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The early mouse embryonic lung, with its robust and apparently reproducible branching
pattern, has always fascinated developmental biologists. They have extensively used this
embryonic organ to decipher the role of mammalian orthologs of Drosophila genes in
controlling the process of branching morphogenesis. During the early pseudoglandular
stage, the embryonic lung is formed mostly of tubes that keep on branching. As
the branching takes place, progenitor cells located in niches are also amplified and
progressively differentiate along the proximo-distal and dorso-ventral axes of the lung.
Such elaborate processes require coordinated interactions between signaling molecules
arising from and acting on four functional domains: the epithelium, the endothelium, the
mesenchyme, and the mesothelium. These interactions, quite well characterized in a
relatively simple lung tubular structure remain elusive in the successive developmental
and postnatal phases of lung development. In particular, a better understanding of the
process underlying the formation of secondary septa, key structural units characteristic
of the alveologenesis phase, is still missing. This structure is critical for the formation
of a mature lung as it allows the subdivision of saccules in the early neonatal lung
into alveoli, thereby considerably expanding the respiratory surface. Interruption of
alveologenesis in preterm neonates underlies the pathogenesis of chronic neonatal
lung disease known as bronchopulmonary dysplasia. De novo formation of secondary
septae appears also to be the limiting factor for lung regeneration in human patients
with emphysema. In this review, we will therefore focus on what is known in terms of
interactions between the different lung compartments and discuss the current under-
standing of mesenchymal cell lineage formation in the lung, focusing on secondary septae
formation.

Keywords: lung development, alveologenesis, bronchopulmonary dysplasia, epithelial–mesenchymal interaction,
endothelial–mesenchymal interaction, secondary septae formation
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Bronchopulmonary Dysplasia is
Characterized by Impaired Alveologenesis

Bronchopulmonary dysplasia (BPD) is a chronic lung disease of
prematurely born infants and remains a leading cause ofmorbidity
and mortality. Currently, there is no curative therapy available.
Based on the severity-based definition of BPD (inclusion of infants
with mild BPD) 68% of premature infants born with a gestational
age (GA) ≤28weeks develop BPD (1–3). The risk of developing
BPD correlates inversely with the GA and birth weight (BW) (4).
Since premature infants (24–28weeks of gestation) are bornwith a
lung, which is in the canalicular or saccular stages of development,
the lung structure (characterized by thickened airspace walls and
surfactant deficiency) is therefore not adequate to provide suffi-
cient ventilation and gas exchange. Thus, mechanical ventilation
and high-oxygen concentration are often necessary at birth. Baro-
trauma induced by mechanical ventilation as well as oxygen toxi-
city and inflammation are major contributing factors responsible
for the pulmonary damages in the morphological and functional
immature lung. In addition, some studies have suggested a strong
genetic component in BPD (5). For example, using genome-wide
association study, it has been shown that polymorphisms (SNPs)
inMMP16 and SPOCK2might be associated with BPD (6). Due to
remarkable advances in the management and therapy (e.g., gentle
ventilation, restricted oxygen supplementation, antenatal steroids,
and exogenous surfactant use) survival rate for premature infants
has increased over the last decades. These advances in treatment
have changed the histological characteristics of what is now called
the old BPD since it was first described by Northway in 1967. The
“old” BPD was mostly an airway disease characterized by intersti-
tial fibrosis and squamous metaplasia of airways. The prominent
histological findings in the lungs of “new” BPD are simplification
of alveolar formation (fewer and larger alveoli) and dysmorphic
pulmonary microvasculature (7, 8). Pulmonary hypertension is
also a common complication in infants with BPD, resulting in
high mortality (9). According to these findings, the “new” BPD
is considered as a consequence of the premature lung interrupted
in its development by postnatal lung injury leading to the growth
arrest of the lung in the canalicular/saccular phase of normal
lung development. BPD, as a chronic lung disease, leads to long-
term morbidity (e.g., pulmonary infection, neurodevelopmental
impairment) affecting quality of life during childhood and in some
severely affected patients even into adulthood. Treatment for BPD
represents a considerable health care burden (10–12).

The mechanisms responsible for alveolar simplification in BPD
remain understudied and poorly understood. However, autopsy
samples from premature infants from pre- and post-surfactant
era, who died from BPD consistently showed abnormalities in
the mesenchyme (interstitial fibrosis and dysmorphic microvas-
culature). In the new BPD, there is clear evidence for decreased
number of secondary septae, a derivative of the lung meso-
derm. Furthermore, animal models mimicking the premature
lung and the risk factors for BPD provide more evidence
that indeed the mesenchyme plays a pivotal role in late lung
development/alveologenesis and therefore in BPD. This review
will summarize the current understanding of the impaired
mesenchymal compartment of the BPD lungs, with a focus on

mesenchymal–endothelial and mesenchymal–epithelial crosstalk
known to contribute to disease pathogenesis.

Normal Lung Development in Human and
Mouse

In human and mouse, the lung arises from two germ layers: the
gut endoderm gives rise to the lung epithelium and the splanchnic
mesoderm is the origin of the lungmesenchyme. The human lung
consists of three lobes on the right and two lobes on the left side;
in mice four lobes form on the right (cranial, medial, caudal, and
accessory lobe) and one on the left. Compared to the 12 airway
generations observed in mice, human lungs comprise 23 airway
generations.

In humans, lung development arises from the laryngo-tracheal
groove and starts at week 4 of gestation as an outgrowth from
the ventral wall of the caudal primitive foregut. During the fur-
ther growth of the lung, the prospective trachea separates from
the foregut by the formation of the so-called tracheo-esophageal
septum. At the most distal part of the tracheal tube, two buds
that will form the right and left primary bronchial buds appear.
These primary buds are further ramified to form three secondary
bronchial buds on the right and two secondary bronchial buds
on the left side. These buds are the origin of the five lobes in the
mature lung (13).

In mice, at embryonic day 8 (E8), signaling molecules and
growth factors (e.g., Fgf1, Fgf2) emanate from the cardiac meso-
derm and specify the prospective lung field in the primitive
foregut endoderm, which is positive for the transcription factor
Nkx2.1 (or Ttf1). These pre-lung epithelial progenitor cells rep-
resent the earliest and most likely the most pluripotent epithe-
lial cells for the lung. At E9.5, the ventral foregut endoderm
evaginates and elongates caudally dividing into two buds that
form the prospective trachea and the first generation of bronchi
(main bronchi). The process of lung development (human and
mouse) has been divided into four distinct histological phases:
pseudoglandular, canalicular, saccular, and alveolar (Figure 1).

During the pseudoglandular stage (human: week 4–17; mouse:
E9.5–E16.5), the process of branching morphogenesis generates
the basic tree-like structure of the lung including the conduct-
ing airways and the numerous terminal bronchioles surrounded
by thick mesenchyme. Concurrently, epithelial cell progenitors
undergo differentiation to give rise to basal, neuroendocrine,
ciliated, and secretory cells. The mesodermal lung compartment
serves as progenitors for the smooth muscle, lymphatic, endothe-
lial, nerve, and chondrocytic cells.

In the subsequent canalicular stage (human: week 17–26;
mouse: E16.5–E17.5), the lung undergoes further subdivision
of the respiratory bronchioles accompanied by thinning of the
surrounding mesenchyme and the massive formation of capil-
laries. For the first time during development, a primitive res-
piratory epithelium competent of gas exchange is formed by
differentiation of distal lung epithelial progenitors. Recently, it
has been shown that type I and type II alveolar epithelial cells
(AEC I and II) emerge from a common alveolar bipotential
progenitor (14). In mice, interstitial fibroblasts containing cyto-
plasmic lipid droplets (so called lipofibroblast, LIF) emerge in
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FIGURE 1 | Timeline and stages of lung development in mice and
humans. Lung development starts with the specification of the lung
domain in the foregut endoderm followed by the formation of primary
lung buds. These buds will later give rise to the respiratory tree via the
process of branching morphogenesis. The latter is a characteristic of the
pseudoglandular stage of lung development. Most epithelial and
mesenchymal cell types start to form during the pseudoglandular stage.

The canalicular stage is characterized by blood capillary formation and
the appearance of AECI/II. During the saccular stage, primitive alveoli
(sac-like structures) start to form and this is accompanied by surfactant
production and the expansion of capillary and lymphatic networks. The
alveolar stage of lung developments starts in utero in humans whereas in
mice, it starts postnatally. Wk, week; E, embryonic; PN, postnatal; NE,
neuroendocrine.

the mesenchyme. Additionally, this is the earliest time point of
pregnancy (23–24weeks of gestation) where a preterm infant can
be born with a chance to survive. Those who died from BPD
showed pathologic characteristics of the lung (interstitial fibrosis
and dysmorphic microvasculature) similar to the morphology of
the immature lung at this developmental stage thus reinforcing the
concept that BPD results from interruption of normal lung devel-
opment by deleterious environmental events. The introduction
of antenatal steroids treatment and exogenous surfactant supple-
mentation drastically increased survival of premature infants born
at this stage (15).

The saccular stage of lung development occurs approximately
between 26 and 36weeks of gestation (mouse: E17.5–PN5). This
stage is characterized by the formation of alveolar sacs, surfactant

production, and thinning of the mesenchyme to facilitate gas
exchange. Kresch demonstrated that the thinning of the mes-
enchyme results from apoptosis of mesenchymal cells (16). Fur-
thermore, the capillary and lymphatic networks also expand in the
saccular stage of lung development.

The last stage of lung development is termed alveolar stage
(human: ~36weeks to 8 years; mouse: PN5–PN30). During this
stage, the alveolar surface area increases massively at the expense
of the mesenchyme through subdividing the alveolar sacs (also
called primitive alveoli) into mature alveoli by a process termed
alveolarization (or alveologenesis) (Figure 2). This process starts
with the deposition of elastin in primary septae (wall of alveolar
sacs) and subsequently secondary septae emerge at the place of
elastin and elongate toward the alveolar sac airspace to subdivide
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FIGURE 2 | Schematic representation of the secondary septum during
alveologenesis. Most of the alveolar surface is occupied by AECI (gas
exchange) whereas a minor surface is occupied by AECII (surfactant
production). The alveolar wall consists of the blood capillary, LIF, resident
fibroblast progenitor, alveolar MYF, and ECM (mostly elastin). It has been
proposed that alveolar MYF can originate from LIF (right panel) but this
concept needs further validation.

it into the smallest respiratory units of the lung – the mature alve-
oli. Importantly, concomitant with this process, primary septae,
still containing a double layer of capillaries, become thinner and
a single capillary network emerges allowing more efficient gas
exchange (microvascular maturation). The bulk of alveolarization
takes place during the first 6months after birth in humans (mouse:
PN5–PN15) (17). The alveolar myofibroblast (MYF), localized in
themesenchyme at the tip of the emerging secondary septae, is the
cell responsible for secondary septae formation. A more detailed
description of this mesenchymal cell lineage will be provided in
the following sections.

In summary, the lung is a complex ramified organ that devel-
ops through continuous and elaborate interaction among the
epithelium, mesenchyme, mesothelium, and endothelium. Dur-
ing this process, an intricate signaling network controls the
amplification, proliferation, migration, and differentiation of
diverse progenitor cells to populate these different compart-
ments. Importantly, most of the epithelial and mesenchymal cell
types in the lung are formed during the late pseudoglandu-
lar stage (E13.5–E16.6). This means that any deleterious factors
present prenatally (such as inflammations due to chorioam-
nionitis) or postnatally (such as barotrauma injury and subse-
quent inflammation due to oxygen or mechanical ventilation),
interfering with normal lung development at that time, could
lead to impaired pulmonary function postnatally. Since preterm
infants who die from BPD commonly display abnormal mes-
enchyme, a better understanding of aberrant signaling path-
ways in the lung mesenchyme of BPD lungs is important for
improving the existing, and may facilitate the development of
new preventive and curative therapies. In the next section, the
current knowledge, mostly obtained from animal models of BPD,
about abnormalities occurring in the lung mesenchyme will be
reviewed.

The Embryonic Lung Mesenchyme

During the pseudoglandular stage of lung development (~E13.5),
the distal lung bud is composed of three morphologically

distinguishable layers: the mesothelium (outer layer), the mes-
enchyme (middle layer), and the epithelium (inner layer). The
mesenchyme can be further divided into two domains, the subme-
sothelial mesenchyme (SMM) and the subepithelial mesenchyme
(SEM). Whereas mesenchymal cells constituting the SEM display
high density and circumferential orientation, those of the SMM
display low density and organization. Lineage-tracing experi-
ments have identifiedmarkers for somemesenchymal progenitors
such as Wnt2/Gli1/Isl1 (originating from the heart and invading
the lung), Ret, Pdgfrα, Vegfr2, Prox1, and Fgf10 (18–20). Progen-
itors in these two compartments give rise to various cell types
such as airway smooth muscle cells (ASMCs), vascular smooth
muscle cells (VSMCs), resident mesenchymal stem cells (MSCs),
LIFs, endothelial cells, chondrocytes, nerve cells, alveolar MYFs,
lymphatic cells, and others. Mesenchymal progenitor cells are
believed to play important roles not only in development but also
in homeostasis and regeneration after injury.

Epithelial–Mesenchymal Crosstalk in Normal
Lung Development and BPD
During development, the lung is formed through an elabo-
rated epithelial–mesenchymal crosstalk that drives lung specifica-
tion, budding, and branching. Signaling molecules like fibroblast
growth factors (Fgf), Wnt (wingless and int), Sonic hedgehog
(Shh), and bone morphogenetic proteins (Bmp) are key ligands
initiating the pulmonary cell fate and specifying the early lung
domain at the ventral foregut endoderm (21). So far, themost con-
vincing evidence for epithelial–mesenchymal interactions during
lung development came from recombination studies where dis-
tal lung mesenchyme, grafted on the tracheal epithelium led to
ectopic budding accompanied by expression of surfactant protein
C as a distal epithelial marker (22–24).

The mammalian Fgf family consists of 22 members subdi-
vided in 7 subfamilies, based on phylogenetic as well as gene loci
analyses (25). Fgfs acts in a paracrine, endocrine, or intracrine
fashion and have diverse biological activities during embryonic
organogenesis. These growth factors act via seven main receptors
(Fgfrs 1b, 1c, 2b, 2c, 3b, 3c, and 4), exhibiting different ligand-
binding specificity. The Fgf receptors are encoded by four Fgfr
genes (Fgfr1–Fgfr4), which undergo alternative splicing to pro-
duce the different isoforms. Each receptor comprises an extra-
cellular ligand-binding domain with three immunoglobulin-like
loops (D I, D II, D III), a transmembrane domain and an intracel-
lular tyrosine kinase domain. Human diseases involving gain or
loss of function mutations have been described. For example, loss
of function of FGF3 causes deafness, heterozygous loss of func-
tion of FGF10 results in lacrimo-auriculo-dento-digital syndrome
(LADD syndrome), FGF10 haploinsufficiency is also associated
with chronic obstructive pulmonary disease and FGF23 gain of
function leads to autosomal dominant hypophosphataemic rickets
(26–29). During early (E12.5) embryonic mouse lung develop-
ment, Fgf9 and Fgf10 have been shown to play an important
role in branching morphogenesis and the associated differenti-
ation of the epithelium and mesenchyme. Fgf9 is expressed in
the mesothelium and the epithelium and acts through Fgfr2c-
and Fgfr1c-expressing cells in the mesenchyme to maintain Fgf10
expression as well as mesenchymal progenitors proliferative and
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undifferentiated (30). It also can signal directly to the epithelium
to promote epithelial branching by induction of Dkk1 expression
and inhibition of Wnt signaling (31). Fgf10 is a diffusible key
molecule orchestrating branching morphogenesis during early
lung development in mice (32, 33) but the exact mechanism of
action remains unknown.During the early pseudoglandular stage,
Fgf10 is secreted by cells located adjacent to the mesothelium
in the distal mesenchyme and signals in a paracrine manner
mainly through fibroblast growth factor receptor 2-IIIb (Fgfr2b)
expressed on epithelial cells. Fgf10 has a high affinity for heparan
sulfate and is therefore unlikely to diffuse over a long distance.
Instead, Fgf10 promotes outgrowth of the distal epithelium via a
chemotactic mechanism. Several studies using transgenic mouse
lines that display abnormal Fgf10/Fgfr2b signaling confirmed the
importance of this pathway (Table 1). Fgf10 and Fgfr2b knockout
pups display similar phenotypes. Themutant pups die shortly after
birth due to lung agenesis and multiple organ agenesis/defects
(salivary gland, limb, inner ear, teeth, skin, pancreas, kidney,
thyroid, pituitary gland, mammary gland) (34–38).

In order to identify epithelial-specific gene expressions medi-
ated by recombinant human FGF10 during bud morphogene-
sis, Lu and colleagues (39) used mesenchyme-free epithelium in
culture. By using microarray analysis, they identified a panel of
transcriptional Fgf10 targets, which are associated with cell rear-
rangement, migration, inflammatory processes, lipid metabolism,
cell cycle, and tumor invasion. Interestingly, the authors did not
observe a remarkable induction of genes responsible for prolif-
eration. Moreover, Fgf10 is proposed to control the angle of the
mitotic spindle in distal epithelial cells during development. Thus,
Tang et al. argued that Fgf10 signals via a Ras-regulated Erk1/2

signaling pathway to shape the lung tube (40). Fgf10 is also critical
for the amplification of distal epithelial cell progenitors and for the
formation of multiple mesenchymal lineages during lung devel-
opment. Hypomorphic Fgf10lacZ/− pups expressing ~20% Fgf10
compared to wild type (WT) died within 24–48 h after birth due
to lung defects, which included decreased branching, thickened
primary septae, and vascular abnormalities with intrapulmonary
hemorrhages. At the cellular level, Fgf10 deficiency led to decrease
in Nkx2.1 and Sftpb-expressing cells, suggesting that adequate
Fgf10 expression level is critical for the amplification of epithelial
progenitors. Apart from the epithelium, constitutive decrease in
Fgf10 expression also affects mesenchymal cell lineages as Pecam
and αSma-positive cells are also diminished (41). Interestingly,
recent experiments conducted in our lab to investigate the impact
of Fgf10 levels on lung function demonstrate that even a 50%
decrease in Fgf10 expression (Fgf10 heterozygous pups) leads to
changes in the expression of genes relevant for lung development
such as Epcam, Sftpc, Fgfr2b, Tgf -β, and Collagen. Addition-
ally, Fgf10 heterozygous neonatal mice survive and do not dis-
play any obvious phenotypic differences compared to WT mice.
However, when exposed to hyperoxia between PN0 and PN8 to
trigger lung injury and mimic some of the clinical manifesta-
tions of BPD (impaired alveologenesis and inflammation), Fgf10-
deficient pups display drastically increased mortality compared
to WT controls. Further analysis indicates that under physio-
logical conditions, Fgf10-deficient mice already show structural
abnormalities during embryonic lung development supporting
that Fgf10-deficient pups carry congenital defects. These findings
suggest that Fgf10-deficient lung epithelium ismore susceptible to
oxygen toxicity and does not undergo normal repair after injury

TABLE 1 | Overview of proteins that are known to be involved in alveologenesis.

Protein
name

Origin Localization/
targets

Function in
alveologenesis

Alterations in BPD Alterations in animal
model of BPD

Effect of genetic
modulation in the
animal model

Elastin Alveolar myofibroblast Tip of growing
secondary septae

Secondary septae
formation (tips)

Increased and
disorganized in
saccular walls (66, 67)

Decreased in
hyperoxia (133)

KO: inhibited
alveolarization (87)

Pdgfa Epithelial cells,
macrophages

Pdgfrα-expressing
cells (ASMC, alv.
MYF, LIF)

Chemotactic attractant
for fibroblasts (134)

Not known Delayed in hyperoxia
(135)

KO: inhibited
alveolarization (93, 94)

Fgf10 Mesenchymal cells
located in SMM

Distal epithelial cells
expressing Fgfr2b

Under investigation Decreased (75) Decreased in
LPS-model (76)

KO: lung agenesis

Partial deficiency:
delayed/disturbed lung
branching (41)

Tgf-β/
Tgf-β1

Epithelial cells Epithelial and
mesenchymal cells

Modulation of cell
survival, differentiation
and ECM (Elastin)
deposition (136, 137)

Increased in tracheal
aspirate (138)

Increased in
hyperoxia (139, 140)

Overexpression: inhibition
of branching
morphogenesis and
alveolarization (141)
Inhibition: attenuated
hyperoxia-induced
hypoalveolarization (140)

Vegf Epithelial (during
embryonic
development also in
mesenchymal cells)

Endothelial cells
(Vegfr1/2)

Stimulation of
endothelial cells for
angio-/vasculogenesis
(essential for
alveolarization)

Decreased (8, 127) Decreased in
hyperoxia (125); (126)

Inhibition:
hypoalveolarization
(142, 143)
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(Chao and Bellusci, in preparation). Additionally, recent studies
suggest that Fgf10 may control basal cell density in the tracheal
epithelium (42–45). This is not surprising as it has already been
previously shown, by our group and others, that Fgf10 is part of
the stem cell niche in the lung (20, 46, 47).

Wnt (Wnt2, Wnt2b) ligands are expressed in the mesenchyme
and are important for lung domain specification of the foregut
endoderm from E9.0 to E10.5. Wnt signaling is also essential for
the proximo-distal patterning of the epitheliumduring embryonic
lung development. Genetic deletion ofWnt2/2b or β-catenin leads
to lung agenesis due to loss ofNkx2.1 (48, 49).Wnt2 null mice dis-
play lung hypoplasia and abnormal development of ASMCs (50).
Furthermore, Mucenski and colleagues demonstrated, by using
Spc-rtTA;tet(O)Cre double transgenic mice, that loss of function
of β-catenin in the distal lung epithelium leads to the inhibition
of distal airway formation (51). The authors showed an opposite
phenotype by inducing gain of function of β-catenin signaling
(52). The absence ofWnt7b results in a phenotype similar toWnt2
null mice (53) but a combination ofWnt7b andWnt2 loss of func-
tion leads to a more severe phenotype with decreased branching
and abnormal distal endoderm patterning (54). The constitutive
deletion of Wnt5a – a non-canonical Wnt ligand expressed in the
mesenchyme and the epithelium – leads to increased proliferation
of the mesenchyme and the distal epithelium as well as disrupted
lung maturation (55). β-catenin inactivation in the mesenchyme
(Dermo1-Cre line) leads to abnormal mesenchyme development
with disrupted amplification of ASMC progenitors and defects
in angioblast differentiation (56). Kumar and colleagues demon-
strated by using a clonal cell labeling approach that ASMC pro-
genitors are located exclusively at the tip mesenchyme and that
mesenchymalWnt signaling is able to prime the stalkmesenchyme
to form an ASMC progenitor pool at the tip (57).

Bmp4 is dynamically expressed in the endoderm and in the
mesenchyme during early embryonic lung development (E11.5).
It is also expressed at the distal epithelial buds and has been shown
to be an inhibitor of Fgf10-induced chemotaxis in the epithelium.
Bmp4 controls intraepithelial crosstalk to form ASMCs. It has
been shown that Fgf10 is able to upregulate Bmp4 mRNA expres-
sion. In vitro experiments demonstrated that exogenous recom-
binant human BMP4 inhibits Fgf10-induced bud outgrowth,
providing evidence that Bmp4 is acting downstream of Fgf10 to
inhibit its signaling cascade (58–61).

Other Fgf10 inhibitors are Sonic hedgehog (Shh) and Sprouty
homolog 2 (Spry2), both expressed in the epithelium of the out-
growing buds. Shh is a secreted growth factor that acts through
its mesenchymal receptor Patched (Ptc) to induce mesenchy-
mal cell proliferation and differentiation. In E11.5 lung explants,
exogenous recombinant SHH is able to induce expression of mes-
enchymal markers (Noggin, Acta2, Myosin) (19, 62). Spry2 is an
intracellular inhibitor of receptor tyrosine kinase signaling (63,
64); (32). Using in vitro approaches, it has been shown that Spry2
reduction leads to increased epithelial branching and vice versa.

Apart from its important role in development, themesenchyme
is crucial in disease pathogenesis. Indeed, it has been reproducibly
shown that the lung mesenchyme in preterm infants dying from
BPD includes interstitial fibrosis and thickening with increased
total collagen content (65–67). Similar findings were obtained

in diverse animal models (rat, mice, baboon) recapitulating the
conditions of preterm infants after birth (mechanical ventila-
tion, oxygen supplementation, exogenous surfactant) leading to a
human BPD-like phenotype (68–72). These pathological changes
in the lung mesenchyme in BPD strengthen the concept that
alveolarization depends on an intact andnormally developedmes-
enchyme. Several studies using animal models of BPD to identify
molecules located in the altered lung mesenchyme contributed to
our understanding of disease pathogenesis. Some of them will be
reviewed in the following section.

One of the major causes of BPD is believed to be inflam-
mation. Inflammation is caused prenatally by chorioamnioni-
tis and postnatally by mechanical stretch (ventilation), oxygen
toxicity, as well as infection. Emerging evidence gained from
in vitro and in vivo studies support this hypothesis (73–77). For
example, it has been shown that lipopolysaccharides (LPS from
Escherichia coli) inhibit branching morphogenesis in vitro (73).
Blackwell et al. published similar results using activated resi-
dent macrophages to inhibit epithelial branching. The proposed
mechanism is that LPS activates nuclear factor kappa beta (NF-
kappa B), which is then accompanied by increased expression
of interleukin-1beta (IL-1β) and tumor necrosis factor-a (TNF-a)
in resident macrophages (74). This branching inhibitory effect
caused by macrophage-mediated inflammation has been con-
firmed by a macrophage-depletion study in the lung. Benjamin
et al. explained this inhibitory effect by linking Fgf10 signal-
ing with inflammatory signals. Using in vitro experiments, they
demonstrated that NF-kappa B, IL-1β, and TNF-a are capable of
reducing Fgf10 expression in LPS-treated primary mesenchymal
cells. The mechanism involved activation of toll-like receptors 2
and 4 (TLR2/4). The authors showed that FGF10-positive cells
were decreased in lung samples of premature infants who died
from BPD (75).

Tgf-β1 has been demonstrated to induce epithe-
lial–mesenchymal transition (EMT) of AEC to MYF-like
cells leading to extracellular matrix (ECM) deposition and
thereby contributing to fibrosis and destruction of alveolar
structure (78–80) (see also Table 1). Endogenous nitric oxide is
proposed to attenuate EMT in AECs in an in vitro approach using
primary culture of AEC II (81).

As previously mentioned, the alveologenesis phase leads to a
dramatic increase in alveolar surface, which is essential for gas
exchange. The current consensus is that this process is inter-
rupted by exogenous deleterious factors leading to simplification
of alveoli in BPD. Many studies confirmed that the alveolar MYF,
located in the mesenchyme, is the unique cell type responsible for
secondary septae formation. During alveologenesis, the alveolar
myofibroblast is characterized by expression of alpha-smooth-
muscle-actin (αSMA or Acta2) compared to other mesenchymal
fibroblast population. By deposition of elastin and collagen, the
alveolar myofibroblast initiates the process of secondary septa-
tion (82, 83). Both elastin and alveolar myofibroblast have been
shown to be critical for secondary septae formation (83, 84).
Expression of tropoelastin starts in the pseudoglandular stage
of lung development and reaches the highest level during the
alveolar stage (85, 86). The strongest evidence so far showing
the importance of elastin for secondary septae formation came
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from the Elastin-knock-out mice that reveal a complete failure
of alveologenesis leading to an emphysematous-like phenotype
(87, 88) (Table 1). Interestingly, both hyperoxia and mechanical
ventilation lead to increased expression of Elastin (89–91). Fgfr3
and Fgfr4 have been shown to direct alveologenesis in the murine
lung by controlling elastogenesis (92). By using mice homozy-
gous for Pdgfa-null allele, Boström and colleagues demonstrated
failed alveolar formation due to loss of alveolar myofibroblasts
and consequent loss of Elastin fibers (93, 94). Likewise, blocking
antibody against Pdgfrα in newborn mice (PN1–PN7) led to
aberrant Elastin fiber deposition and impaired alveolar septation,
resulting in long-term failure in alveologenesis that lasted into
adulthood. Pdgfa is expressed in the epithelium and targets its
receptor (Pdgfrα) on mesenchymal cells such as alveolar myofi-
broblast and LIF (Table 1). Given the many mesenchymal targets
of Pdgfa, it is not clear whether the impact of Pdgfa or Pdgfrα
deletion on myofibroblast formation is via a direct effect of Pdgfa
on alveolar myofibroblasts (and or alveolar myofibroblast progen-
itors) or indirectly via Pdgfa action on other targets (ASMCs and
LIF). Gain and loss of function for Pdgfa/Pdgfrα signaling using
cell autonomous-based approaches in specific lineages should be
carried out in the future to sort out these issues.

Interestingly, increased levels of Fgf signaling in the mes-
enchyme also leads to arrested development of terminal airways
accompanied by reduced Elastin deposition (95). The authors
achieved this condition by taking advantage of Fgfr2c+/∆ mice
that develop an autocrine Fgf10–Fgfr2b signaling loop in the
mesenchyme due to a splicing switch, resulting in the ectopic
expression of Fgfr2b instead of Fgfr2c. The proposed mechanism
of action is that mesenchymal Fgf signaling suppresses the dif-
ferentiation of alveolar myofibroblast progenitors. Furthermore,
the blockade of Fgfr2b ligands in the lung from E14.5 to E18.5 by
overexpression of a soluble dominant negative receptor of Fgfr2b
(Sftpc-rtTA/+;tetOsolFgfr2b/+) blocking all Fgfr2b ligands also
leads to arrest in secondary septae formation and alveolar simplifi-
cation (96) suggesting that Fgfr2b ligands, during this time period,
are also important for the formation of alveolar myofibrob-
lasts. Subsequent treatment with retinoic acid (RA, biologically
active derivative of vitamin A) induced re-alveolarization and
was accompanied by increasedPdgfra-positive cells and decreased
αSma/Acta2-positive cells. Concurrent induction of the dominant
negative Fgfr2b in these experimental conditions is able to prevent
the RA-mediated alveolar regeneration. These data suggest that
re-alveolarization is dependent on Fgfr2b ligands. Furthermore,
the authors proposed a conceptual model that alveolar myofi-
broblasts (αSma/Acta2-positive) arise from Pdgfra-positive LIF.
Specific lineage-tracing studies targeting subsets of lung fibrob-
lasts (e.g., Adrp for LIF) are needed to validate this model. Chen
and colleagues also demonstrated that Fgfr2b ligands are neces-
sary for alveolar myofibroblast formation during compensatory
lung growth after pneumonectomy (97). However, the blockade
of Fgfr2b ligands by soluble Fgfr2b (decoy receptor) postnatally
during alveolarization does not impair alveologenesis in mice.
Recently, it has been shown that reduced Pdgfra expression is a
primary feature of human BPD. The authors showed decreased
mRNA and protein expression of PDGFR-α and PDGFR-β in
MSCs isolated from tracheal aspirates of premature neonates with

BPD. Similarly, lungs of infants dying from BPD display less
PDGFRα-positive cells in the alveolar septae. These findings were
confirmed using a BPD mouse model exposed to hyperoxia (75%
oxygen) for 14 days (98).

The LIF remains a poorly characterized lipid-containing inter-
stitial cell located in the mesenchyme in close proximity to AEC
II. LIFs, which accumulate lipid vacuoles (83, 99), are abundant
in the early postnatal lung and regress significantly in number
after alveolar septation. The presence of LIF in rodent lungs has
been demonstrated extensively. However, whether LIF reside in
adult human lung remains controversial (100, 101). Because of
their close localization to AEC II, LIF have been proposed to
interact with AEC II. Indeed, it has been shown convincingly
that LIF are involved in the trafficking of lipids to the AEC II
for surfactant production (102, 103). Apart from triglycerides, LIF
also secrete leptin and retinoic acid, both important for surfactant
production and alveolar septation (104, 105). On the other hand,
AECII secrete parathyroid hormone-related protein (Pthrp) to
signal through Pthrp receptor expressed on LIF to induce expres-
sion of adipose differentiation-related protein (Adrp) via per-
oxisome proliferator-activated receptor gamma (Pparg) pathway
(Figure 3). The current consensus is that this signaling pathway is
essential for the maintenance of the LIF phenotype as well as for
regulation of surfactant production (104, 106–108). By perform-
ing co-culture experiments it has been proposed recently that LIF
constitute a niche for AECII cells postnatally. Co-culture of LIF
with AECII cells allows the formation of alveolospheres (109).

The contribution of LIF to lung regeneration and structural
maintenance in later phases of life is currently unknown. Several
lung injury models including cigarette-smoke exposure induce
the transdifferentiation of LIF to αSma/Acta2+ MYF in vitro.
These αSma/Acta2+ MYF are highly proliferative and express
high levels of collagen (110). For this reason, it has been proposed
that LIF are progenitors for alveolar MYF (Figure 2). However,
an alternative and more plausible possibility is that LIF give
rise to the activated MYF. Activated MYF, unlike the alveolar
MYF, is involved in pathological situations and is responsible
for fibrosis. Supporting this possibility, we have recently shown
that during alveologenesis, Fgf10-positive cells give rise to LIF

FIGURE 3 | Interaction between type II alveolar epithelial cells (AEC II)
and lipofibroblasts (LIF) for surfactant production. The Pthrp (parathyroid
hormone-related protein)/Pparg (peroxisome proliferator-activated receptor
gamma) axis is important for LIF formation and maintenance. LIF secrete
triglycerides and leptin that are essential for surfactant production.
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rather than alveolar MYF and during adult life, a subpopulation
of Fgf10-expressing cells represents a pool of resident MSCs
(Cd45− Cd31− Sca-1+) (20). In addition, the LIF-to-“activated
MYF” transdifferentiation would translate indeed into loss of
pulmonary integrity by smoke in vivo. Such transdifferentiation
can be prevented and reversed in vitro using Pparg agonists such
as rosiglitazone (111). However, it remains unclear whether such
transdifferentiation occurs in vivo. Of note, exposure of premature
neonates to hyperoxia induces arrest of alveolar septation and
thickened primary septae due to MYF hyperplasia and excessive
ECM production. Therefore, LIFs are unlikely progenitors for
alveolarMYF. In the future, these results will have to be confirmed
by lineage-tracing experiments in the context of injury usingmore
specific knock-in lines to target the LIF and determine their fate.

Endothelial–Mesenchymal Crosstalk in Normal
Lung Development and BPD
In parallel to branching morphogenesis during early embry-
onic lung development the lung vasculature begins to form in
the mesenchyme at around E10.0 (112). This process involves
angiogenesis and vasculogenesis. Angiogenesis occurs when pre-
existing endothelial cells sprout to formcapillaries. In comparison,
vasculogenesis is characterized by migration and differentiation
of endothelial progenitor cells (or hemangioblasts) in the distal
mesenchyme to form new blood vessels. DeMello and colleagues
investigated the early fetal development of lung vasculature by
employing light and transmission electron microscopy as well as
vascular casts and scanning electron microscopy. They demon-
strated three features of the lung vasculature occurring between
E9.0 and E20.0 in mice: (1) angiogenesis occurs in the proximal
(central) lung vasculature, (2) peripheral lung vessels are estab-
lished by vasculogenesis, and (3) at E13.0/E14.0 the central and
peripheral parts of lung vasculature begin to connect to each
other via a lytic process (113, 114). Finally, the main event of
microvascular maturation takes place during the alveolar stage of
lung development where the transition from a double capillary
network to a single capillary system within alveolar walls occurs.

Although BPD has long been regarded as an epithelial disease
due to its emphysematous aspect, much emphasis has now been
placed also on the role of the lung vasculature in this disease. The
temporal–spatial proximity of lung vasculature development and
branching morphogenesis suggests a close interaction between
these two important structures via endothelial–epithelial tissue
crosstalk. The better understanding of this crosstalk in develop-
ment and disease condition might be highly relevant for future
therapies. Vascular endothelial growth factor receptor 2 (Vegfr2
or Flk-1) is an early marker for endothelial progenitors located
in the SEM (115, 116). However, it is not yet clear whether these
progenitors arise from the mesothelium or the mesenchyme (117,
118). Progenitors for VSMCs are believed to arise from Fgf10+
cells (20), Wnt2+, Gli1+ and Isl1+ cells (coming from the sec-
ond heart field) (18), Pdgfrb+ cells (119), and mesothelial cells
(117, 118).

During murine embryonic development, Vegfr2-positive cells
receive the Vegfa signal from epithelial and mesenchymal cells
until E14.5, after which Vegfa expression becomes restricted to
the epithelium (120) (Table 1). Furthermore, it has been shown

that Shh and Fgf9, secreted by the epithelium, are able to induce
expression of Vegfa in the mesenchyme (121). Reciprocally, mes-
enchymally secreted Fgf10 leads to the upregulation of Vegf in
the distal epithelium (122). In our previous work, we showed that
treatment of embryonic lung explants with recombinant Vegfa
not only upregulates Vegfr2 in the mesenchyme but also induces
branching of the epithelium (123). However, it is unclear whether
the effect of Vegfa on epithelial branching is direct or indirect.
This endothelial–epithelial tissue crosstalk has been extensively
examined by using in vitro recombination studies (co-culture of
epithelium andmesenchyme respectively andmesenchyme alone)
as well as in in vivo lung agenesis model (β-catenin knockout)
(112). Using an in vivo inducible decoy receptor of Vegfr1 (sol-
ubleVegfr1), Lazarus and colleagues demonstrated that Spry2 is
upregulated in the epitheliumupon inhibition of Vegfr1-mediated
signaling, suggesting an inhibition of Fgf signaling (as mentioned
before Spry2 is an inhibitor of Fgf10), which is essential for
branching morphogenesis (124). Another link in the endothe-
lial–epithelial crosstalk came from the Pecam1-deficient mice that
display a failure in endothelial cell formation accompanied by
simplified alveolarization (125).

During a pathological process, Vegfa has been found down-
regulated in preterm infants with BPD (8, 126, 127). Furthermore,
Thebaud and colleagues demonstrated that Vegf and Vegfr2 are
decreased in the hyperoxiamodel of BPD in newborn rats and that
adenoviral administration of VEGF improved alveolar architec-
ture and promoted capillary formation (128, 129). Although the
trophic and angiogenic potential of VEGF on the lung vasculature
is known, the aforementioned study, and the studies from other
groups, suggest that vascular growth serves as a driving force for
alveolar growth and maturation, leading to improvement of lung
structure, and promoting secondary septae formation. A recent
report revealed the association of a VEGF polymorphism with
BPD in Japanese preterm newborns (130).

Newborn mice that are hypomorphic for Fgf10 also display
reduced expression of Vegfa and Pecam. These mice suffer from
an oversimplified lung with an abnormally developed lung vas-
culature (41). Interestingly, Fgf10 expression is reduced in lungs
from BPD patients (75). Whether the effect of mesenchyme-
derived growth factors (such as Fgf10) on the lung endothe-
lium is direct needs to be demonstrated. Another animal injury
model demonstrating the importance of endothelial–epithelial
interactions is the pneumonectomy model in mice. An inducible
endothelium-specific deletion of Vegfr2 and Fgfr1 leads to reduc-
tion of Mmp14 secretion. Mmp14 is critical for expansion of
epithelial progenitor cells during compensatory lung growth by
unmasking Egfr ecto-domains. This was confirmed convinc-
ingly by rescue-experiments where EGF/MMP14 administration
resulted in restored alveologenesis (131).

Conclusion

Although advances in pharmacotherapy and medical technology
(e.g., gentle ventilation) have improved the management of pre-
mature infants, BPD remains themost common incurable chronic
lung disease of infancy with considerable mortality and long-term
morbidity. An unintended consequence of these advances has
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been the survival rate of premature infants born before the 24th
week of gestation who represent the highest risk group for patho-
genesis of BPD. This means that the number of infants born with
an immature lung (in the canalicular stage of lung development)
is increased, leading to an increase in the incidence of BPD.
Thus, it is urgent to find a treatment for BPD. The treatment of
BPD has been confounded by its multifactorial causes. Therefore,
only a comprehensive and individualized therapy adjusted to the
profile of risk factors of each prematurely born infant will likely
be able to provide a meaningful and effective strategy. The early
identification of infants predisposed to BPD is essential. Several
studies have been conducted to detect biomarkers in premature
infants indicating their level of risk for BPD (132). Yet, the results
remain inconclusive due to the low numbers of infants considered
for the study. Importantly, more effort should be made in estab-
lishing preventive therapy. For example, more research should
be conducted to understand the pathogenesis of preterm labor, a
common cause of preterm delivery, which is one of the main risk
factor associated with BPD. In addition, the current knowledge
about the mechanisms of alveolarization must be expanded. Due
to lack of human lung samples, the establishment of animal mod-
els precisely resembling the disease condition of BPD in humans
will be helpful. Single cell transcriptomic studies should be carried

out on alveolar myofibroblasts in physiological and pathologi-
cal conditions to unravel the aberrant gene expression patterns
and/or gene mutations responsible for impaired secondary septae
formation. Furthermore, the use of the pneumonectomy mouse
model and cell specific lineage-tracing approaches to understand
the process of de novo alveolarization should contribute signifi-
cantly to our understanding of lung regeneration. Last, but not
least, the knowledge about progenitor/stem cells located in niches
of the postnatal lung will be a valuable source of information
that would be useful in triggering lung regeneration subsequent
to injury.
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