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p75 neurotrophin receptor (p75NTR), also known as CD271, is the low-affinity recep-
tor that, together with the tyrosine kinase receptor tropomyosin-receptor kinase (Trk), 
mediate neurotrophin (NT) functions. Beside their classic role in skin innervation, NT and 
their receptors constitute a complex cutaneous network associated with a number of 
autocrine and paracrine activities. In this context, the role of p75NTR is becoming more 
and more important. This review will focus on the intriguing functions of p75NTR in healthy 
and diseased skin. First, p75NTR counterbalances the proliferative and survival activities of 
its cognate receptor Trk by inducing keratinocyte apoptosis. In addition, p75NTR identifies 
an early transit-amplifying (TA) keratinocyte population and plays a critical role in kerat-
inocyte stem cell transition to its progeny as well as in epidermal differentiation. p75NTR 
is absent in psoriatic TA cells, thus rendering these cells resistant to apoptosis. On the 
other hand, p75NTR infection restores NT-induced apoptosis in psoriatic keratinocytes. 
Taken together, these results provide evidence for a critical role of p75NTR in epidermal 
homeostasis, while its lack may account for the TA defect in psoriasis. While the issue 
of p75NTR as a marker of melanoma initiating cells is still to be solved, there is strong 
evidence that downregulation of this receptor is a precondition to melanoma invasion 
and metastasis in vitro and in vivo. All in all, this review points to p75NTR as a major actor 
in both physiologic and pathologic conditions at the skin level.
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inTRODUCTiOn

The neurotrophin (NT) family of growth factors that includes nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), NT-3, and NT-4, plays a fundamental role in the development 
and maintenance of the nervous system (1). Each NT exerts its activities through two receptor classes: 
the high-affinity tropomyosin-receptor kinase (Trk) and the common p75 NT receptor (p75NTR, also 
known as CD271) (2).

p75NTR belongs to the tumor necrosis factor receptor family and interacts with a variety of 
ligands and co-receptors to mediate a range of functions, although this interplay is complex and 
still poorly understood (3). After ligand activation, p75NTR is proteolytically cleaved by γ-secretase 
to give intracellular domain (ICD) that is responsible for specific signaling (4). Heterodimerization 
of p75NTR with Trk increases the NT/Trk interaction affinity, thus augmenting growth and survival 
functions. In addition, pro-NTs bind to the sortilin-p75NTR complex and initiate cell death signaling 
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(5). ICD in itself can operate independently of the other co-
receptors and the functional activity of p75NTR depends on its 
subcellular localization, on the final location of the fragment (6, 
7), and on which partners it is associated (8). p75NTR interacts 
with a variety of proteins (9) that in turn determine signaling 
through different pathways (10–12). This interplay allows p75NTR 
to play a flexible, but pivotal role in the regulation of multiple 
activities and ultimately the fate of the cell. The present review 
will focus on the current knowledge on p75NTR in healthy and 
diseased skin.

p75nTR MeDiATeS nT-SUSTAineD  
SKin inneRvATiOn

In the peripheral nervous system, the survival of sensory and 
sympathetic neurons largely depends on the production by inner-
vated target of NGF and its cognate NTs (13). Overexpression 
of NGF in skin determines increase of sensory innervation (14). 
NGF production is proportional to the innervation density, and 
it is retrogradely transported to the cell body of the neuron where 
it regulates its maintenance (15). Also in skin, Trk receptors 
mediate NTs-enhanced cell survival, while p75NTR promotes cell 
death of sensory and sympathetic neurons (16). Mice carrying 
a mutation of gene encoding p75NTR display a marked decrease 
in sensory cutaneous innervation, associated with the develop-
ment of ulcers in the distal extremities (17), indicating a critical 
role of p75NTR in the survival and functions of sensory neurons. 
In human skin, the intensity of p75NTR immunoreactivity in 
sensory nerves is stronger in areas where NGF is upregulated 
in target cells (18). Moreover, p75NTR is strongly increased in 
sensory fibers in conditions where keratinocytes express high 
levels of NGF (19).

p75nTR OUTSiDe THe neRvOUS SYSTeM

Beside the classical role of maintaining neuronal cells, NT and 
their receptors possess a range of functions outside the nerv-
ous system. Most non-neuronal cells express NT receptors and 
respond to NT stimuli, which implies for these neural substances, 
the role of actual growth factors and/or mediators in a number of 
physiologic (20) and pathologic conditions (21, 22). On the other 
hand, the function of p75NTR signaling alone or in combination 
with its co-receptors outside the nervous system has been largely 
overlooked and remains to be clarified.

nT neTwORK in THe SKin

Over the past 20 years, it has become clear that virtually every 
cutaneous cell synthesizes and releases NTs and expresses their 
receptors. Indeed, NGF is produced in basal keratinocytes and 
is involved in important autocrine functions (23, 24). Also, the 
other NTs are detected in keratinocytes where they exert similar 
activities (25).

In addition, the important observation that human mel-
anocytes express all NTs and their receptors (26, 27) has been 
confirmed by the critical role these molecules and their receptors 
play in melanogenesis (28) and melanin production (27). This 

is further supported by the demonstration that NGF rescue 
melanocytes from apoptosis (29) and stimulates their migration 
and dendricity (30). Recently, Byun and co-workers have shown 
that NGF increases melanogenesis and plays a role in the patho-
genesis of melasma (31). Interestingly, NTs and in particular 
p75NTR are expressed in neural crest (NC) cells, the melanocyte 
precursors (32).

While the role of NGF in wound repair has been known for 
a long time (33), NTs stimulate fibroblasts (34), one of the most 
important cell involved in this process. Myofibroblasts produce 
all NT and their receptors. Both p75NTR and Trks mediate fibro-
blast proliferation, differentiation, and migration. In addition, 
NGF or BDNF increase the tensile strength in a collagen gel 
(35), while tensile stimuli increase NGF in human fibroblasts 
(36). Recently, p75NTR has been shown to co-immunoprecipitate 
with the pro-inflammatory phosphodiesterases-4 in myofibro-
blasts (37), although the activities of this complex remain to 
be clarified.

Aloe and Levi-Montalcini originally observed that NGF 
enhances the number of mast cells in tissues (38). Since then, it 
is well accepted that there is a close contact between nerves and 
mast cells to form the “mast cell-nerve unit” that seems to play a 
key role in physiologic and pathophysiologic processes (39), with 
particular regard to itch and atopic dermatitis (40). Indeed, high 
levels of NT-3 are expressed in atopic dermatitis mast cells (41), 
and p75NTR is induced in lesional atopic mast cells (42).

These findings strongly indicate the presence of a complex NT 
network in the skin responsible for a number of autocrine and 
paracrine functions. In this context, a role for p75NTR has recently 
begun to emerge.

p75 AnD HAiR FOLLiCLe

Neurotrophins and their receptors are involved in hair follicle 
morphogenesis in a complex manner. Consistent with the oppo-
site roles of the two NT receptors, it would appear that NGF/
TrkA promotes an anagen supporting role, whereas proNGF/p75 
interaction is associated with a catagen-promoting effect (43). 
Moreover, NGF, but not BDNF, accelerates hair follicle develop-
ment (44). On the other hand, BDNF inhibits hair shaft elongation 
and provokes catagen (45). NGF expression is also observed in 
keratinocytes of human hair follicles (46), with important impli-
cations for morphogenesis (47). Adly and co-workers reported 
that p75NTR protein displays a hair cycle-dependent fluctuation 
in human scalp (48), and p75NTR induces hair follicle involution 
via apoptosis (49).

p75nTR AnD ePiDeRMAL HOMeOSTASiS

Epidermal homeostasis is based on a fine balance between 
keratinocyte proliferation, differentiation, and apoptosis (50). 
Constant epidermal regeneration is achieved by stem cells that 
are slow-cycling and possess the capacity of self-renew (51). 
Keratinocyte stem cells (KSC) reside in the basal layer and gener-
ate transit-amplifying (TA) cells that undergo a limited number 
of cell divisions before committing to terminal differentiation 
(52), although this model has been recently questioned (53, 54).
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Psoriasis is an immune-mediated dermatosis where alterations 
of epidermal homeostasis account for the main pathologic and 
clinical outcome. Indeed, psoriasis is characterized by keratino-
cyte hyperproliferation, abnormal differentiation, and increased 
resistance to apoptosis (55), resulting in excessive epidermal 
thickness, the key feature of psoriatic plaque. Thus, psoriasis is 
a perfect model of altered epidermal homeostasis that can be 
exploited for evaluating the expression and function of several 
molecules, including NTs.

Normal human keratinocytes synthesize and secrete all NTs 
and express their receptors. NGF is predominantly expressed in 
KSC (25), while TrkA is located only in basal keratinocytes with 
a uniform pattern (56). On the other hand, p75NTR is expressed in 
a subpopulation of basal keratinocytes with an irregular distribu-
tion (57). NGF levels are increased in psoriatic tissue (58) and 
keratinocytes (59). TrkA receptor is overexpressed throughout 
the epidermal layers in psoriatic skin (56), whereas p75NTR 
expression completely disappears in lesional psoriatic epidermis 
(57). These findings might be consistent with the general concept 
on the opposing effects Trks and p75NTR mediate in the nervous 
system (60). The following data confirm that this is actually the 
case also at the skin level.

Indeed, NGF or NT-3 stimulates keratinocyte growth  
(25, 61), and transfecting HaCat cells with TrkA enhance cell pro-
liferation (62), indicating that NTs act as mitogens through their 
high-affinity receptor. Consistently, K252, a natural alkaloid that 
blocks Trk phosphorylation, thus inhibiting NT functions, pre-
vents NGF-induced keratinocyte proliferation (23). In line with 
the increased expression of Trk and NGF (63) in psoriasis, topical 
treatment with K252 improves psoriasis in the immunodeficient 
mouse–human skin model (64). In psoriasis, keratinocyte apop-
tosis is spontaneously decreased (65), and psoriatic keratinocytes 
are resistant to apoptosis (66). Recently, PageRank analysis 
revealed a group of hub genes with anti-apoptotic functions in 
psoriasis (67).

Endogenous NGF acts as a survival factor for human 
keratinocytes through Trk receptor, as K252 induces cell death in 
these cells, by maintaining constant levels of the anti-apoptotic 
protein Bcl-2 (24). Furthermore, NGF protects keratinocytes from 
ultraviolet-B-induced apoptosis by preventing the cleavage of 
the enzyme poly (ADP-ribose) polymerase (61). Taken together, 
these data support the notion that NTs and Trk receptors medi-
ate proliferative and survival activities in human keratinocytes. 
Abnormal mitotic and apoptotic processes mediated by NTs lead 
to the imbalanced epidermal homeostasis resulting in the exces-
sive epidermal thickening observed in psoriasis (Figure 1).

The absence of p75NTR as opposed to the increased Trk 
expression in lesional psoriatic epidermis (57) supports the 
hypothesis that an imbalance of the NT receptors could play 
an important role in the alterations of epidermal homeostasis 
observed in psoriasis. In normal human skin, binding of p75NTR 
with proper ligands mediates keratinocyte apoptosis. In fact, β 
amyloid, able to bind directly to p75NTR (68), activates caspase-3 
only in keratinocytes expressing the low-affinity NT receptor. In 
addition, BDNF or NT-4, which signals only through p75NTR, 
induces apoptosis in human keratinocytes (57). In the nerv-
ous system, when both NT receptors are expressed, NT binds 

to Trk/p75 complex and mediate survival (69). On the other 
hand, in normal human keratinocytes, where both receptors are 
expressed, it appears that p75NTR can signal independently of 
Trk. This is in line with other studies in non-neuronal epithelial 
tissues. In fact, BDNF was recently shown to induce apoptosis 
in gingival epithelium via p75NTR (70), and p75NTR mediates 
apoptosis in prostate cancer cells (71), in the presence of Trk 
receptors. p75NTR independent signal mediating apoptosis in 
keratinocytes is further confirmed by the co-immunoprecipi-
tation with its interacting protein NRAGE (57) that is known 
to disrupt p75NTR-Trk complex and to cause cell death through 
JNK-dependent pathway (72). In keeping with this concept, 
BDNF induces apoptosis in human keratinocytes through the 
phosphorylation of JNK (57). Taken together, these results 
indicate that p75NTR counteracts the survival and proliferative 
activities of Trk receptors, thus contributing to a normal epi-
dermal homeostasis (Figure 1).

In human epidermis, differentiation begins when the transi-
tion from KSC to TA cells occurs, although the mechanisms 
underlying this process are still partially unknown.

p75NTR is predominantly expressed in the keratinocyte sub-
population enriched in TA cells (57). p75NTR-positive keratino-
cytes sorted from freshly isolated TA cells still retain KSC 
markers, such as survivin and keratin 15, while they express less 
markers of differentiation, as compared to p75NTR-negative cells. 
In addition, p75NTR-positive TA cells display a higher prolifera-
tive capacity and a better colony forming efficiency, as compared 
to p75NTR-negative cells. Finally, human reconstructed epider-
mis derived from p75NTR-positive TA cells express markers of 
early differentiation (73). This indicates that p75NTR identifies a 
population of early TA cells. A population of early TA has been 
already detected in the hair follicle (74) and in the interfollicular 
epidermis (75) and appears to be critical in the first steps of 
the differentiation process (76). p75NTR protein that exerts its 
activities at the boundary between KSC and TA could function 
as early trigger of keratinocyte differentiation. In fact, silencing 
p75NTR prevents calcium-induced keratinocyte differentiation 
and converts TA cells into a KSC phenotype. Moreover, overex-
pression of p75NTR in KSC results in a keratinocyte subpopula-
tion with the features of TA cells (73). These results indicate 
that p75NTR could act as a “switch on-off ” protein that critically 
regulates KSC-progeny transition and differentiation in human 
epidermis (Figure 1).

Excessive expansion of the TA cells compartment has been 
recently described in psoriatic skin (77), where a defect in TA 
subpopulation seems to account for the epidermal abnormalities 
observed in the disease (78). In addition, in  silico studies have 
simulated psoriasis by altering the TA cells (79), and psoriatic 
TA cells are more advanced in their life cycle than their normal 
counterpart (80). p75NTR levels are strikingly reduced in psoriatic 
TA (57), and the lack of p75NTR seems to account for the reduced 
apoptosis of psoriatic keratinocytes. Indeed, BDNF fail to induce 
cell death in these cells, while overexpression of p75NTR restores 
their susceptibility to apoptosis (73). These findings suggest 
that alterations of the TA cell in psoriasis are at least in part 
due to a defect in p75NTR. Interestingly, skin equivalent models 
derived from p75NTR-negative TA cells display a psoriasiform 
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phenotype (73) in line with the absence of the receptor protein 
in psoriasis (57). Because p75NTR plays a critical role in the early 
keratinocyte differentiation, it is tempting to speculate that the 
intrinsic defects in psoriatic epidermis occur in the early TA 
cells where the absence of p75NTR may account for the altered 
epidermal homeostasis of the disease. It has been shown that 
when keratinocytes exit the niche, they could undergo either 
differentiation or programmed cell death (81). Although p75NTR 
is clearly involved in both processes in human epidermis, the 
different triggers and pathways associated with the functions of 
the receptor remain to be elucidated.

p75nTR AnD MeLAnOMA: MORe THAn 
JUST A MARKeR

Melanoma cell lines synthesize and secrete all NTs and express 
NT receptors (82). p75NTR was first isolated from a melanoma cell 
line, and it has become a useful tool for immunohistochemical 
diagnosis of melanoma (83). High degree of p75NTR expression 
allows a better diagnosis of desmoplastic melanoma (84) and 
the distinction between spindle melanoma and other spindle cell 
tumors (85).

According to the “cancer stem cell” theory, a distinct subpopu-
lation of melanoma cells (melanoma initiating cells, MIC) would 
account for the high tumorigenic properties, tumor heterogene-
ity, invasiveness, and drug resistance (86). p75NTR has received a 
special attention as a possible MIC marker because it is a marker 
of NC cells, the melanocyte precursors (87), and for the similari-
ties between NC stem cells and melanoma cells (88). Yet, whether 
p75NTR identifies a group of highly tumorigenic MIC has not been 
clarified. It was first demonstrated that MIC express high levels of 
p75NTR and p75NTR-positive, but not p75NTR-negative transplanted 
melanoma cells are capable of inducing metastasis in vivo (89). 
On the other hand, Quintana and co-workers could not confirm 
these data, by showing that p75NTR -positive or p75NTR -nega-
tive melanoma cells have the same tumorigenic potential (90). 
Recently, Boyle and colleagues, using different patient-derived 
xenograft assays, have clearly shown that p75NTR-negative and 
p75NTR-positive melanoma cells from each of the patients had 
similar tumorigenic activity, concluding that p75NTR expression is 
unstable and not associated with increased tumorigenicity (91). 
This work also questions its role as a marker of melanoma aggres-
siveness (91). Consistently, p75NTR expression inversely correlates 
with hypoxia and melanoma invasiveness in vivo (92).

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


FiGURe 2 | p75 neurotrophin receptor (p75nTR) and melanoma. p75NTR is associated with less aggressive melanoma, while it tends to decrease and disappear 
during melanoma invasion and metastasis.

5

Pincelli p75NTR and the Skin

Frontiers in Medicine | www.frontiersin.org March 2017 | Volume 4 | Article 22

To definitely assess the role of p75NTR in melanoma, we have 
recently carried out an extensive study in vitro and in vivo (93). 
In skin equivalent models, p75NTR is highly expressed in early 
melanomas at the epidermal level and tends to disappear when 
melanoma starts to invade the dermis. In addition, p75NTR is 
completely absent in skin reconstructs derived from metastatic 
cell lines. p75NTR expression is highest in spheroids derived 
from primary melanoma cells, it decreases in cells derived from 
metastatic melanomas to disappear in highly invasive spheroids. 
p75NTR-negative cells show greater proliferation and invasiveness 
in vitro and are associated with a higher number of metastases 
in zebrafish, as compared with p75NTR-positive cells. Moreover, 
silencing p75NTR induces a more aggressive phenotype in sphe-
roids and in the animal model. By contrast, p75NTR overexpression 
reduces invasiveness in vitro and strikingly reduces the number 
of metastases in zebrafish. This seems to indicate that p75NTR 
switch off is critical for melanoma progression and metastasis 
(Figure 2).

COnCLUSiOn

There is compelling evidence that, in the context of the skin 
NT network, p75NTR is a major actor in both physiological and 
pathological conditions. In healthy skin, p75NTR-triggered differ-
entiation and de-differentiation during KSC to progeny transition 

awaits confirmation in other epidermal stem cell compartments 
as well as in the mouse model. In addition, more studies are 
needed to understand the mechanisms underlying the absence of 
p75NTR protein in psoriasis, and whether the lack of the receptor, 
that is critical for epidermal homeostasis, is associated with a 
psoriatic phenotype also in vivo.

While the downregulation of p75NTR as a precondition for 
melanoma progression and metastasis is unquestionable, the 
molecular mechanisms associated with this function are not 
fully clarified. The low levels of β1 integrin and the decreased 
of cell-to-cell adhesion in the absence of p75NTR could predis-
pose melanoma to increased invasiveness (93). Furthermore, 
melanoma is characterized by an alteration of the apoptotic 
machinery. The lack of p75NTR that exerts pro-apoptotic functions 
in melanoma (94), could favor tumor cell survival and metastasis.
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