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Cord blood (CB) offers several unique advantages as a graft source for hematopoietic 
stem cell transplantation (HSCT). The risk of relapse and graft vs. host disease after 
cord blood transplantation (CBT) is lower than what is typically observed after other 
graft sources with a similar degree of human leukocyte antigen mismatch. Natural killer 
(NK) cells have a well-defined role in both innate and adaptive immunity and as the first 
lymphocytes to reconstitute after HSCT and CBT, and they play a significant role in 
protection against early relapse. In this article, we highlight the uses of CB NK cells in 
transplantation and adoptive immunotherapy. First, we will describe differences in the 
phenotype and functional characteristics of NK cells in CB as compared with peripheral 
blood. Then, we will review some of the obstacles we face in using resting CB NK cells 
for adoptive immunotherapy, and discuss methods to overcome them. We will review 
the current literature on killer-cell immunoglobulin-like receptors ligand mismatch and 
outcomes after CBT. Finally, we will touch on current strategies for the use of CB NK cells 
in cellular immunotherapy.
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inTRODUCTiOn

Cord blood (CB) is a rich source of hematopoietic stem and progenitor cells and is being increasingly 
used as a graft source for hematopoietic stem cell transplantation (HSCT) (1). Despite the naive 
nature of CB T-lymphocytes (2, 3), the risk of relapse is lower after cord blood transplantation (CBT) 
compared with other donor sources (4–7). As natural killer (NK) cells are the first lymphocytes to 
reconstitute after HSCT and CBT (8–14) and their role in both innate and adaptive immunity is 
well characterized (15–17), it is likely that they play a crucial role in protection against early disease 
relapse. This article focuses on the uses of CB as a source of NK cells in CBT as well as in adoptive 
immunotherapy.

nATURAL KiLLeR CeLL PHenOTYPe

Natural killer cells are immunophenotypically characterized as CD3−CD56+ lymphocytes and 
are broadly classified into the less differentiated CD56bright or the mature CD56dim populations 
(16, 18). CD56bright cells have low or absent expression of CD16 and killer-cell immunoglobulin-
like receptors (KIR), whereas the CD56dim subset expresses both CD16 and KIR (18, 19). 
Resting peripheral blood (PB) CD56bright cells are poorly cytotoxic but are potent secretors of 
immunomodulatory cytokines and have tremendous proliferative capacity in response to IL-2. 
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Conversely, PB CD56dim cells are highly cytotoxic but have 
a poor capacity to proliferate in response to cytokines (16, 
18–26).

HOw DO CORD BLOOD nK CeLLS 
DiFFeR FROM PeRiPHeRAL BLOOD nK 
CeLLS?

Cord blood offers unique advantages, many of which are directly 
applicable to NK cell-directed alloreactivity. The ease of collec-
tion of CB and cryopreservation makes them readily available 
as an off-the-shelf source for NK cell immunotherapy (27, 28). 
Besides, the presence of almost a log fewer T-cells in CB com-
pared to other graft sources (29–33), most of which are naive 
(34–36), minimizes the risk of graft vs. host disease (GVHD) 
(7, 29, 33, 37–40). More importantly, NK cell reconstitute more 
rapidly after CBT than PB HSCT (41, 42). One study showed that 
the absolute numbers of CD56 CD16 NK cells were significantly 
higher for up to 2 years after double unit CBT compared with 
filgrastim-mobilized unrelated donor PB HSCT (11). Moreover, 
CB contains unique cell populations, which represent NK-cell 
progenitors and are either absent or present in minute numbers 
in PB (43–49). These cells have a potential to differentiate into NK 
cells after ex vivo stimulation with cytokines, including IL-2 (48), 
IL-15, and/or FLT-3 ligand (43, 47, 48). Data also suggest that 
CB CD56bright NK cells (but not CB T-cells) produce significantly 
more IFN-γ after stimulation with IL-12 and IL-18 compared with 
PB NK cells (36). This may in turn compensate for the hypofunc-
tionality of naive CB T-cells – thus also contributing to a lower 
risk of GVHD while maintaining the crucial graft vs. leukemia 
effect. After stimulation with IL-12 and IL-18, the expression of 
CD69 (an activation marker) is increased appreciably on CB NK, 
but not PB NK cells (36). Moreover, the expression of CXCR4, 
a bone marrow (BM) homing receptor, is significantly higher 
in CB CD56bright and CD56dim NK cells compared with their PB 
counterparts (50), suggesting that CB NK cells may have better 
BM homing potential.

LiMiTATiOnS OF CORD BLOOD AS A 
SOURCe OF nK CeLLS

There are also noteworthy limitations to the use of unmanipu-
lated CB as a source of NK cells for immunotherapy. The foremost 
impediment relates to the finite number of NK cells available in a 
single CB unit. Although the frequencies of NK cells in PB and CB 
are similar (50–53), the small volume of blood in a CB unit makes 
it challenging to obtain adequate numbers needed for clinical use. 
A second crucial obstacle is the functional immaturity of resting 
CB NK cells. In contrast to PB, CB NK cells express very few 
inhibitory KIRs, have a higher expression of the inhibitory recep-
tor NKG2A and almost completely lack CD57 expression, an 
activation marker associated with terminal differentiation of NK 
cells (49, 50, 54, 55). Moreover, the expression of other activation 
receptors, such as NKp46, NKG2C, and DNAM-1, are lower in 
CB NK cells (50). As a result, resting CB CD56dim NK cells have 
poor in vitro cytotoxicity compared with PB NK cells.

To overcome these limitations, a number of groups have 
developed ex vivo expansion techniques that can increase NK 
cell numbers by about 1800- to 2400-fold from either fresh or 
cryopreserved CB units (56). NK cells can also be successfully 
differentiated from CB CD34+ cells (57–60) using a cocktail of 
cytokines and membrane-bound IL-15 (60). Most expansion 
techniques use IL-2 either alone (61, 62) or in combination with 
IL-15 (63), or IL-7 (64), or stem cell factor and FLT3-ligand, 
(64) or a supporting layer of mesenchymal stromal cells (65), or 
artificial antigen-presenting cell, such as K562 cells expressing 
membrane-bound IL-21 (56). Expansion techniques not only 
augment CB NK cell numbers but also result in the acquisition 
of functional competence and similar activity to ex vivo activated 
PB NK cells (56).

nK CeLL ALLOReACTiviTY

The alloreactivity of NK cells is guided by a fine balance between 
their activating and inhibitory receptors, and interactions with 
their cognate ligands. The inhibitory KIRs recognize classical 
MHC-I molecules (HLA- A, -B, and -C) C-type lectin family of 
receptors (CD94 and NKG2s – NKG2A, -B, -C, -D, -E, and -F) 
recognize non-classical MHC-I molecules (HLA-E and stress-
induced MHC-I related chains  – MICA and MICB), while the 
ligands for natural cytotoxicity receptors (NKp46, NKp30, NKp44, 
NKp80, and others) and activating KIRs are largely unknown 
[reviewed in Ref. (66–69)]. The recognition of “self ” MHC-I 
molecules on normal cells by inhibitory NK receptors protects 
them from NK cell-mediated lysis (70, 71). However, malignant 
or infected cells often shed or down-regulate their MHC-I mol-
ecules as an immune escape mechanism (72, 73), which revokes 
NK cell inhibition and triggers the activating receptors to cause 
cell lysis (74, 75). This principle could be exploited to our advan-
tage in HSCT because the human leukocyte antigen (HLA) sys-
tem (chromosome 6) and KIR genes (chromosome 19q13.4) are 
located on different chromosomes and segregate independently 
(76, 77). This creates a possible scenario of donor–recipient HLA-
match appropriate for HSCT, yet retaining mismatch in KIRs and 
their ligands, yielding alloreactive NK cells against the recipient 
tumor cells.

DiFFeRenT MODeLS USeD TO DeFine 
nK CeLL ALLOReACTiviTY

Before reviewing the clinical applicability of this concept, it 
is important to understand various methods used to assess 
NK cell alloreactivity. These include (a) testing donor NK KIR 
expression (genotype or phenotype) and the corresponding HLA 
[KIR-ligands (KIR-Ls)] in recipient, known as the receptor–ligand 
model, (b) determining HLA class I typing (KIR-Ls) in both donor 
and recipient, known as the ligand–ligand model, or (c) perform-
ing functional analysis of NK cell alloreactivity, where donor NK 
cells are tested for their ability to lyse a cell line or the recipient’s 
leukemia cells, known as the cytotoxicity model (78–81). Likewise, 
the KIR repertoire in an individual can be determined based on 
either (a) KIR genotype (DNA-based methods to assess KIR 
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genes, or real-time quantitative PCR to assess mRNA expression) 
or (b) KIR phenotype (using flow cytometry for surface protein 
expression), although most currently available monoclonal anti-
bodies used for flow cytometry cannot differentiate activating 
from inhibitory KIRs. To make matters even more complicated, 
about one-quarter of individuals have discrepancies in the 
genotype and phenotype of four inhibitory KIRs (KIR2DL1, 
KIR2DL2, KIR2DL3, and KIR3DL1) (82). For instance, the gene 
for KIR2DL1 is present in 93–97% of individuals, yet the cor-
responding receptor is absent in 7%, one or both allelic forms 
of KIR2DL2/KIR2DL3 exist in all individuals, and the gene for 
KIR3DL1 is present in about 90–92% of individuals, but about 
15% of them do not express the corresponding receptor (80, 82).

Various studies evaluated transplant outcomes, using differ-
ent models to predict NK cell alloreactivity. The earliest clinical 
evidence for the importance of NK alloreactivity in reducing the 
risk of relapse was provided by Ruggeri et al. (78, 83) in T-deplete 
haploidentical HSCT, using the KIR-L mismatch model to predict 
alloreactivity. Subsequent studies in the settings of haploidentical, 
matched or mismatched unrelated or unrelated donor HSCT pro-
duced surprisingly variable results, ranging from no advantage 
(84–88) to mixed response based on the type of KIR-L incompat-
ibility model used for the analysis (81), to improvements in one 
or all aspects of relapse risk, disease free survival (DFS), or overall 
survival (OS) (79, 80, 89–93). However, caution is warranted in 
interpreting the results due to remarkable heterogeneity of these 
studies.

ALLOReACTive nK CeLLS in CORD 
BLOOD TRAnSPLAnTATiOn

Given the unique advantages offered by CB, four relatively large 
studies assessed the role of KIR-L mismatch in the CBT setting 
(Table 1) (94–97). All but one (97) failed to demonstrate a benefi-
cial effect of KIR-L mismatch on disease outcomes after CBT. One 
study (94) rather reported that KIR-L mismatch was associated 
with higher risk of acute GVHD, and worse treatment-related 
mortality (TRM) and OS after reduced intensity conditioning 
CBT (RIC-CBT). All of these studies used the KIR-L mismatch 
model proposed by Ruggeri et al. (78).

The first and the only CBT study to demonstrate any favorable 
effect of KIR-L mismatch was reported by Willemze et al. (97). 
The authors also included HLA A3/A11 (ligand for KIR3DL2) 
mismatches in their study, the role of which is quite controversial 
(98), because the interaction between KIR3DL2 and HLA-A3/
A11 occurs in the presence of specific viral peptides (99) and 
the evidence of their in  vivo interaction is scare (100). The 
study included 149 KIR-L matched and 69 KIR-L mismatched 
donor–recipient pairs, with median recipient ages of 12.8 and 
15  years, respectively. Only patients with AML or ALL were 
included, all of whom received single unit CBT. The majority 
received myeloablative conditioning (MAC) and ATG were used 
in 79 and 84% of patients, respectively. There were no differences 
in the incidence of acute or chronic GVHD or non-relapse 
mortality (NRM) between the KIR-L matched and mismatched 
groups. However, the probabilities of 2-year relapse (37 vs. 20%, 

p = 0.03), 2-year DFS (40 vs. 55%, p = 0.005), and 2-year OS (31 
vs. 57%, p = 0.02) were all significantly improved in the KIR-L 
mismatched group. In subgroup analysis, these differences were 
significant for patients with AML only. Furthermore, deaths due 
to opportunistic infections were more frequent in the KIR-L 
matched group (38 vs. 7%, p  =  0.03). The median follow-up 
period (13 and 15  months) was relatively short, but the study 
findings remained unchanged in a later update with a median 
follow-up of 34 months (101).

In contrast, the Minnesota group (94) reported a detrimental 
impact of KIR-L mismatch in recipients of RIC CBT. The study 
included 183 KIR-L matched and 74 KIR-L mismatched donor–
recipient pairs with a variety of hematological malignancies, 
including acute or chronic leukemias and lymphomas. Patients 
received either single or double unit CBT, the definition of 
KIR-L mismatch in the recipients of double CBT was arbitrarily 
defined based on the KIR-L of the dominant engrafting unit. 
Due to significant differences in the MAC and RIC groups, the 
results of these groups were reported separately. The MAC arm 
constituted primarily pediatric patients with median ages of 
15 and 15.9  years in KIR-L matched and mismatched groups, 
respectively. The majority received single CBT (66 and 56%) 
and ATG were used sparingly (41 and 38%), respectively. As 
expected, patients who received RIC regimens were older with 
median ages of 48 and 52 years, respectively, and all underwent 
double unit CBT. Again, ATG was used in only a minority of 
patients (24 and 32%, respectively). The follow-up duration 
(medians 1.8–2.2  years in all groups) was longer than in the 
Willemze study (97). This study did not find an impact of KIR-L 
mismatch on any of the clinical outcomes after MAC, including 
acute or chronic GVHD, TRM, relapse risk, or OS. Conversely, in 
the RIC group, KIR-L mismatch was associated with significantly 
higher rates of grades II–IV (79 vs. 57%, p = 0.01) and grades 
III–IV (42 vs. 13%, p ≤ 0.01) acute GVHD, worse TRM (27 vs. 
12%, p = 0.03), and OS (32 vs. 52%, p = 0.03). In multivariate 
analysis, KIR-L mismatch was the only significant predictor 
of higher rates of grades III–IV acute GVHD (RR 1.8, 95% CI 
1.1–2.9; p  =  0.02) and risk of death (RR 1.8; 95% CI 1.0–3.1, 
p = 0.05). Restricting their analysis to only AML patients, the 
authors again found higher incidence of grades III–IV acute 
GVHD in patients with KIR-L mismatch. Analysis performed 
with or without the inclusion of HLA-A3/A11 mismatches did 
not affect clinical outcomes.

Similar findings were reported in the double CBT setting by 
the Boston group (95) without the inclusion of HLA-A3/A11 
mismatches. They included patients with diverse hematological 
malignancies, three-quarters of whom received RIC regimens 
with fludarabine, melphalan, and ATG. The study found no 
impact of KIR-L mismatch on the incidence of acute or chronic 
GVHD, relapse, DFS, or OS. However, the KIR-L mismatched 
group experienced more graft rejections (5/35) compared with 
KIR-L matched group (1/45, p = 0.08). Interestingly, 4/5 patients 
with graft rejection in the KIR-L mismatched group had cord 
vs. cord KIR-L mismatches and 3/5 had host vs. cord KIR-L 
mismatches. Later, a Japanese study (96) also found no impact 
of KIR-L (including HLA-A3/A11) mismatch in single unit CBT 
recipients with either AML or ALL. Of note, more than 80% of 
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TABLe 1 | Studies assessing the role of KiR-ligand mismatch in cord blood transplantation.

Brunstein et al. (94) Tanaka et al. (96)

willemze et al. (97) Myeloablative conditioning Reduced intensity 
conditioning

ALL AML Garfall et al. (95)

KiR-L 
matched

KiR-L 
mismatched

KiR-L 
mismatched

KiR-L 
matched

KiR-L 
mismatched

KiR-L 
matched

KiR-L 
mismatched

KiR-L 
matched

KiR-L 
mismatched

KiR-L 
matched

KiR-L 
matched

KiR-L 
mismatched

N 149 69 41 114 33 69 227 59 288 69 45 35

Age, median 
(range)

12.8 (0.6–69) 15 (0.5–64) 15 (0.6–53) 15.9 
(1.0–59)

48 (22–69) 52 (6–68) 27 33 47 50 49 (24–67) 47 (21–65)

RI conditioning 25 (18) 10 (16) 0% 0% 100% 100% 47 (21) 11 (19) 101 (35) 28 (41) 34 (75.56) 25 (71.43)

CMV positive 
[n (%)]

? ? 14 (34) 73 (64)** 14 (42) 44 (64)** 43 (95.56) 29 (82.86)

ATG/ALG 106 (79) 52 (84) 17 (41) 43 (38) 8 (24) 22 (32) 0% 0% 0% 0% 100% 100%

Median infused 
CD3+ dose 
[×107 (range)]

? ? 1.2 (0.1–2.6) 1.3 
(0.2–3.2)

1.1 (0.1–2.7) 1.4 
(0.2–3.1)

– – – – – –

Single-CBT (%) 100 100 66 56 100 100 100 100 100 100 0 0

Graft rejection 1/45 5/35**

Grade II-IV 
GVHD [% (95% 
CI)]

30 ± 3% 28 ± 5% 46 (30–64) 46 (36–56) 79 (59–99) 57 (44–70)** 22% 17%

Grade III-IV 
GVHD [% (95% 
CI)]

28 (8–48) 17 (6–28) 42 (27–59) 13 (5–21)** HR 1.06, p-value 
0.83

HR 0.84, 
p-value 0.51

Chronic GVHD 
at 1–2 years

(No 
difference)

(No difference) 10 (1–19) 21 (13–29) 12 (1–23) 14 (6–22) 19% 24%

% NRM/TRM 31 ± 4% 25 ± 5% 27 (14–40) 18 (11–25) 27 (12–42) 12 (5–19)**

RR 0.6 (0.31–1.16), p-value 0.13 HR 0.71 (95% CI 0.37–1.39), 
p-value 0.32

HR 0.95 (95% CI 0.52–
1.72), p-value 0.86

% Relapse at 
2–3 years

37 ± 4% 20 ± 5%** 18 (6–30) 28 (19–37) 39 (21–57) 47 (34–60) 40% 44%

RR 0.53 (95% CI 0.28–0.99), 
p-value 0.05**

HR 0.95 (95% CI 0.43–2.10), 
p-value 0.91

HR 0.59 (95% CI 0.31–
1.14), p-value 0.12

% Disease 
free survival at 
2–3 years

40 ± 4% 55 ± 7%** 29% 24%

RR 2.05 (95% CI 1.31–3.2), 
p-value 0.0016**

HR 0.79 (95% CI 0.49–1.29), 
p-value 0.352

HR 1.02 (95% CI 0.65–
1.59), p-value 0.945

% Overall 
survival at 
2 years

31 ± 4% 57 ± 7%** 50 (32–68) 57 (47–67) 32 (15–59) 52 (47–67) ** 40% 34%

(Continued)
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patients received TBI-based MAC regimens, but ATG was not 
used.

As noted, these studies are fairly heterogeneous in terms of 
their study population, underlying disease, use of single vs. double 
CB grafts, conditioning regimens, use of in vivo T-cell depletion, 
GVHD prophylaxis, inclusion of HLA-A3/A11 mismatch in the 
analysis, to name a few. The use of lymphodepleting chemotherapy 
regimens, such as high-dose cyclophosphamide and fludarabine 
with the addition of TBI supports in vivo expansion of adoptively 
transferred cytotoxic T-cells and NK cells (102–105). Also, T-cell 
depletion in the haploidentical HSCT setting is associated with 
more rapid NK cell immune reconstitution and strong NK-cell 
alloreactivity (78, 80, 83). The use of double (instead of single) 
unit CBT introduces another level of complexity due to lack of 
our understanding of three way KIR-L interactions among the 
recipient and the two CB grafts. In such cases, NK cells from 
the “dominant” CB unit are presumed to be contributing to the 
beneficial NK alloreactivity (94), but the role of NK cells in the 
non-dominant CB unit and their influence in mediating donor vs. 
recipient and graft vs. graft alloreactivity is not clear.

FUTURe COnSiDeRATiOnS

Role of CMv in influencing nK Cell 
Alloreactivity Post Transplantation
It is now well established that CMV infection or reactivation 
can reduce the risk of relapse after HSCT by enhancing NK cell 
maturation with increased CD56dim population, shaping NK cells 
toward an activated phenotype with upregulation of NKG2C 
(activation) and KIR receptors and downregulation of NKG2A 
(inhibitory) along with increased expression of CD57, and creat-
ing “memory NK cells” (106–112). It is plausible that some of 
the discrepancies noted in the four CBT studies described above 
could be due to differential CMV reactivation among the different 
groups. As an example, significantly more patients in the KIR-L 
matched group were CMV seropositive compared with the KIR-L 
mismatched group in the Minnesota study (94). By contrast, in 
the Willemze study (97), equal numbers of patients were CMV 
seropositive in both KIR-L matched and mismatched groups, 
whereas the Japanese study (96) did not report on the CMV 
serostatus of their cohort.

Role of Activating nK Cell Receptors and 
nK Haplotypes
Likewise, no study evaluated the role of activating KIRs on CBT 
outcomes, which are known to influence outcomes after other 
types of transplant (88, 113–117). The KIR genes are encoded as 
haplotypes, and individuals can be categorized as either haplo-
type A or B. Haplotype A individuals have more inhibitory KIRs, 
whereas haplotype B individuals carry more activating KIRs. The 
favorable effect of receiving grafts from haplotype B donors was 
demonstrated by Cooley et al. (117) in AML patients who under-
went unrelated donor PB or BM HSCT. Patients whose donors 
had KIR-B/x haplotype (i.e., either homozygous or heterozygous 
B-haplotype) had improved relapse-free survival compared to 
those who received grafts from homozygous haplotype A donors. 
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TABLe 2 | Ongoing clinical trials assessing the role of cord blood natural killer cells in adoptive immunotherapy.

Clinical trial 
identifier

Trial 
phase

Disease Type of 
transplant

Conditioning regimen CB nK 
infusion day

Dose expansion

NCT01619761 I AML, ALL, CML, MDS, 
NHL, SLL, CLL, NHL, HL, 
MM

DCBT Fludarabine, melphalan, 
lenalidomide ± rituximab

Day 2 5 × 106/kg Ex vivo from 
20% CB unit 
fraction

NCT01729091 I/II Multiple myeloma Autologous Melphalan, lenalidomide 
(day 8–2)

Day 5 5 × 106–1 × 108/kg Ex vivo 
expanded from 
thawed CB unit

NCT02280525 I CLL refractory to at 
least 2 lines of standard 
chemoimmunotherapy, 
relapsed or refractory ALL, 
AML, CML, NHL, HL

Non-transplant 
setting

Fludarabine, 
cyclophosphamide, 
rituximab, and lenalidomide 
(day 5 to +14)

Day 0 Escalating doses 
(106–108/kg)

Ex vivo 
expanded from 
thawed CB unit

NCT01823198 I/II Myeloid malignancies Allogeneic Busulfan, fludarabine Day 8a 106, 107, 3 × 107, 
or 108/kg based on 
number of NK cells

Ex vivo + in vivo 
expansion with 
IL-2 (day 8–4)

aNK cell source could be from matched related donor, haploidentical donor, or CB.
ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CB, cord blood; CLL, chronic lymphoblastic leukemia; CML, chronic myeloid leukemia; DCBT; double unit cord 
blood transplantation; HL, Hodgkin lymphoma; MDS, myelodysplastic syndromes; MM, multiple myeloma; NHL, non-Hodgkin lymphoma; NK, natural killer; SLL, small lymphocytic 
lymphoma.
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The impact of KIR haplotype on CBT outcomes has not been 
evaluated to date.

Role of nK Cell Licensing Post 
Transplantation
Evaluation of the impact of NK cell licensing, a process by which 
NK cells gain functional competence (118), should be considered 
in future studies of CBT. The new MHC environment of the recipi-
ent can alter NK cell responsiveness (119). In an elegant study 
performed by Joncker et  al. (119), adoptive transfer of mature 
functional NK cells from MHC-I wild-type mice into MHC-I-
deficient mice resulted in loss of NK cell responsiveness. By con-
trast, transfer of hyporesponsive NK cells from MHC-I-deficient 
mice into MHC-I wild-type mice resulted in gain of functional 
competency. A recent study of unrelated donor PB/BM HSCT 
recipients provided clinical evidence for the significance of this 
dynamic process of licensing in humans. The authors found that 
patients who lacked cognate ligands involved in NK cell licensing 
for the inhibitory KIRs in the donor had significantly worse DFS, 
OS, and time to progression, compared with patients who had the 
ligands. This supports the principle that activated licensed NK 
cells are significantly more cytotoxic than the unlicensed cells and 
are more likely to mediate a strong graft vs. leukemia response 
(118).

CORD BLOOD nK CeLLS in CeLLULAR 
THeRAPieS

In addition to the role of NK cells in CBT, the use of ex vivo 
purified and activated CB NK cells is also being explored for 
adoptive immunotherapy. Although numerous studies have been 
conducted using autologous or allogeneic (PB or BM) NK cells 

infusions [reviewed in Ref. (120–122)], no clinical study to date 
has reported on the use CB NK cells. A handful of clinical trials 
are currently underway to evaluate the feasibility, safety, and 
efficacy of CB NK cell adoptive immunotherapy in transplant and 
non-transplant settings (Table 2).

COnCLUSiOn

Natural killer cells have a remarkable potential to kill can-
cer as well as virally infected cells. They are the first cells to 
reconstitute after HSCT (8–14), they facilitate engraftment 
(78), they do not cause GVHD, and they may even prevent 
this complication by eliminating host antigen-presenting cells 
and donor alloreactive T cells (83, 123). CB provides several 
distinctive benefits, and it is increasingly used as a source of 
CBT and cellular therapies. Resting CB NK cells are immature 
and are poorly cytotoxic compared with PB NK cells; however, 
these limitations can be overcome by ex vivo expansion using 
cytokines and feeder cells (48, 49, 52, 56, 124). A number of 
clinical studies are evaluating the feasibility, safety, and anti-
tumor efficacy of adoptive immunotherapy with CB NK cells. 
The biological mechanism and tempo of NK cell alloreactivity 
after CBT, especially with double unit CBT has not been fully 
elucidated. Before the immunological reactivity of NK cells and 
KIRs could be targeted and exploited to improve the response 
to CBT, we will need to have a better understanding of the 
biological mechanisms involved in NK-mediated anti-leukemia 
response.
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