB signaling is a major route of CRC tumor

progression

CSC Hostettler (49) CK22, CD133, CD166, CD24, CD44s,

CD90, EpCAM, ALDH1, ABCG5,

evaluation within tumor buds on WTS

101 cases with densest budding

out of cohort with 300 CRC

patients, Stage n/a

Yes (Ueno) CD90, CD44s, and CD133 infrequent in buds

(<5%). ALDH1, CD24 and CD166 in 16.5, 16.2,

and 34%. ABCG5 and EpCAM in 35 and 69% of

cases. EpCAM and ABCG5 in buds significantly

associated with worse prognosis, especially in

node-negative patients with ABCG5 positive buds

(Continued)
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Table 1 | Continued

Biological role Reference Markers and methods Cohort Budding

systematically

assessed?

Scoring method

(reference)

Results/relevance

CSC Kleist (56) Lgr5, WTS 89 cases Stage I–IV, additional

distant metastases from 31

patients

Yes (Prall) (36) 12.9% of cases had Lgr5 positive buds, distant

metastases from these cases had 6- to 11.5-fold

higher expression rates

Cell cycle Dawson (59) Ki-67 (WTS), Caspase3,

M30Cytodeath (multi-punch TMA)

188 Stage I–IV CRC Yes (Karamitopoulou)

(35)

Ki-67 expression in 0.3% of buds, in 35% tumor

center (p 0.0001). Caspase-3 comparatively lower

in tumor buds than other compartments (p

0.0001). Rare cases with Ki-67 and caspase3

immunoreactivity associated with poorer

prognosis

RAS/RAF Koelzer (67) RKIP, NFkB, E-Cadherin WTS RKIP,

matched NFκB, and E-Cadherin on

multi-punch TMA

178 Stage I–IV CRC Yes (Karamitopoulou) 0.9% of tumor buds positive for RKIP, but

expression in main tumor body rather than buds

predictive for metastatic disease, vascular

invasion, budding, and invasive tumor border

configuration. RKIP expression correlated with

NFkB expression

RAS/MAPK Dawson (68) TrkB, multi-punch TMA 211 Stage I–IV CRC Yes (Karamitopoulou) Trkb(m) overexpressed in buds in comparison to

main tumor body (p < 0.0001) and associated with

KRAS mutation. High expression of membranous

Trkb-independent adverse prognostic factor.

Inverse correlations between expression profile

of Trkb(m) and Ki-67 as well as Caspase-3 (53)

Cytokine signaling Akishima-

Fukusawa (71)

CXCL12, WTS 165 Stage II–III CRC Yes (Ueno) CXCL12-positive budding divided into high- and

low-grade, staining in the tumor divided into high

and low expression. Patients with high-grade

CXCL12 budding and high CXCL12 expression

had shorter survival than patients with low-grade

CXCL12 budding and low CXCL12 expression.

CXCL12 expression in buds independent adverse

prognostic factor in multivariate analysis

irrespective of budding grade

(Continued)
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Table 1 | Continued

Biological role Reference Markers and methods Cohort Budding

systematically

assessed?

Scoring method

(reference)

Results/relevance

Wnt signaling,

cell differentiation

Brabletz (76) β.catenin, Cdx2, laminin5γ2 WTS,

additional to cell culture experiments

and immunofluorescence

45 CRC cases, Stage n/a No Cdx2 expression was lost in tumor buds but

re-expressed in metastases, cell culture

experiments demonstrate transient

transcriptional down-regulation of Cdx2 triggered

by collagen type I

Stromal cell

interaction

Galvan (79) TWIST1 and TWIST2

immunohistochemistry on 2 cohorts:

cohort 1 (multi-punch TMA) +

promoter methylation. Cohort 2: TMA

from pre-operative biopsies

(prognostic effects).

Immunohistochemistry for both

markers and promoter methylation in

six cell lines. LCM in one

tumor-budding high and one

tumor-budding low case

Cohort 1: 185 Stage I–IV CRC,

Cohort 2: 112 Stage I–IV CRC

Yes [cohort 1:

Karamitopoulou, cohort

2: Zlobec (3)]

TWIST 1 and 2 expression restricted to stromal

cells. Inverse correlation between TWIST1 protein

expression and methylation (Cohort 1) suggests

hypermethylation as a mechanism of TWIST1

regulation. TWIST 1 and 2 protein expression

significantly correlated with low- and high-grade

budding phenotype. LCM of high-grade

tumor-budding case with positive TWIST1/2

stroma and no methylation, inverse pattern in

low-grade tumor-budding case. TWIST1 (Cohort 2)

associated with adverse tumor features and

independent prognostic factor.

Stromal cell

interaction

Karagiannis (81) Bone morphogenic protein

antagonists HTRA3, FST and GREM1,

markers assessed in tumors and

cancer-associated fibroblasts, WTS

2 cohorts: 1:30 patients with 10

each no, low and high-grade

budding. 2: 219 Stage II CRC

Yes (Ueno) HTRA3 staining in the epithelial tumor

component was differentially regulated between

areas with and without tumor-budding, correlation

between HETRA3 staining and the presence of

budding and with significantly increased

expression in tumor-budding cells themselves.

Epithelial HTRA3 expression-independent

adverse prognostic factor

WTS, whole tissue sections; LR, local recurrence; SAC, serrated adenocarcinomas; CAC, conventional adenocarcinomas; MMRd, mismatch repair deficient; MMRp, mismatch repair proficient; LCM, laser capture

microdissection.
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inactive complex with CDK2, accounting for the apparently para-
doxical co-upregulation of p16 and cyclin D1 (58). Indeed, tumor
buds have been demonstrated to show cytoplasmic expression of
p16 (19, 57). As a consequence, several studies have demonstrated
the hypo-proliferative nature of the invasive front and tumor buds
themselves using Ki-67 immunohistochemistry (30, 39, 45, 59).

As the hypo-proliferative nature of tumor buds is gaining recog-
nition, it may be speculated that in order to survive migration
through stroma, tumor buds must confer of essential survival
mechanisms. In fact, single epithelial cells detached from the extra-
cellular matrix are programed to undergo a certain form of cell
death termed anoikis (60). In addition to their hypo-proliferative
state, tumor buds have been demonstrated to be anti-apoptotic
by their relative lack of immunoreactivity for caspase 3 (59),
suggesting that tumor buds are able to resist anoikis.

EMT-INDUCING PATHWAYS INVOLVING RAS/RAF AND
RAS/MAPK SIGNALING
Cancer cells frequently exploit growth factor signaling from the
surrounding microenvironment (such as insulin growth factor,
hepatocyte growth factor, epidermal growth factor, or placental-
derived growth factor) to drive tumor progression (61–63). Well-
studied downstream pathways include PI3K-, NFκB-, Snail, and
RAS–RAF–ERK–ZEB1 (Figure 1). For instance, as Snail con-
trols ZEB1, a transcriptional repressor of E-cadherin (64); it is

FIGURE 1 | An example of tumor budding (single tumor cells and small
clusters of up to five tumor cells detached from the main tumor body).
These can be seen on H&E [(A), arrows] but are far more readily recognized
on the pancytokeratin immunostain of the corresponding tumor area [(B),
arrows].

not surprising that genes involved in growth factor signaling
induce EMT.

The tumor suppressor gene RKIP has been linked to EMT on
several levels, for one as inhibitor of the Ras–Raf–MEK–ERK sig-
naling cascade at the level of Raf (65). In addition, RKIP modulates
other signaling pathways including NFκB–Snail (46, 66). Several
studies have demonstrated differential expression of RKIP in zones
of colorectal cancer, with gradual loss of expression toward the
tumor front (33,67) and ability of RKIP expression to predict high-
grade budding. RKIP was only rarely detected in tumor buds and
in line with mechanistic EMT studies, loss of RKIP correlated with
E-Cadherin negativity and nuclear translocation of NFκB. How-
ever, the prognostic significance of RKIP appears to be restricted
to its expression in the tumor center, suggesting that other mecha-
nisms may become increasingly important in the development of
tumor-budding cells (67).

The neurotrophic tyrosine kinase receptor TrkB has been linked
to EMT via RAS/MAPK-dependent Twist–Snail signaling and has
been demonstrated to be a potent and specific suppressor of
anoikis (47), which is supported by its overexpression in tumor
buds (68). Additionally, KRAS-mutated colorectal cancers also
overexpress TrkB, in concordance with the known dependency
on MAPK signaling on TrkB-induced EMT.

CXCL12 (sdf-1)/CXCR4 PATHWAY
Chemokines, integral for cell migration and trafficking, are widely
expressed by cells of the lymphatic and hemopoietic systems. The
chemokine CXCL12 binds to its receptor CXCL4, activating subse-
quent intracellular pathways involved in chemotaxis, cell survival,
and gene transcription (69). As CXCR4 is expressed in cells in
multiple organs including lymph nodes, lungs, and liver, epithelial
tumor cells may take advantage of the principle of homing mech-
anisms to direct the metastasis of CXCL12-positive tumor cells to
CXCR4 positive organs (70). CXCL12 can also stimulate the for-
mation of capillary structures (48). CXCL12 expression in tumor
buds was found to be correlated with liver metastases and was an
independent prognostic marker (71).

MARKERS OF INTESTINAL DIFFERENTIATION
The homeobox transcription factor Cdx2 encodes a transcrip-
tion factor specific to intestinal differentiation, which is essen-
tial for development and homeostasis of gut epithelium (72).
Recent evidence also suggests that Cdx2 may play a substantial
role in Wnt signaling as a tumor suppressor gene and there-
fore inhibit EMT. For instance, Cdx2 has been found to bind
β-catenin, thus disrupting the β-catenin/TCF complex (73). Also,
Cdx2 may inhibit the transcriptional activity of β-catenin through
interaction with the protocadherin Mucdhl (74). Finally, Cdx2
enhances the function of E-cadherin by trafficking it to the cell
membrane, thus restoring cell adhesion (75). As dedifferentiated
cancer cells, it is not surprising that tumor buds lack expres-
sion of Cdx2 (76). However, the fact that most colorectal cancers
that diffusely express Cdx2 also do so in their metastases (as
the marker may be used diagnostically for cancers of unknown
primary as a marker of intestinal differentiation) supports the
notion of tumor redifferentiation and reversibility of EMT at
metastatic sites.
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Few studies have examined the expression of other markers of
epithelial differentiation in tumor buds. For instance, Harbaum
et al (30) demonstrated absence of the intestinal-type mucin Muc2
and overexpression of cytokeratin 7, a simple intermediate keratin
filament, at the invasive front and strikingly in tumor buds. This
finding is intriguing since expression of cytokeratin 7 is relatively
infrequent in primary colorectal carcinoma (77), and because
intermediate filaments are traditionally known to support cell–cell
or cell–matrix adhesions in epithelial cells. However, recent evi-
dence suggests that keratin filaments may contribute to a higher
degree of cellular plasticity than originally assumed (78) and it
may be postulated that surrounding biochemical and mechanical
stimulation in the tumor microenvironment could influence the
cytoskeletal protein composition.

STROMAL–EPITHELIAL INTERACTION IN THE TUMOR
MICROENVIRONMENT
It has also been postulated that signals derived from surround-
ing mesenchymal cells in the tumor microenvironment may
play a significant role in facilitating a pro-budding pheno-
type (50, 79). For instance, immunohistochemical expression of
TWIST1 and TWIST2, known activators of EMT, was signif-
icantly positively correlated with a tumor-budding phenotype
(both low-grade and high-grade budding), yet their expression
was virtually restricted to stromal cells in the tumor microen-
vironment. Moreover, in high-grade budding cancers an inverse
correlation between TWIST1 methylation and stromal protein
expression was observed, suggesting hypermethylation as a mech-
anism of TWIST1 regulation (79). TWIST1 has previously been
demonstrated to be expressed in neoplastic stromal cells. These

cells were shown to be neoplastic, demonstrating the same neo-
plastic aberrations as the tumor itself, indicating that EMT had
indeed taken place with cells having acquired a fully mesenchymal
phenotype (80).

The interplay between epithelial and stromal components has
also been underlined by studies examining bone morphogenetic
protein (BMP) antagonists (51, 81), hypothesizing that CRC cells
in the tumor microenvironment can only flourish in a milieu
devoid of BMP signaling, this was characterized immunohisto-
chemically by a shift in HTRA3 expression patterns (decreased
stromal staining and increased epithelial staining).

CONCLUSION
Tumor budding is thought to represent the morphological corre-
late of EMT in colorectal cancers and has been strongly linked to
adverse clinicopathological features and poor overall and disease-
free patient survival. These consistent associations indicate that
tumor budding has a strong value as a prognostic indicator, and it
has been proposed that budding should be an integrated category
in pathology reports (82).

In an attempt to contribute to our understanding of tumor
buds, previous studies have mainly immunohistochemistry to dis-
criminate properties unique to tumor-budding cells. The main
reason for this is that immunohistochemistry enables the actual
identification of tumor buds for evaluation. To our knowledge,
there is currently no method of extracting tumor buds from fresh
tumor tissue, presenting huge hurdles for molecular studies specif-
ically geared at tumor buds. Therefore, our understanding of the
biology of tumor buds is essentially restricted to protein express-
sion profiles (as visualized in Figure 2), and a few studies, which
have used mRNA in situ hybridization. Immunohistochemistry as

FIGURE 2 | Simplified illustration of molecular pathways involved in the formation of tumor budding. Markers demonstrated to be overexpressed
(yellow) and underexpressed (blue) in tumor buds by immunohistochemistry. Str, stromal cell, (c), cytoplasmic, (m) membranous, (n) nuclear.
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a semi-quantitative method may be especially prone to subjectiv-
ity, and staining intensity greatly depends on laboratory methods
(83). Such issues may contribute to difficulties in reproducibil-
ity and the consistency of results. Not all proteins differentially
expressed in tumor buds appear to have significant prognostic rel-
evance, which may be at least in part explained by the timing of
certain events in the process of carcinogenesis and the accumu-
lation of different simultaneous molecular occurrences, of which
our knowledge is limited.

Therefore, although the molecular background of colorectal
cancers appears to play an important role in budding, much
remains to be investigated in terms of genetic profiles of tumor
buds and how various molecular pathways are taken advan-
tage of by these cells to maintain their malignant phenotype
and drive tumor progression. Novel areas of interest include
the interaction of tumor buds with cancer-associated fibrob-
lasts and inflammatory cells in the tumor microenvironment
(84) and the evasion of anoikis. Taken together, and based on
growing evidence that tumor buds may be targetable structures
(15), our understanding of these mechanisms will be crucial for
the development of future therapies aimed at the destruction of
tumor buds.
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