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Cord blood (CB) provides an excellent alternative source of hematopoietic progenitor 
cells (HPC) for patients lacking human leukocyte antigen-matched peripheral blood or 
bone marrow graft for transplantation. However, due to the limited cell dose in CB graft, 
it is associated with prolonged time to engraftment, risk of graft rejection, infections, 
and treatment-related mortality. To increase the cell dose, a variety of ex vivo expansion 
techniques have been developed. Results of traditional methods of CB expansion using 
cytokines alone were disappointing. Expanding CB cells with mesenchymal progenitor 
cells led to sizeable increase in graft content and improved engraftment. Other methods 
used HPC-differentiation blockers, such as nicotinamide analogs, copper chelators, 
inducing constitutive Notch signaling, or an aryl hydrocarbon receptor antagonist 
(StemReginin1). Many of these methods lead to substantial expansions of total nucleated 
cells and CD34+ cells, and significantly improved time to neutrophil or platelet engraft-
ment in patients transplanted with the expanded products compared to the recipients 
of unmanipulated CBT. These studies differ not only in the expansion method but also 
with regards to the cytokines used, patient population, conditioning regimens, and 
transplantation practices, to name a few. Some of these methods employed expansion 
of a portion of CB unit in the setting of single CBT, while others in the setting of double 
CBT. Here, we review various procedures used for CB expansion and highlight some of 
the key differences. Novel methods of improving engraftment that aim at improving bone 
marrow homing potential of CB cells are not reviewed.

Keywords: cord blood, ex vivo expansion, culture, cytokines, mesenchymal progenitor cells, SR1, nicotinamide, 
copper chelator, TePA, notch ligand, transplantation, CBT

inTRODUCTiOn

The numbers of allogeneic hematopoietic stem cell transplantation (HSCT) recipients in the 
United States currently exceeds 8000 a year and are consistently increasing (1). A suitable human 
leukocyte antigen (HLA)-matched donor can be identified for about 75% of Caucasian patients, 
but the probability is <20% for African-Americans and those belonging to other racial and ethnic 
minority groups (2). Umbilical cord blood (CB) provides an alternative source of stem cells for 
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patients without HLA-matched peripheral blood (PB) or bone 
marrow (BM) donor. Transplantation with CB has several 
unique advantages, such as the ease of collection, minimal 
risk of infection transmission to the recipient, and no risk of 
donor attrition (3–5). Further, ready availability of CB units can 
reduce the time to transplantation by 4–5 weeks compared with 
those receiving HSCT from a matched unrelated donor (6). 
Rapid procurement of CB grafts is especially advantageous for 
patients who are in urgent need of transplantation. Moreover, 
the risks of disease relapse (7) and graft-versus-host disease 
(8–10) are lower after CB transplantation (CBT) compared 
with other donor sources. On the other hand, there is a higher 
risk of graft rejection, slower engraftment, and delayed immune 
reconstitution after CBT (7, 8, 11, 12).

wHY DO we neeD TO eXPAnD CB 
GRAFT?

Many of the adverse effects after CBT are related to the low 
numbers of total nucleated cells (TNCs) and CD34+ cells present 
in a CB graft, which are typically only about 5–10% of the doses 
available for PB or BM transplants. Low cell doses negatively 
affect engraftment and other outcomes after CBT (13–22). 
Moreover, as transplantation using HLA-mismatched CB units 
is commonly performed, obtaining higher the numbers of TNC 
in a graft becomes even more crucial. In recipients of 1–2 HLA 
mismatched CBT, the best outcomes are noted after transplan-
tation with grafts containing a median TNC dose of 10 × 107/
kg or higher, while the grafts containing <2.5 × 107/kg TNCs 
or CD34+ dose of <1.7 × 105 cells/kg lead to worse outcomes 
(17, 22). Although the use of double-unit CBT (DCBT) (23) 
is a relatively straightforward technique and almost doubles 
the available graft dose instantaneously, it does not increase 
the speed of engraftment compared with the recipients of 
adequately dosed single CBT, or that observed with other graft 
sources (23, 24).

EX VIVO eXPAnSiOn OF CORD BLOOD 
CeLLS

A distinct approach to increase cell dose is to expand CB 
hematopoietic progenitor cells (HPCs) ex vivo prior to infusion. 
Expansion of CB units can augment the numbers of colony-
forming unit–granulocyte-macrophages (CFU-GMs), which are 
higher in CB compared with PB or BM (25, 26). Moreover, the 
proliferative ability of CB HPCs is higher than their BM coun-
terparts (27–30). Therefore, clinical grade expansion of CB cells 
with a variety of techniques were attempted, such as (1) using 
cytokines alone in culture, (2) blocking in  vitro differentiation 
of early progenitor cells (EPCs) using a variety of methods like 
(a) copper chelator, (b) nicotinamide (NAM) analog, (c) aryl 
hydrocarbon receptor antagonist, and (d) inducing constitutive 
Notch signaling, or (3) co-culturing CB cells with mesenchymal 
progenitor cells (MPCs). Some of these studies expanded a frac-
tion of a CB unit in the setting of single-unit CBT, while others 
in the setting of DCBT. Some authors started with an unselected 

CB cell population for expansion, while others used a selected 
subset, such as CD34+ or CD133+ cells. Moreover, conditioning 
regimens, use of antithymocyte globulin, patient population, 
and disease characteristics vary among studies.

STATiC CULTURe wiTH CYTOKineS

The application of cytokine-derived “static culture” expansion 
was tested in a study of 37 patients (median age 38 years, median 
weight 61 kg) with various malignancies. In this study, CD34+ 
cells were purified from 40 to 60% fraction of a CB graft, and 
then expanded in cultures supplemented with stem cell factor 
(SCF), granulocyte colony-stimulating factor (G-CSF), and 
megakaryocyte growth and differentiation factor for 10  days 
(31). In the first cohort, the unexpanded fraction of CB unit 
was infused immediately on the day of thaw while the expanded 
fraction was infused on day 10 after expansion. In the second 
cohort, both the expanded and the unexpanded fractions were 
infused 10 days following the initial thaw. The results were rather 
discouraging primarily the Isolex 300-i device (Nexell, Irvine, 
CA, USA) and anti-CD34 antibody used for CD34+ selection 
resulted in significant upfront loss of cells. This resulted in 
very low numbers of CD34+ cells available for expansion and 
subsequent infusion (median CD34+ cell dose 0.89  ×  105/
kg and median TNC count, 0.79  ×  107/kg). The median time 
to neutrophil was 28 days (range, 15–49 days) and of platelet 
engraftment of greater than 20  ×  109/L was 106  days (range, 
38–345 days) (31).

COnTinUOUS PeRFUSiOn MeTHOD 
wiTH CYTOKineS

Another technique utilizing cytokines for expanding CB cells 
was reported by the Duke University Medical Center using an 
advanced computer automated “continuous perfusion” culture 
method (32). The study used the Aastrom Replicell bioreactor, 
which constantly monitored culture conditions and perfused 
growth medium with cytokines including PIXY321 [granulocyte-
macrophage colony stimulating factor (GM-CSF)/interleukin 
(IL)-3 fusion protein], erythropoietin (EPO), and flt-3 ligand for 
12 days. The CB units were thawed on day 0; the unmanipulated 
fraction was infused on the same day, while a small fraction of 
the graft was infused 12 days after expansion. The study included 
pediatric patients with a median age of 4.5  years and median 
weight of 17  kg. This method resulted in expansion of TNCs 
by a median of 2.4-fold, leading to identical median infused 
TNC doses of the unmanipulated and the expanded fractions 
(2.05 × 107/kg). Nonetheless, the expansion of CD34+ cells was 
modest (median of 0.5-fold), resulting in low infused doses of 
CD34+ cells (unmanipulated fraction, 0.78  ×  105 cells/kg and 
expanded fraction, 0.10 × 105 cells/kg). The median time to neu-
trophil engraftment was 22 days (range, 13–40 days) and that of 
platelet engraftment of greater than 50 × 109/L was 94 days (range, 
41–370  days), which were not different from what is expected 
in the recipients of unmanipulated grafts. Moreover, 3 out of 27 
patients had graft failure.
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BLOCKinG DiFFeRenTiATiOn OF CORD 
BLOOD eARLY PROGeniTOR CeLLS

It is noteworthy from the previous study that despite an actual 
increase in TNCs with CB expansion, the rapidity of engraftment 
was not improved. This is conceivably secondary to the expansion 
of “lower-quality” short-term reconstituting HPCs and cytokine-
induced differentiation of EPCs (CD34+ CD38− or CD34+ Lin−) 
into cells of committed lineage (CD34+ Lin+) that have poor BM 
homing capabilities (33–37). Therefore, several methods were 
designed to expand EPCs while blocking their differentiation, 
with a goal of selectively expanding cells that possess better BM 
homing capabilities.

Copper Chelator
A polyamine copper chelator tetraethylenepentamine (TEPA) 
can block cytokine-induced differentiation of EPCs and expand 
them without affecting subsequent differentiation and prolifera-
tion of mature committed cells (36, 37). A preclinical study tested 
this technique by selecting CB CD133+ cells and culturing them 
with TEPA and “early acting cytokines,” namely flt-3 ligand, 
IL-6, thrombopoietin (TPO), and SCF for 3 weeks. This resulted 
in an impressive expansion of CD34+ cells by 89-fold, CD34+ 
CD38− by 30-fold and colony forming units (CFU) by 172-fold. 
The expanded cells demonstrated improved marrow engraftment 
potential in sub-lethally irradiated non-obese diabetic (NOD/
SCID) mice compared with that of unexpanded cells. Moreover, 
the expanded cells maintained the potential to differentiate into 
various hematopoietic lineages in  vivo (37). Based on these 
encouraging results, a phase I–II study tested this method in 10 
patients with hematological malignancies who underwent single 
unit CBT (median age 21  years, median weight 68.5  kg). One 
patient failed to engraft. In nine evaluable patients, the median 
time to neutrophil engraftment was 30 days (range, 16–46 days) 
and that of platelets was 48  days, which again were no better 
than the results expected in recipients of unmanipulated CBT. A 
subsequent large prospective trial reported results of 101 patients 
(median age 37 years, median weight 68 kg) who underwent sin-
gle CBT in comparison with DCBT controls (n = 295) from the 
Center for International Blood & Marrow Transplant Research 
(CIBMTR) and the Eurocord registries. Owing to 400-fold TNC 
and 77-fold CD34+ expansion, the median infused doses of TNC 
was 2.2 × 107/kg and that of CD34+ cells was 9.7 × 105/kg. The 
median time to neutrophil (21 vs. 28 days, P < 0.0001) and platelet 
engraftment (54 vs. 105 days, P = 0.008) as well as day 100 overall 
survival (84.2 vs. 74.6%, P = 0.035) were significantly improved 
compared with the controls (38).

Notch Signaling
Another method of blocking EPC differentiation is the induction 
of constitutive Notch signaling, which can establish immortalized 
cell lines that can be cultured in liquid medium with SCF, IL-6, 
IL-11, and flt-3 ligand, with continued undifferentiated prolifera-
tion for over 8 months. More importantly, these cells retain the 
capability to differentiate into either myeloid cells when stimu-
lated with GM-CSF or lymphoid cells in the presence of SCF, IL-3, 

and IL-7 (39). Delaney et al. (40) reported the preliminary results 
of their study using this technique, where CD34+ selected CB cells 
were transduced with an engineered Notch ligand (Delta1ext-IgG) 
and cultured for 16 days in the presence of IL-3, IL-6, TPO, SCF, 
and flt-3 ligand, leading to an impressive 222-fold average expan-
sion of CD34+ cells. The expanded cells had enhanced repopulat-
ing ability in vivo when infused into NOD/SCID mice compared 
with the control mice. Preliminary results of an ongoing phase I 
study were reported in 10 patients (median age 27.5 years, median 
weight 61.5 kg) who underwent DCBT following total body irra-
diation (TBI)-based myeloablative conditioning. The expanded 
unit contained a median TNC dose of 4.6 × 107/kg and CD34+ 
cell dose of 60.3 × 105/kg. The respective cell doses in the unma-
nipulated unit were 3.3 × 107/kg and 2.4 × 105/kg. The expanded 
CB unit was infused 4 h after the infusion of unmanipulated unit. 
No infusional toxicities were noted; one patient had primary 
graft failure. In nine evaluable patients, neutrophil engraftment 
occurred at a median of 16 days (range, 7–34 days), compared 
with 26 days (range, 16–48 days) in a concurrent cohort of 20 
patients who received two unmanipulated CB units, P = 0.002. 
Furthermore, eight of the nine engrafted patients had evidence 
of sustained chimerism derived from the expanded CB unit. In 
one patient, partial chimerism (10–15%) from the expanded cord 
was noted for up to 240 days post-DCBT. At a median follow-up 
354 days, 70% of the patients were in complete remission with 
sustained engraftment. Nevertheless, the expanded cells did 
not persist beyond 1 year, after which the unexpanded CB unit 
completely contributed to engraftment (40).

nicotinamide
Another technique of inhibiting the differentiation of EPCs 
involves the use of NAM. A sirutin family of protein deacetylases 
(SIRT1) plays an important role in determining lifespan of a 
number of lower organisms (41) and regulates apoptosis and 
self-renewal in mouse embryonic stem cells by deacetylating p53 
(42). Inhibition of a SIRT1 deacetylase enhances proliferation 
potential of HPCs with decreased dependency on growth fac-
tors and increases telomerase activity via catalytic subunit of 
telomerase, hTERT (43). NAM is a potent and specific inhibitor of 
SIRT1; it is known to inhibit differentiation of HPCs and plays an 
important role in adhesion, migration, and proliferation of stem 
cells (44). In a pre-clinical study, culturing CB CD34+ cells with 
SCF, TPO, IL-6, and flt-3 ligand with or without NAM resulted 
in about 40-fold expansion of CD34+ cells in both the groups. 
However, the EPCs (CD34+Lin− cells) expanded to a greater 
degree in NAM-treated cells. Further, transplantation of carboxy-
fluorescein diacetate succinimidyl ester (CFSE)-labeled cells into 
irradiated NOD/SCID mice showed that the NAM-treated cells 
had significantly improved homing capacity and engraftment 
potential compared with the untreated cells (45). A phase I trial 
included 11 adult patients (median age 45 years, median weight 
83  kg) who underwent DCBT using TBI-based myeloablative 
conditioning. One CB unit was thawed on day 21 and selected for 
CD133+ cells using immunomagnetic beads. The negative frac-
tion was cryopreserved, while the positive fraction was cultured 
with NAM, SCF, TPO, and IL-6 in culture bags for 21 days. The 
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CD133-negative fraction was later thawed on day 0 and infused 
after the infusion of cultured fraction. The infusions of expanded 
and unmanipulated CB units were separated by 2 h. After 3 weeks 
of culture, TNCs expanded by a median of 486-fold and CD34+ 
cells expanded by a median of 72-fold. The final total infused 
TNC dose was 3.1 × 107/kg and that of CD34+ was 35.0 × 105/
kg (including 0.7 × 105/kg was from unmanipulated unit). Seven 
of the 10 patients attained partial or complete chimerism from 
the expanded unit, which persisted for up to 36  months in 
some cases. Two patients had long-term engraftment from the 
unmanipulated unit and one patient had graft failure. In evaluable 
patients, the median time to neutrophil engraftment was 13 days 
(range, 7–26 days) compared with 25 days (range, 13–38 days) in 
their historical controls (P < 0.001). The median time to platelet 
engraftment was 33  days (range, 26–49  days) compared with 
37 days (range, 20–66 days) in historical controls (P = 0.085) (46).

Aryl Hydrocarbon Receptor Antagonism
The University of Minnesota group presented the results of a 
phase I/II study of CB expansion using StemReginin1 (SR1), an 
aryl hydrocarbon receptor antagonist, which helps in the prolif-
eration of CD34+ cells without differentiation in the presence of 
SCF, flt-3 ligand, TPO and IL-6 (47). A total of 17 patients with 
hematological malignancies underwent TBI-based myeloablative 
conditioning followed by DCBT, where 1 U was expanded ex vivo 
while the other was infused unmanipulated. The culture led to 
328-fold median expansion of CD34+ cells, resulting in a median 
total infused CD34+ dose of 123 × 105/kg. There were no graft 
failures. The median time to neutrophil engraftment was shorter 
in 11 patients in whom the SR1-expanded cord predominated 
(11 days) compared with patients in whom the unmanipulated 
cord predominated (23 days). The time to neutrophil and platelet 
engraftment were both significantly faster in the recipients of 
expanded CB as compared with 111 recipients of unmanipulated 
DCBT. More interestingly, two additional patients received only 
one SR1-expanded CB unit, with CD34+ doses of 250 × 105/kg 
and 180 × 105/kg; with neutrophil engraftment occurring in 12 
and 8 days, respectively (47). The authors are currently testing 
the feasibility of transplantation with single expanded CB unit.

MeSenCHYMAL PROGeniTOR CeLL-
SUPPORTeD eXPAnSiOn

All of the methods reviewed above require selection of either 
CD34+ or CD133+ cells. As seen with some of the techniques, 
the selection process itself can lead to sizeable degree of upfront 
cell loss ranging from 4 to 70%. One approach to circumvent 
this issue is to co-culture unselected CB cells with MPCs. As 
MPCs are components of in vivo hematopoietic microenviron-
ment and produce cytokines and other proteins that regulate cell 
proliferation and homing (48), co-culturing CB cells with MPCs 
putatively creates an ex vivo stem cell “niche” (49, 50). Moreover, 
MPCs do not express HLA-class II histocompatibility antigens 
and thus can be obtained either by harvesting BM of a hap-
loidentical family member or by clinical-grade “off-the-shelf ” 

sources, such as Mesoblast (Mesoblast Limited, Melbourne, 
VIC, Australia) (51).

The efficacy of MPC-expanded CB cells was reported by the 
investigators from the MD Anderson Cancer Center in 31 adult 
patients (median age 31–39 years, median weight 75–79 kg) who 
underwent DCBT after myeloablative conditioning (52). The 
MPCs were obtained from a haploidentical family member for the 
first seven patients. However, due to the time required for generat-
ing MPCs from a family member and the logistics of it, “off-the-
shelf ” MPCs (Mesoblast) were used for subsequent 24 patients. 
The CB unit containing lower dose of TNC was thawed 2 weeks 
before transplantation, placed in cultures containing MPCs and 
supported with a cytokine cocktail of SCF, flt-3 ligand, TPO and 
G-CSF. After 14  days of culture, the non-adherant cells were 
removed, washed and infused after the infusion of freshly thawed 
unmanipulated CB unit. The culture resulted in 12.2-, 30.1-, and 
17.5-fold increases in the TNC, CD34+ cells, and CFUs popula-
tions, respectively, which yielded final median doses of 5.84 × 107/
kg for TNCs, 9.7 × 106/kg for CD34+ cells and 3 × 106/kg for CFUs. 
No differences were observed in the expansion achieved from 
family member-derived or “off the shelf ” MPCs. The median time 
to neutrophil engraftment was 15 days (range, 9–42 days) com-
pared with 24 days (range, 12–52 days) observed in the CIBMTR 
controls, P  <  0.001. The median time to platelet engraftment 
was 42 days (range, 15–62 days) compared with 49 days (range, 
18–264 days) in the controls, P = 0.03. The cumulative incidence 
of neutrophil engraftment was also significantly improved in 
the study population (96%) compared with the controls (78%), 
P = 0.005. The cumulative incidence of platelet engraftment by 
day 180 was 75% in the study population compared with 46% in 
the controls, P = 0.01. There were no infusion related toxicities. 
All patients attained complete donor chimerism from one or 
the other cord between days 21 and 30. Interestingly, 54% of the 
patients attained hematopoiesis solely from the unmanipulated 
CB unit and 46% had mixed chimerism from both the units (52).

COnCLUSiOn

The field of ex vivo expansion of CB graft has progressed remark-
ably. Beginning from the traditional culture methods using 
cytokines alone, the field witnessed noteworthy transformation 
to more elegant techniques, such as co-culturing of CB cells with 
MPCs and the use of EPC differentiation blockers like copper 
chelator (TEPA), NAM analogs, StemReginin1, and the Notch-
ligands. Many of these techniques have improved the time to 
neutrophil engraftment appreciably, which is comparable to that 
seen with other donor types. However, all of these techniques 
require several days of culture before the final product is avail-
able for transplantation and these procedures can be performed 
only at specialized centers. A completely different approach to 
enhance engraftment focuses on increasing the homing capac-
ity of CB cells to BM. These include the use of prostaglandin 
E2 analogs (53) and fucosylation (54). Such novel methods are 
quick – requiring only 30–120 min of incubation of CB cells prior 
to transplantation and have demonstrated significant improve-
ments in engraftment in clinical trials. Future studies may test a 

http://www.frontiersin.org/Medicine/archive
http://www.frontiersin.org/Medicine
http://www.frontiersin.org


December 2015 | Volume 2 | Article 895

Mehta et al. Cord Blood Expansion

Frontiers in Medicine | www.frontiersin.org

combination of these approaches in order to shorten the culture 
time or to further enhance engraftment. Prospective comparative 
trials will also shed more light on the relative efficacy of these 
promising technologies.
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