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Numerous studies have revealed a continuous increase in the worldwide incidence and 
prevalence of non-tuberculous mycobacteria (NTM) diseases, especially pulmonary 
Mycobacterium avium complex (MAC) diseases. Although it is not clear why NTM 
diseases have been increasing, one possibility is an increase of mycobacterial infection 
sources in the environment. Thus, in this review, we focused on the infection sources of 
pathogenic NTM, especially MAC. The environmental niches for MAC include water, soil, 
and dust. The formation of aerosols containing NTM arising from shower water, soil, and 
pool water implies that these niches can be infection sources. Furthermore, genotyping 
has shown that clinical isolates are identical to environmental ones from household tap 
water, bathrooms, potting soil, and garden soil. Therefore, to prevent and treat MAC 
diseases, it is essential to identify the infection sources for these organisms, because 
patients with these diseases often suffer from reinfections and recurrent infections with 
them. In the environmental sources, MAC and other NTM organisms can form biofilms, 
survive within amoebae, and exist in a free-living state. Mycobacterial communities are 
also likely to occur in these infection sources in households. Water distribution systems 
are a transmission route from natural water reservoirs to household tap water. Other 
infection sources include areas with frequent human contact, such as soil and bath-
rooms, indicating that individuals may carry NTM organisms that concomitantly attach 
to their household belongings. To explore the mechanisms associated with the global 
spread of infection and MAC transmission routes, an epidemiological population-wide 
genotyping survey would be very useful. A good example of the power of genotyping 
comes from M. avium subsp. hominissuis, where close genetic relatedness was found 
between isolates of it from European patients and pigs in Japan and Europe, implying 
global transmission of this bacterium. It is anticipated that whole genome sequencing 
technologies will improve NTM surveys so that the mechanisms for the global spread of 
MAC disease will become clearer in the near future. Better understanding of the niches 
exploited by MAC and its ecology is essential for preventing MAC infections and devel-
oping new methods for its effective treatment and elimination.

Keywords: biofilm, epidemiology, infection source, genotyping, Mycobacterium avium complex, non-tuberculous 
mycobacteria, showerhead, transmission route
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iNTRODUCTiON

Diseases caused by non-tuberculous mycobacteria (NTM) have 
global importance in the public health arena. Steep increases in 
the worldwide incidence and prevalence of these diseases are 
linked with the increasing numbers of patients with pulmo-
nary Mycobacterium avium complex (MAC) disease in many 
countries. Currently, NTM consist of more than 150 species (1), 
and they are globally ubiquitous in both natural and man-made 
environments. Pathogenic NTM can cause infectious diseases 
in humans, livestock, and wildlife. It is believed that NTM 
are generally acquired from the environment via ingestion, 
inhalation, and dermal contact, which results in lymphadenitis, 
pulmonary and disseminated infections, and skin and soft tis-
sue infections. Although it is not clear why NTM diseases have 
been increasing, there are several contributing factors, such as, 
(i) an increase of mycobacterial infection sources in the environ-
ment, (ii) an increase in the number of susceptible individuals, 
(iii) improvements of laboratory detection techniques, and (iv) 
increased awareness of NTM diseases (2). These factors may 
work synergistically to increase the frequency of performing 
mycobacterial cultivations and diagnosing mycobacterial isolates 
to the species level. The basic principle of preventing infectious 
diseases is to clear pathogens from infection sources, to treat 
patients effectively, and to vaccinate susceptible people. However, 
effective methods for eradicating NTM from infection sources 
and hosts have not yet been established, and vaccines have not 
yet been developed. Notably, NTM are tolerant of chlorine-based 
disinfectants (3), and MAC is one of the most tolerant (4). Once a 
person is infected with MAC, it is difficult to eradicate the bacilli, 
as it requires prolonged therapy (at least 12 months of negative 
sputum cultures while receiving a combination of medicines, 
including macrolides) (5). Even after successfully completing 
therapy, microbiological recurrence is common (32–48% of 
cases), most often because of MAC reinfection (6, 7).

Four distinct subspecies are recognized in M. avium:  
M. avium subsp. hominissuis (MAH), M. avium subsp. paratu-
berculosis (MAP), M. avium subsp. avium (MAA), and M. avium 
subsp. silvaticum (MAS). In these M. avium subspecies, MAH is 
considered the clinically most important one for humans, and it 
often causes a chronic pulmonary disease. It is also known to be 
a causative agent of lymphadenitis in children and pigs. Other  
M. avium subspecies are also well-known pathogens; MAP causes 
Johne’s disease, a chronic granulomatous enteritis that principally 
affects ruminants, and MAA and MAS have mostly been isolated 
from birds with tuberculosis (TB)-like disease.

In this review, we focus on the infection sources of pathogenic 
NTM, especially MAC, in the environment. Verification of infec-
tion sources requires the identification of an identical genotype 
between clinical and environmental isolates. In addition, it also 
requires proof of the transmission routes of pathogens from the 
environment to the patients. However, it is difficult to identify the 
transmission routes and infection sources for MAC, because the 
diseases caused by it have long incubation periods and insidious 
onsets. Thus, these properties make it difficult to clarify the time 
of infection (5) and identify the transmission routes. Therefore, 
improving our understanding of the environmental ecology of 

MAC, particularly the niches it inhabits, is important for estimat-
ing its transmission routes and infection sources. Furthermore, 
population-wide genetic studies using new technologies, such as 
variable numbers of tandem repeats (VNTR) and next-generation 
sequencing (NGS), have provided new insights into the sources 
and routes of transmission of NTM, including MAC. For this 
review, we reviewed reports of community-acquired infection 
sources, except for case reports and nosocomial cases.

ReCeNT TReNDS iN THe ePiDeMiOLOGY 
OF NTM DiSeASeS

It is difficult to compare the incidence and prevalence of NTM dis-
eases across geographic areas. Because reporting NTM disease to 
public health authorities is not required in most countries, studies 
of the incidence and prevalence of NTM disease are performed 
differently in different countries. To compare reports regarding 
changes in the incidence and prevalence of NTM disease over 
time in a limited geographic area, one must compare reports 
that used the same methods. Many epidemiological reports and 
reviews have shown that NTM disease have been increasing since 
the 1950s (8–11). Here, we summarize representative reviews 
on NTM and introduce recent articles published after the 2015 
review article by Prevots and Marras (11).

MAC is the Main Driver for the Rise in 
Pulmonary NTM Diseases
Initially, MAC was not the predominant mycobacterial pathogen. 
In fact, increased numbers of Mycobacterium kansasii infections 
were reported in Wales (UK), Texas (USA), Japan, and other 
countries between the 1950s and 1970s (8, 12). However, in 
the decades that followed, the incidence of M. kansasii disease 
remained static (10, 13), while the worldwide prevalence and 
incidence of NTM disease increased greatly (10, 11). In Japan, 
Namkoong et  al. (14) estimated the incidence of pulmonary 
NTM disease at 14.7/100,000 person-years in 2014 (14), which 
represents a 2.6-fold increase over the last 7 years (5.7/100,000 
person-years in 2007) (15). The estimated incidence of pulmonary 
MAC also increased from 5.2/100,000 in 2007 to 13.1/100,000 in 
2014. Most isolates were MAC (88.6%), followed by M. kansasii, 
and Mycobacterium abscessus (14). The last estimated incidence 
in 2007 was obtained by same method (15). Namkoong et al. (14) 
obtained an estimated incidence from 551 hospital-based surveil-
lances between January and March 2014, and they determined 
both the number of newly diagnosed cases of pulmonary TB 
(2,327 cases) and pulmonary NTM disease (2,652 cases) that met 
the American Thoracic Society criteria for diagnosis of NTM 
disease. The authors estimated the pulmonary NTM disease inci-
dence by multiplying the pulmonary TB incidence by the ratio 
of newly diagnosed pulmonary NTM cases to newly diagnosed 
pulmonary TB cases. Hamada et al. (16) reported the prevalence 
of pulmonary NTM in the West Harima area and Kyoto City in 
Japan from 2012 to 2013. The estimated prevalence of pulmonary 
NTM diseases in the West Harima area (85.4/100,000 person-
years) was significantly higher than that observed in Kyoto City 
(23.6/100,000 person-years; p < 0.001) (16).

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


3

Nishiuchi et al. Infection Sources of MAC

Frontiers in Medicine | www.frontiersin.org March 2017 | Volume 4 | Article 27

Shah et  al. (2) performed a population-based survey in 
Wales and Northern Ireland (UK). All culture-positive NTM 
isolates between 2007 and 2012 were reported to Public Health 
England, and the annual incidence of NTM was calculated 
using de-duplicated, individual-level NTM data and mid-year 
population estimates from the Office of National Statistics (2). 
The annual incidence increased from 5.6/100,000 in 2007 to 
7.6/100,000 in 2012. When focusing on pulmonary disease, the 
incidence increased from 4.0/100,000 in 2007 to 6.1/100,000 in 
2012. The most frequently cultured organisms from individuals 
with pulmonary isolates were MAC. The incidence of pulmonary 
MAC increased from 1.3/100,000 in 2007 to 2.2/100,000 in 2012. 
Therefore, MAC is the main driver of the steep increase in the 
incidence of pulmonary NTM disease (2).

A high incidence (13.33/100,000 person-years, with Poisson 
95% confidence intervals), of NTM pulmonary disease among 
adults ≥35 years of age was reported in Ontario, Canada, dur-
ing 2001–2013 (17). In addition, Marras et al. (17) revealed that 
chronic obstructive pulmonary disease and asthma were associ-
ated with approximately ninefold and fivefold higher adjusted 
incidences of NTM pulmonary disease, respectively (17). A 
recent survey in Germany revealed an increase in the prevalence 
of pulmonary NTM disease from 2.3 to 3.3 cases/100,000 popula-
tion from 2009 to 2014 (18).

While the incidences of NTM diseases have tended to 
increase, geographical heterogeneity has also been observed. In 
North Carolina, USA, the annual prevalence of NTM isolation 
did not differ significantly among the five study years (19). The 
authors reviewed laboratory reports of NTM isolation from 
North Carolina residents in three counties during 2006–2010. 
Among 1,033 patients, the overall NTM isolation prevalence was 
15.9/100,000 persons. The prevalence of pulmonary NTM was 
11.5/100,000. Most isolates were MAC, followed by M. abscessus 
complex. These reports clearly indicate that MAC is the main 
driver for the rise in pulmonary NTM diseases.

A Substantial Number of Pulmonary NTM 
Disease Patients Have Been identified 
among Patients with Suspected 
Pulmonary TB and Chronic TB
In many countries, especially in high-burden areas for TB, the 
diagnosis of TB is mainly based on the detection of acid-fast 
bacilli in a sputum smear, as well as on their symptoms and the 
results of a chest X-ray. This diagnostic procedure cannot distin-
guish NTM from TB. In these countries, there are a substantial 
number of pulmonary NTM patients among patients suspected 
of having pulmonary TB (3.4–39%) [Figure 1, single-border box 
(20–27)]. Diagnosed suspected TB patients usually receive an 
anti-TB treatment. However, NTM disease patients are not cured 
by a 6-month anti-TB treatment, and they are then considered to 
have chronic TB or multidrug-resistant-TB (MDR-TB). Among 
these chronic TB and MDR-TB patients, 12–30% of them were 
found to suffer from NTM [Figure  1, double-dot border box 
(28–31)]. These facts highlight several problems: (i) NTM disease 
patients who were diagnosed with TB could not receive appropri-
ate treatment for NTM disease; (ii) annual TB reports contain 

non-negligible errors; and (iii) this has resulted in unnecessary 
expenses for TB treatments. Thus, a reliable, low-cost mycobacte-
rial diagnostic method that results in species-level identification 
is urgently required.

Mycobacterial Species Responsible for 
Pulmonary NTM Disease in Different 
Geographical Areas of the world
There are differences in the relative abundances of mycobacterial 
species that cause NTM diseases across geographic areas (11, 
32, 33). In many countries, the most frequently reported myco-
bacterial species is MAC. In Japan and Oregon, USA, MAC has 
been reported to account for 88.8% (14) [up from 73.7% in 1997 
(34)] and 88% (35), respectively, of all cases of NTM diseases. In 
Eastern Asia, MAC accounts for 68% of all cases of NTM diseases 
(32). In Europe, Hoefsloot et al. (33) collected pulmonary NTM 
isolation and identification results from laboratories. MAC was 
isolated more frequently in Northern Europe (44% of all myco-
bacteria) than in Southern Europe (31%). As reviewed by Prevots 
and Marras (11), MAC was the most common species complex 
(64–85% of cases) in North America, followed in most studies 
by M. abscessus/chelonae (3–13%), M. xenopi (1–23%), M. fortui-
tum (<1–8%), and M. kansasii (<1–6%). In Central and South 
America, MAC was generally most common, and M. kansasii was 
also reported frequently (11).

However, MAC was not predominant in some areas. In French 
Polynesia, which is located in the South Pacific and consists of 118 
islands, 67 of which are inhabited (population = 274,000) (36), 
the most frequently isolated species was M. fortuitum complex 
(42/87, 48.3%), followed by M. abscessus complex (32.2%), M. 
mucogenicum complex (9.2%), and five MAC isolates (5.7%). In 
Larissa, Greece, M. fortuitum was also predominant (30.8%), fol-
lowed by M. gordonae (22.7%) and M. peregrinum (12.0%) during 
2003–2013. M. avium (2.1%) and Mycobacterium intracellulare 
(1.8%) were reported infrequently (37). In India, M. fortuitum 
(40%, 6/15 patients) was predominant, and MAC was not detected 
(38). A subsequent study in India showed that M. intracellulare 
(n = 32, 24%) has become the most predominant species, and M. 
fortuitum (n = 19, 14.3%) was still dominant among 133 NTM 
strains that were isolated during June 2005–May 2008 (39).

THe eNviRONMeNTAL NiCHeS OF MAC 
AND OTHeR NTM

Table  1 shows MAC and other NTM that were isolated from 
water, biofilm, soil, and dust samples. Although NTM were iso-
lated worldwide, the isolation of MAC varied across geographic 
regions.

Frequent Recovery of MAC from Tap 
water and Bathrooms in North American 
and Japanese Households, Respectively
Numerous studies have shown that showerheads and tap water, 
the end-points of drinking water distribution systems (WDSs), 
are MAC reservoirs in households (Table 1). Pathogenic NTM, 
including M. avium, were obtained from the interior surfaces 

http://www.frontiersin.org/Medicine
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FiGURe 1 | Substantial numbers of non-tuberculous mycobacteria (NTM) disease patients have been found among suspected tuberculosis (TB) and 
chronic TB patients. Each box represents the country (reference), surveillance period, percentage of emergence rate of NTM disease among suspected TB 
patients (NTM disease patients/suspected TB patients), and the most predominant NTM and Mycobacterium avium complex (MAC) species (rate of isolates). The 
double-dot border box represents the emergence rate of NTM disease cases among chronic TB cases or suspected multidrug-resistant-TB (MDR-TB) cases. Each 
reference number is shown in parenthesis below the country name.
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of 45 showerheads from 9 cities in the USA using a culture-
independent method (51). The results showed the persistence 
of particular sequence types, e.g., Mycobacterium spp. (28.1% of 
total), while M. avium accounted for 30% of the mycobacterial 
biofilm samples. In addition, NTM and other opportunistic 
human pathogens were enriched to high levels in many show-
erhead biofilms. Wallace et  al. (48) evaluated MAC household 
water isolates from 3 published studies and 37 additional MAC 
respiratory disease patients. The water and biofilm samples were 
obtained from 752 individual sites in 80 households of 73 NTM 
patients. Species identification was initially performed using non-
sequencing methods with confirmation by internal transcribed 
spacer (ITS) and/or 16S rRNA gene sequencing. Although M. 
intracellulare was identified by non-sequencing methods in 41 
household water/biofilm samples, ITS sequencing revealed that 
none of the samples contained M. intracellulare and that 30 
samples were M. chimaera, while 8 were other MAC X species. 
In comparison, M. avium was recovered from 144 (19.1%) water/
biofilm samples. These results indicate that M. intracellulare lung 
disease in the USA is acquired from environmental sources other 

than household water. Non-sequencing methods for NTM iden-
tification might fail to distinguish closely related species (such as 
M. intracellulare and M. chimaera) (48).

In rural areas in the USA, over 15 million households rely 
on private ground water wells for their primary drinking water 
sources. Richards et al. (47) examined tap water and their asso-
ciated biofilm samples from a total of 57 sites from untreated 
groundwater (41 sites) and treated municipal drinking systems 
(16 sites) on the Crow Reservation in rural Montana, USA. 
Mycobacterium species were detected in samples from 20 (35.1%) 
of the 57 locations, in both treated municipal water (8 sites) and 
untreated well water (12 sites) (47). These studies showed that 
MAC was recovered frequently from household water in both 
urban and rural areas in North America.

In Japan, MAC has been isolated only from bathrooms (11 
isolates), while it has not been isolated from kitchen tap water, 
wash basins, and other sites in households of 49 pulmonary 
MAC disease outpatients and 43 healthy volunteers (43). The 
incidence of MAC in the bathrooms of patients was significantly 
higher than that in healthy volunteers’ bathrooms (p  =  0.01). 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


TABLe 1 | Summarized detection rates of MAC and other NTM in the environment.

Region Country/
local (dates)

Number of 
householdsa 
and total 
samples

Kinds of 
samples

environmental sampling sites and number of samples Detection 
method

Species 
identification 
method

Detection rateb (S, 
samples; H, households)

Rate of MAC Reference

East 
Asia

Japan/Osaka 40 (H) Biofilm Bathroom drains (38), kitchen drains (39), bathtub inlets (27), 
showerheads (39), showerheads, inner (23)

NTM-
specific 
16SrRNA 
qPCR

Mycobacterium 
avium-specific 
16SrRNA qPCR

NTM M. avium (40)
166 (S) 38.6% of S (64/166) 12.5% of H (5/40)

Japan/Kyoto 
(2007.1–
2011.9)

135 (H)
135 (S)

Soil Residential yards soils (79), potting soils (49), agricultural farm 
soils (7)

Culture Multiplex PCR 
for MAC

MAC
48.9% of S (66/135)

M. avium (41)
28.1% of S (38/135)
Mycobacterium 
intracellulare
26.6% of S (36/135)

Japan/Osaka 
(2005.1–
2007.7)

29 (H)
162 (S)

Water
Biofilm

Shower waters (29), bathing waters (26), showerheads (29), 
showerheads, inside (24), bathtub inlets (25), bathroom drains 
(29)

Culture MAC-specific 
PCR

MAC
20.4% of S (33/162)
51.7% of H (15/29)

M. avium (42)
19.8% of S (33/162)
51.7% of H (15/29)
M. intracellulare
0.6% of S (1/162)
3.4% of H (1/29)

Japan/Osaka 
(2004.1–
2004.12)

92 (H) Water Shower waters (89), kitchen tap waters (91), bathing waters 
(86), shower heads (76), bathroom drains (92), kitchen sink 
drains (92), washbasin drains (92), dusts from air conditioners 
(86)

Culture 16S–23S ITS 
sequence

MAC M. avium (43)
704 (S) Biofilm 1.6% of S (11/704) 7.6% of H (7/92)

Dust 10.9% of H (10/92) M intracellulare
3.3% of H (3/92)

Oceania Australia 20 (H) Water
Biofilm

Water samples from kitchen, bathroom, and shower taps, 
rainwater tanks, and swimming pools

Culture Multiplex PCR Pathogenic NTM
95.0% of H (19/20)

M. avium
5% of H (1/20)

(44)

Swabs were taken from inside all taps and showerheads

North 
and 
Central 
America

USA 41 (S) Water 6 sampling sites with different distance from a point of entry to 
the distribution system

qPCR NTM
88% of site (36/41)

(45)

USA 51 (S) Biofilm Kitchen faucet biofilm (51) MAC MAP
11.8% of S (6/51)

M avium (46)
MAP 35.3% of S (18/51)
Specific qPCRc M intracellulare

56.9% of S (29/51)

USA/Crow 
reservation, 
Mon

57 sites Water Kitchens or restrooms tap water, biofilm inside of the faucets Culture 
and 16S 
rRNA gene 
PCR

16S rRNA gene 
sequencing 
(>95% similarity)

NTM M. avium (47)
Biofilm They were supplied by municipal systems (16) and by ground 

water wells (41)
35.1% of sites (20/57) 1.8% (1/57) by culture

12.3% (7/57) by PCR

USA 73 (H) Water Water and biofilm samples from 80 households Culture ITS and 16S 
rRNA gene 
sequencing

MAC and related species M. avium (48)
782 (S) Biofilm 24.2% of S (182/752) 19.1% of S (144/752)

56.1% of H (41/73) M intracellulare
None

(Continued )
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Region Country/
local (dates)

Number of 
householdsa 
and total 
samples

Kinds of 
samples

environmental sampling sites and number of samples Detection 
method

Species 
identification 
method

Detection rateb (S, 
samples; H, households)

Rate of MAC Reference

USA/
New York 
(2001–2011)

8 (H) Water Hot and cold water (43), biofilms from water taps and 
showerheads (31), filters (6)

Culture ITS or 16S rRNA 
gene sequencing

NTM M. avium (49)
88 (S) Biofilm 39.8% of S (35/88) 37.5% of H (3/8)

USA 
(2007–2009)

37 (H)
394 (S)

Water Water (47) Culture Nested PCR for 
16S rRNA, PCR-
RED of hsp65d

NTM M. avium (10) (50)
Biofilm Biofilm (46) 27.7% of S (109/394)
Filter Filters (4) 59.5% of H (22/37) M. intracellulare (10)
Soil Soil (17)

USA/nine 
cities

45 public 
buildings 
>6,090 
clones

Water
Biofilm

Showerheads (45) 16S rRNA 
gene-
based 
clone 
libraries

NTM M. avium  
(351 clones)

(51)
Water 28.1% of total
Biofilm
Repeatedly sampled (2–3 times at 4 sites)

30.4% of clones from 
biofilm (1,051/3,454)

M. intracellulare  
(5 clones)

11.4% of clones from water 
(131/1,146)

USA, Canada 21 (H)
81 (S)

Soil Personal potting soil (79)
Commercial potting soil (2)

Culture 16SrRNA gene 
sequencing

NTM
34.6% of S (28/81) 
including commercial 
potting soil

M. avium (52)
15.2% of S (12/79)
M. intracellulare
21.5% of S (17/79)

USA/San 
Francisco 
(1990.10–
1992.8)

290 (H)
1,082 (S)

Water
Soil
Food

Tap water (385) Culture Probe method NTM M. avium (45) (53)
Bottled water (77) 22.4% (242/1,082) of S 4.2% (45/1,082) of S
Water from outside of household
Soil (157)
Food (397)

17% of water (90/528)
3 of foods (12/397)
89% of soil (140/157)

0.19% of water 
(1/528)
0.25% of foods 
(1/397)
27% of soil (43/157)

Mexico/
Mexico City 
(2008.11–
2009.10)

5 (H)
120 (S)

Water Kitchen tap water, every month Culture PCR-RED of 
hsp65

NTM
15.8% (19/120) of S

M. avium
2.5% (3/120)

(54)

16S rRNA gene, 
rpoB sequencing

Europe Greece/
Larissa 
(2010–2013)

30 localities Water Drinking water samples Culture Genotype CM kit NTM (37)
3,360 (S) 11.2% of S (376/3,360)

Germany/
Berlin and 
other federal 
stations

130 (S) Water Water (40); tap water, lake, river, fountains, rain puddles Culture M. avium 
specific, 
subspecies 
specific PCR

MAH Same as on the left (55)
66 indoor
64 outdoor

Biofilm
Soil
Dust

Biofilm (19); sanitation facilities, well wallings, filter units, river 
and lake borders

13.8% of S (18/130)
20% of soil (8/41)
33% of dust (10/30)Soil (41); flower pots, gardens, play grounds, urban spaces, 

forests
Dust (30); vacuum cleaners, room surfaces, air filters
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Region Country/
local (dates)

Number of 
householdsa 
and total 
samples

Kinds of 
samples

environmental sampling sites and number of samples Detection 
method

Species 
identification 
method

Detection rateb (S, 
samples; H, households)

Rate of MAC Reference

The Czech 
Republic

38 (H) and 
others

Biofilm Household drinking water tank sediments (38) from four 
drinking water supply systems, dam sediments (52), water 
treatment plant sludge samples (34)

Culture
qPCR

MAC-specific 
PCR

NTM
33.9% of S (42/124) by 
culture
76.7% of S (92/124) by 
PCR

MAH
0% by culture
24.2% by qPCR

(56)

124 (S) 16S rRNA gene 
sequencing

The Czech 
Republic

2 (H)
55 (S)

Water Soils (44), cobwebs (4), dusts (2), water (1), compost materials 
(2), a moss (1), leaf (1)

qPCR
Culture

Triplex qPCR
16S rRNA gene 
sequencing

MAH Same as on the left (57)
Soil 42.8% of S from patient 1
Dust 47.6% of S from patient 2
Others

Italy/Latium 
region and 
Calabria 
region

20 (H) and 
others

Water Tap waters of hospitals (22) and households (20) Culture PCR-RED of 
hsp65

NTM
61.9% of S (14/42)

M. intracellulare 
(frequently isolated)

(58)

42 (S)

Greece/
Trikala City 
(2007.1)

2 (H) and 
others

Water Tap water (2) 16S rRNA 
gene-
based 
clone 
libraries

NTM
5.3% of clones (6/112)
26.1% of clones from tap 
water (6/23)

(59)

22 (S) 112 
(clones)

Drilling wells (13)
Water treatment tank (7)

Africa Uganda 
(2008.9–
2009.1)

231 (H)
310 (S)

Water Household drinking water (130) Culture INNO-Lipa test NTM MAC (5) (60)
Soil Water from valley dam and stream (56) 16S rRNA gene 

sequencing
15.5% of S (48/310) M. intracellulare (9)

Soil from animal kraal (44)
Animal 
feces

Soil from water source (47)
Animal feces (33)

Middle 
East

Iran 
(2015.6–9)

110 (S) Water Tap water, source water Culture 16S rRNA 
gene and rpoB 
sequencing

NTM MAA (1) (61)
32% of S (35/110) M. intracellulare (1)

Iran/four 
suburbs

4014 (S) Water Tap water (260) Culture PCR-RED of 
hsp65 and ITS 
gene

NTM
21.4% of S (862/4,014)

M. avium
4.7% of NTM (20/862)

(62)
Damp water (290)

Soil Running water on raceway (1,396)
Soil (2,068)

aNumber of households that provided samples (H) and a total number of samples (S).
bDetection rates are represented per sample (S) and per household (H).
cqPCR assays targeting partial 16S rRNA gene sequences for M. avium and M. intracellulare and targeting IS900 and IS1251 for M. avium subsp. paratuberculosis.
dPCR-RED analysis: PCR amplification and analysis of restriction endonuclease digestion fragments (PCR-RED) of the heat-shock protein 65 (hsp65) gene.
ITS, internal transcribed spacer; MAC, Mycobacterium avium complex; NTM, non-tuberculous mycobacteria; MAP, M. avium subsp. paratuberculosis; MAH, M. avium subsp. hominissuis.
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Of the 11 MAC isolates, 2 were isolated from showerheads, 3 
from shower water, 4 from bathtub water, and 2 from drain 
outlets (43). An additional survey of 29 pulmonary MAC disease 
patients revealed the polyclonal colonization of MAC in their 
residential bathrooms (42). Particularly, it was found that MAC 
predominantly colonized bathtub inlets. A bathtub inlet is a 
special piece of equipment in Japanese-style bathtubs, and it is 
located inside the bathtub. Hot water is supplied from the bathtub 
inlet, which is connected to a bath boiler or a hot-water supply. 
Another study in Japan also detected M. avium from bathtub 
inlets in 5 residences using a culture-independent method (40) 
after collecting specimens from 5 sites in 40 healthy volunteers’ 
homes (Table 1).

where Do MAC and Other NTM Organisms 
in Tap water Come From?
Household tap water is provided by treatment plants via drink-
ing WDSs. Do NTM organisms also travel from untreated water 
through drinking water treatment plants to household tap water? 
To answer this question, Klanicova et al. (56) obtained 124 sam-
ples from 4 drinking water supply systems in the Czech Republic, 
and they detected MAC by culture and quantitative real-time 
PCR (qPCR) methods (56). The samples included 52 dam 
sediments, 34 water treatment plant sludge samples, and 38 tap 
water household sediments. They showed that 92 (74.2%) of the 
samples analyzed were M. avium subspecies-positive according 
to the qPCR results, and the subspecies detected included MAP 
(36.3%), MAA (13.7%), and MAH (24.2%). The frequency of the 
M. avium subspecies-positive samples indicated a statistically 
significant declining trend along the route leading from the dam 
to the water treatment station to the households (the p-value of 
theχ2 test for the trend was <0.01) (56).

Kormas et al. (59) surveyed 13 water pumping wells, the water 
in a treatment tank, and the tap water from 2 households in 
Trikala City, central Greece, in 2007 using a culture-independent 
method. They obtained a total of 191 clones. While Actinobacteria, 
which are closely related to NTM, did not appear in the clonal 
libraries resulting from the pumping wells and the treatment 
tank water, they were dominant in the tap water. Six clones were 
closely related to NTM, including M. gordonae, M. mucogenicum, 
M. gadium, M. neglectum, M. sherrisii, and an unidentified M. sp 
(59). Another group surveyed 41 water samples from 6 sampling 
sites located at different distances from a point of entry to a WDS 
in the USA (45). They detected Mycobacterium spp. in 88% of 
the samples. The densities of Mycobacterium spp. were generally 
higher (324-fold) for distal sites relative to the entry point of the 
distribution system.

These studies suggest that mycobacterial communities are 
likely to accumulate at the end of a WDS. The NTM might 
travel from raw water through the WDS to household tap water. 
Although the presence of NTM in household tap water may be 
partially responsible for the dissemination of these organisms, 
the recent global increase in pulmonary NTM disease patients 
remains unexplained. Furthermore, MAC was recovered from 
bathrooms, but not from kitchen tap water, in Japan (40). This 
suggests the existence of a transmission route other than the 
WDSs.

Frequent Recovery of MAC from Soil in 
europe
Soil and house dust are also reservoirs for NTM. In Europe, MAC 
and other NTM are isolated frequently from soil, compared with 
water and biofilm samples (Table 1). In Larissa, Greece, Dovriki 
et al. (37) analyzed 3,360 drinking water samples from 30 locali-
ties of 367 NTM patients’ residence areas during 2010–2013 using 
a culture method. Interestingly, NTM were not found in water 
samples where the concentration of residual chlorine was greater 
than 0.5 mg/L. When the residual chlorine concentrations ranged 
from 0.0 to 0.5 mg/L, NTM were found in 11.2% (n = 376) of 
the samples, and M. gordonae, M. fortuitum, and M. peregrinum 
accounted for 41.0, 38.3, and 6.9%, respectively, of these isolates 
(37). In Germany, Lahiri et al. (55) collected 130 samples from 
indoor (66 samples), outdoor (25 samples), and countryside 
samples (39 samples) containing water, biofilm, and soil samples. 
The NTM isolates were then recovered by a culture method. 
Interestingly, MAH was predominant in the soil and dust samples, 
while MAH was not identified in the water and biofilm samples. 
Furthermore, MAH was isolated from 24% of the indoor samples, 
while only 3% of the outdoor samples yielded MAH isolates. A 
similar result was obtained when samples were collected from 
areas with frequent human contact (home dust, soil from flower 
pots, gardens, and playgrounds, tap water, and biofilms from 
sanitation facilities, filter units, and aquariums) and compared 
with samples involving less probable human contact (55). In the 
Czech Republic, Kaevska et al. (57) determined the presence of 
MAH and MAA, as well as other NTM, in environmental samples 
including water, soil, soil fertilized with chicken droppings, dust, 
cobwebs, compost materials, and moss and leaves from two 
residences of children who were diagnosed with MAH cervical 
lymphadenitis. A triplex qPCR examination revealed the pres-
ence of MAH/MAA in the potting soil, garden soil, and dust from 
both the residences (57).

High recovery of MAC from water samples in Europe has also 
been reported. In Italy, Briancesco et al. (58) collected 42 water 
samples from taps of 22 hospitals and 20 households. The rates of 
NTM contamination were 60% for household tap water and 73% 
for hospital water samples. The most frequently isolated strains 
were M. intracellulare, M. genavense, and M. haemophilum (58).

Isolates of NTM have been recovered from soil samples not 
only in Europe, but worldwide. In USA, De Groote et  al. (52) 
analyzed 79 soil samples from 26 pulmonary NTM disease 
patients’ households. They demonstrated the aerosolization of 
contaminated NTM in soil using the following method. The soil 
samples were dropped off, aerosolized particulates were inocu-
lated, and NTM were isolated. The most frequent pathogens in 
patients, such as M. avium and M. intracellulare, were also the 
most abundant mycobacteria in the soil (52).

In Japan, MAC and other NTM were detected in soil and 
house-dust samples. Ichiyama et  al. (63) examined 33 samples 
from soil (5 samples), ditch-mud (4 samples), house dust (22 
samples), and river water (2 samples), and they recovered NTM 
from 5 soil samples, 4 ditch-mud samples, 17 house-dust sam-
ples, and 1 river-water sample. In total, 247 MAC isolates and 
78 Mycobacterium scrofulaceum isolates were recovered (63).  
A recent study showed that MAC strains were recovered from 
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48.9% of residential soil samples in households of 100 pulmo-
nary MAC patients and 35 non-infected control patients. The 
frequency of MAC recovery did not differ among soil types or 
among patients, regardless of the presence of pulmonary MAC 
disease or the identity of the infecting MAC species (41). In addi-
tion, a subsequent report showed that high exposure to soil (≥2 h/
week) was associated with polyclonal and mixed mycobacterial 
MAC infections in pulmonary MAC disease patients (64).

In Uganda, Kankya et al. (60) investigated 310 samples (soil, 
water, and fecal samples from cattle and pigs) from pastoral 
communities, and they detected NTM in 48 samples (25.3% of 
the soil samples, 11.8% of the water samples, and 9.1% of the 
fecal samples). Of these samples, M. fortuitum–M. peregrinum 
complex (12 isolates), MAC (14 isolates), M. gordonae (5 isolates), 
and M. nonchromogenicum (5 isolates) were the most frequently 
detected mycobacteria. MAC was recovered from drinking and 
natural water, as well as soil samples, but not from fecal samples. 
The authors warned that many patients might be at high risk of 
NTM infections because of the high incidence of HIV/AIDS in 
Uganda (60).

The niches used by MAC and other NTM organisms are soil, 
water, and dust, and many reports indicate that MAC species 
tend to occur in households (Figure  2). The household niches 
exploited by MAC, which have been shown to vary regionally, 
include household tap water in North America (47, 48), bath-
rooms in Japan (40, 42, 43), and soil in Europe (55, 57). Despite 
these regional differences, the commonality among them is that 
MAC was frequently isolated from indoor samples and from 
samples collected from areas with frequent human contact (40, 
42, 43, 47, 48, 51, 55, 57). This suggests that individuals may carry 
NTM organisms that also attach to their belongings. Therefore, 
acquiring information about the regional differences in NTM 
organisms, where they accumulate in houses, and whether other 
niches for them exist is now a priority for research in this area. 
Accumulating such data would help to elucidate the mechanisms 
involved in the global spread of MAC. It is feasible that new infec-
tion sources would be identifiable in such data.

eCOLOGY OF MAC AND OTHeR NTM 
ORGANiSMS iN eNviRONMeNTAL 
NiCHeS

Long-term colonization of showerheads and tap water indicates 
that MAC and other NTM species attach to surfaces, withstand 
water flow, and grow inside of showerheads and plumbing pipes. 
Indeed, a longitudinal study verified colonization by a single clone 
at drinking water point-of-use sites for up to 26  months (65). 
Lehtola et  al. (66) demonstrated that M. avium can withstand 
water flows, as determined using a Propella biofilm reactor in a 
laboratory experiment (66). These facts have led to the common 
understanding that NTM form biofilms, even though mycobac-
teria do not possess appendages such as flagella and pili. These 
appendages have been reported to play an important role in the 
first steps of biofilm formation, such as chemotaxis and attach-
ment to surfaces (67). This raises the following questions: how can 
slow-growing mycobacteria attach to surfaces and form biofilms 

by overcoming competition with other fast-growing microbes? 
In addition, can mycobacteria form multispecies biofilms that 
contain fast-growing microbes? If so, how can mycobacteria grow 
inside a multispecies biofilm with other fast-growing microbes? 
Although many studies of mycobacterial biofilms have been 
reported, these questions remain unanswered.

Another possibility for survival in the environment is within 
a free-living amoeba where NTM might be protected from 
attack by fast-growing microbes. As is well known for Legionella 
pneumophila, free-living amoebae can provide the bacteria with 
an ideal environment in which to multiply. In addition, free-
living amoebae may also promote survival within macrophages. 
It has been reported that pathogenic mycobacteria can prolifer-
ate within free-living amoebae in  vitro, and it has been show 
that M. avium replicates within amoebal vacuoles and exists 
at the outer walls of the double-walled cysts of Acanthamoeba 
castellanii (68), Acanthamoeba polyphaga (69), and Tetrahymena 
pyriformis (70).

To better understand the ecology of these microbes it is 
important to observe directly Mycobacterium biofilm formation 
and free-living amoebae that harbor NTM in the environment. 
Feazel et al. (51) used scanning electron microscopy to directly 
observe a biofilm that formed inside a showerhead. The resulting 
image showed that microbes were clumped and embedded in 
extracellular material. Recently, Gomez-Smith et al. (71) investi-
gated a water main biofilm in Saint Paul, MN, USA. They directly 
observed the biofilm inside the water main, and they assayed 
the quantity and composition of bacterial biofilms using qPCR 
targeting the 16S rRNA gene, as well as NGS (71). They compared 
two types of water mains, unlined cast-iron and cement-lined 
cast-iron; the former possessed corrosion tubercles, while 
the latter did not. They revealed that the biofilm communities 
predominantly contained a genus of Mycobacterium at the main 
wall-bulk water interface (25–78% of the community), regardless 
of the water main age, estimated water age, water main material, 
or the presence of corrosion products. The two dominant myco-
bacteria were M. frederiksbergense and M. aurum. In addition, 
mycobacteria were detected from the surface tubercles, but not 
from underneath the tubercles. These results show that NTM 
can form biofilms via attachment to inanimate surfaces or to the 
biofilms formed by other microbes under various conditions. 
NTM seems to form biofilms by overcoming competition with 
other fast-growing microbes, but the mechanism underlying this 
ability remains unclear.

Recent studies showed that NTM survive and proliferate 
within amoebae in the environment. Thomas et al. (72) investi-
gated the presence of free-living amoebae and amoebae-resistant 
bacteria at various stages of a drinking water plant that was fed 
with river water in France. M. mucogenicum was directly recov-
ered from an Echinamoeba-related amoeba that was isolated from 
ozone-treated water. Echinamoeba- and Hartmannella-related 
amoebae were mainly recovered in the drinking water plant. 
Acanthamoeba- and Naegleria-related amoebae were recovered 
from the river water and sand filtration units (72).

Delafont et al. (73) reported the isolation of free-living amoebae 
and amoebae-associated NTM from 25 end-point water samples 
that were collected monthly from September 2012 to September 
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2013 in Paris, France. The cultivable amoebae were recovered from 
174 (69.3%) of 251 water samples, and total DNA at the amoebal 
migration front were extracted from 129 out of 174 samples; 113 
out of 129 samples (87.6%) were positive for mycobacteria. They 
also observed numerous acid-fast bacteria inside amoebae, espe-
cially Acanthamoeba and Protacanthamoeba, using microscopy. 
They screened 42 samples harboring a single amplification for 
amoeba and mycobacterial species identification. Their identi-
fication based on 18S rRNA and rpoB sequencing, respectively, 
revealed the presence of various free-living amoebae, such as 
Vermamoeba vermiformis, Protacanthamoeba bohemica, and 
Acanthamoeba spp. The highest number of identified mycobacte-
rial species were related to Mycobacterium llatzerense (>90%), 
followed by M. chelonae, M. aromaticivorans, M. phocaicum, and 
M. mucogenicum (73).

In the environment, NTM are free-living, but they also live 
in biofilms and inside protozoa, and these three survival styles 
may affect each other. However, MAC and other pathogenic 
NTM species have not been directly identified inside protozoa 
yet. Further investigation of the ecology and interactions among 
NTM survival styles, the mechanism of overcoming competition 
with other fast-growing microbes, including the regulatory sys-
tems that govern them, is needed. These investigations are crucial 
for gaining better understanding of NTM infection mechanisms 
and for developing a strategy to eradicate these pathogens from 
niches and hosts.

iNFeCTiON SOURCeS FOR MAC iN THe 
eNviRONMeNT

Respiratory infections are thought to be caused by inhalation of 
contaminated aerosols. It has been shown that aerosolized shower 
water (44) and aerosolized soil (52) contain MAC and other NTM 
organisms. Contaminated aerosols have also been reported to 

be produced by pool surfaces in a hospital therapy pool (74). 
Therefore, NTM niches could be important infection sources. 
The verification of infection sources requires the identification 
of the identical genotype in clinical and environmental isolates. 
Table 2 presents the results of studies in which the clinical and 
environmental isolates had identical genotypes.

In Japan, residential bathrooms of patients with pulmo-
nary MAC disease have been reported to be a niche of MAC, 
as described above (42, 43). To assess the infection sources of 
residential bathrooms, a genotyping comparison was performed 
between environmental and clinical isolates using pulsed-field 
gel electrophoresis (PFGE). In these studies, identical strains of 
M. avium were identified [2/49 (4%) by Nishiuchi et al. (43) and 
7/29 (24%) by Nishiuchi et  al. (42)]. Thus, MAC organisms in 
bathrooms are likely to be transmitted to the users. However, it 
is possible that MAC organisms might migrate from patients to 
their bathrooms. Fujita et  al. (41) examined soil samples from 
100 pulmonary MAC disease patients. Six cases (6%) showed a 
matching profile of VNTR between the clinical and soil isolates 
(41). These patients were exposed frequently to soil (≥2  h per 
week), suggesting that residential soils are a likely source of 
pulmonary MAC infections.

Thomson et  al. (44) examined household water and shower 
aerosols of patients with pulmonary NTM disease. They chose 20 
patients who had resided in the same dwelling for greater than 
5 years prior to the diagnosis of NTM disease. They performed a 
repetitive element palindromic PCR, and they obtained identical 
or related properties in four cases (20%). Additionally, NTM were 
detected in aerosols in 9 of 18 homes (44). Tichenor et al. (49) col-
lected household plumbing samples from eight adult outpatients 
who suffered from NTM-infected chronic rhinosinusitis in New 
York, USA. In three cases (37.5%), M. avium strains were isolated 
from households and patients, and they possessed almost identi-
cal profiles according to PFGE (49).
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Region Country 
(dates)

environmental 
sources

No of 
patients

Clinical disease Clinical 
samples

Genotyping Rate of matching Reference

East 
Asia

Japan 
(2007.1–
2011.9)

Soil in pot and in 
yard

100 Pulmonary Mycobacterium 
avium complex (MAC) 
disease

Sputa Variable numbers of 
tandem repeats

M. avium (41)
7.5% (5/67)
M. intracellurare
3.0% (1/33)

Japan 
(2005.1–
2007.7)

Bathrooms 29 Pulmonary MAC disease Sputa Pulsed-field gel 
electrophoresis 
(PFGE)

M. avium (42)
Bathtub inlet 24.1% (7/29)

Japan 
(2004)

Bathrooms 49 Pulmonary MAC disease Sputa PFGE, restriction 
fragment length 
polymorphisms 
(RFLPs)

M. avium (43)
Bathtub water 4.1% (2/49)

Oceania Australia Bathrooms
Tap water
Aerosol from shower 
water

20 Pulmonary non-tuberculous 
mycobacteria (NTM) disease

Respiratory 
samples

Repetitive element 
palindromic PCR (Rep 
PCR)

NTM (44)
20% (4/20)
Mycobacterium abscessus 
(2)
Mycobacterium kansasii (1)
M. lentiflavum (1)
20% (4/20)

North 
America

USA 
(2001–
2011)

Tap water 8 Chronic NTM rhinosinusitis Sinus cavity 
samples

PFGE, rep PCR M. avium (49)
Filter 37.5% (3/8)

USA Shower water 31 NTM infection Rep PCR NTM (50)
Tap water 22.6% (7/31)

USA Tap water 27 M. avium disease Respiratory 
and other 
sites

PFGE M. avium (75)
3.7% (1/27)

USA, 
Canada

Aerosol from potting 
soil

26 Pulmonary NTM disease Respiratory 
samples

PFGE M. avium (52)
3.8% (1/26)

Europe Czech 
Republic

Soil in yard 2 M. avium subsp. hominissuis 
(MAH) cervical lymphadenitis

Surgical 
excision-
tissues

IS1245 RFLP MAH (57)
50% (1/2)
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These studies suggest that tap water, residential soil, and 
bathrooms in patients’ households were infection sources 
(Table  2). The reported patients suffered from pulmonary 
MAC disease, pulmonary NTM disease, chronic NTM rhi-
nosinusitis, and MAH cervical lymphadenitis. As mentioned 
earlier in this review, NTM disease is characterized by a long 
incubation period with an insidious onset. Therefore, these 
infection sources were identified after the onset of clinical 
signs and symptoms, not at the time of infection. Thus, these 
sources are “estimated infection sources,” and they possess the 
following common properties: (i) MAC and other NTM organ-
isms colonize these areas; (ii) in these areas, patients regularly 
make contact with the infection sources and may, therefore, 
have frequent opportunities for contact with MAC and other 
NTM organisms. In general, MAC patients are at risk of rein-
fection and recurrence of MAC and other NTM species. Also, 
patients with NTM disease may experience repeat infections 
with different clonal strains or the same clonal strain from 
these infection sources. Consequently, these infection sources 
are a risk to patients who easily become reinfected with such 
pathogens. Therefore, determining the infection sources is 

important for preventing further infection in such patients. In 
addition, initiating a population-wide epidemiological survey 
would provide further knowledge about the infection sources 
for these pathogens, and this is the subject of the next Section 
“Population-Wide Genetic Studies.”

Mycobacterial communities are likely to gather at the infec-
tion sources in households (Table 1). A possible mycobacterial 
transmission route involves travel from natural reservoirs to 
households (e.g., WDSs). While the transmission routes may be 
partially responsible for the increased incidence of pulmonary 
MAC disease, it is difficult to explain the recent global increase 
in the number of patients with this disease (i.e., the globaliza-
tion of pulmonary MAC disease; Figure 2). The global spread of 
pulmonary MAC disease might be caused by human activities, as 
individuals carry MAC organisms that concomitantly attach to 
their belongings and their living environments. De Groote et al. 
(52) certified the existence of NTM in a commercial soil, which 
supports this hypothesis (52). That is, global human mobility and 
trade may lead to the global transmission of MAC via fomites. To 
explore this hypothesis, further investigation of the niches used by 
MAC and its ecology are required. Furthermore, population-wide 
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genetic studies and genome epidemiology should provide new 
insights into the sources and routes of MAC transmission.

POPULATiON-wiDe GeNeTiC STUDieS

Four distinct subspecies of M. avium have been identified, e.g., 
MAH, MAP, MAA, and MAS. Turenne et al. (76) performed a 
comprehensive phylogenetic analysis of M. avium via multi-locus 
sequencing typing of 10 genes (8,064  bp) using 56 genetically 
diverse strains of M. avium that included all subspecies. The 
results showed that MAH had the highest level of genomic 
heterogeneity within a single subspecies. They concluded that 
MAH represents a diverse group of organisms from which the 
other subspecies, MAP, MAA, and MAS, evolved independently 
(76). This high genetic diversity of MAH focused attention on 
the phylogeographical differences of this subspecies, which 
could reside in different infection sources in different regions. 
Population-wide genetic studies using many isolates that cover 
different regions will be needed to ascertain the phylogeography 
of M. avium.

Until very recently, genetic studies that used many isolates 
were technologically limited, and it was difficult to compare 
data from different studies. Traditional fingerprinting methods, 
such as restriction fragment length polymorphisms based on the 
IS1311 and IS1245 insertion sequences and PFGE, are valuable 
methods for typing MAH strains. However, its use is restricted to 
comparing only small numbers of isolates because it is technically 
challenging and time-consuming, and there is a lack of inter-
laboratory reproducibility, which makes it difficult to compare 
data from different experiments and laboratories. To overcome 
the drawbacks of these methods, a VNTR typing analysis of MAH 
has been developed (77, 78). It is a simple, PCR-based genotyp-
ing method that uses the polymorphisms of minisatellites (79, 
80). The method shows a high level of reproducibility, and its 
digitalized data make it easy to compare results from different 
experiments and facilities (81). The emergence of this new geno-
typing method, VNTR analysis, has opened the door for global 
epidemiological studies of MAH.

Iwamoto et  al. (82) performed a VNTR analysis of a large 
MAH population using 258 Japanese isolates (146 human iso-
lates, 37 bathroom isolates, and 75 pig isolates), 68 French isolates 
(14 human isolates and 54 pig isolates), and 22 Finnish isolates 
(10 human isolates and 12 pig isolates) (82). In their following 
paper, they also included 77 MAH isolates from Korean patients 
(83). Later, Leão et al. (84) incorporated these data with their own 
VNTR data for humans (n = 28) and pigs (n = 69) in mainland 
Portugal (84). Ichikawa et al. (85) also performed a VNTR analy-
sis of MAH isolates from different regions, i.e., East Asia [Japan 
(n = 94) and Korea (n = 98)], Europe [Netherlands (n = 27) and 
Germany (n = 10)], and the USA (n = 32) (85). These studies 
revealed the following global epidemiological aspects of MAH. 
(i) The isolates from Japanese patients showed a high degree of 
genetic similarity with the Korean isolates, whereas their simi-
larities with the European and USA isolates were quite low. (ii) 
The MAH isolates from Japanese patients showed a low degree 
of similarity with the pig isolates, whereas the isolates from 
European patients showed a high degree of similarity with the 

pig isolates. (iii) The pig isolates from Japan were closely related 
to the European isolates from both humans and pigs.

These results indicate that the prevalent strains vary across 
geographical regions. This implies the existence of different 
infection sources, routes of transmission, and clinical manifesta-
tions in different regions. The high genetic relatedness between 
human and pig isolates in European countries supports the view 
that there is a common source of MAH infection for pigs and 
humans, or that pigs are vehicles for human infections in these 
countries (86). However, this is not true in Japan because of the 
low genetic similarity between human and pig isolates. In contrast 
to the human cases, the pig isolates are more homogeneous at a 
global level. Attractive hypotheses for this global similarity of pig 
isolates are (i) there are common infection sources for pigs at the 
global level, such as piggery bedding materials like peat, sawdust, 
and straw and (ii) pig-derived MAH strains have been globally 
distributed through the importing/exporting of pigs, including 
breeding pigs (82).

A population-wide genetic study using the VNTR method 
revealed that Japanese human isolates can be divided into two 
major clonal complexes, one of which is highly coexistent with 
bathroom isolates, while the other is mainly formed by human 
isolates that coexist less frequently with bathroom isolates (82). 
The former clonal complex suggests that bathrooms are one of 
the major reservoirs of MAH in Japan, which exposes humans 
to MAH. This is consistent with the previous reports that 
were mentioned in the Section “Infection Sources for MAC in 
the Environment.” However, the existence of the other clonal 
complex implies that there are infection sources other than 
bathrooms. Fujita et al. (41) performed a VNTR analysis for 47 
M. avium clinical isolates and 41 soil isolates. They concluded 
that residential soils are a likely source of pulmonary MAC 
infection in Japan because five pairs of clinical isolates and cor-
responding soil isolates showed identical VNTR patterns, and 
both human and soil isolates are mixed up in the phylogenetic 
tree constructed from their data (no distinct major clusters for 
clinical or soil isolates) (41). Although there are no reports that 
directly compared the data by Iwamoto et al. and Fujita et al., it is 
likely that the soil isolates belong to the clonal complex with fewer 
numbers of bathroom isolates. Further detailed investigation is 
required to clarify this issue. Iakhiaeva et al. (87) analyzed 416 
MAH isolates from 121 patients and 80 household water (biofilm) 
samples in northeast Texas and a Philadelphia suburb as well as a 
small number of isolates from around the USA (87). Forty-nine 
VNTR types were identified among them, and 23% of the types 
were found in both the patient and household isolates. Most of 
the patients with the same VNTR types were found within the 
same city. Moreover, the same VNTR type was detected in local 
commercial water supplies and patient households. These results 
emphasize the need for a risk analysis of MAH in drinking water.

Further studies focusing on the global phylogeographical 
distribution of MAH would clarify the global commonality and 
local characterization of MAH infection sources and provide a 
clue for achieving better control of MAH infections. To facilitate 
such studies, the creation of an international VNTR database is 
undoubtedly required. The critical obstacle for the creation of 
a global database is a lack of standardization for VNTR locus 
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sets. Several MAH locus sets have been reported, but no unified 
combination of locus sets has been used in different studies by 
different researchers (77, 78, 82, 87, 88). This makes the data 
comparison difficult among different studies. Therefore, an inter-
national collaboration to set up a global standard for VNTR locus 
should be established immediately.

New wHOLe GeNOMe SeQUeNCiNG 
(wGS) TeCHNiQUeS DeLiveR A New eRA 
FOR NTM SURveYS

There is an emerging new wave in the field of molecular epi-
demiological studies, genome epidemiology, which uses WGS 
technology (89–91). This method offers a detailed assessment 
of the single-nucleotide polymorphism (SNP)-level diversity 
and genetic relationships among isolates. Therefore, it can cor-
rectly classify strains as being the “same” or “different” with an 
extremely high level of accuracy that cannot be achieved by cur-
rent genotyping methods.

The first application of WGS techniques for an NTM survey 
was performed by Bryant et al. (92) who defined the acquisition 
mechanisms of M. abscessus subsp. massiliense in individuals with 
cystic fibrosis (CF) (92). They analyzed 168 consecutive isolates 
of M. abscessus from 31 patients. A phylogenetic analysis revealed 
two clustered outbreaks of near-identical isolates of M. abscessus 
subsp. massiliense (from 11 patients) that differed by less than 
10 bp. This variation represents less diversity than that seen within 
isolates from a single individual, strongly indicating between-
patient transmission. Although the exact transmission route is 
yet to be established, their epidemiological analysis suggests that 
it could be indirect (92). Harris et al. (93) also applied WGS tech-
niques to define M. abscessus acquisition mechanisms (93). They 
analyzed 27 isolates from 20 patients. A maximum likelihood 
phylogenetic tree showed three distinct clades corresponding to 
three subspecies. Twenty isolates from this study were M. absces-
sus subsp. abscessus, six were M. abscessus subsp. massiliense, 
and one was M. abscessus subsp. bolletii. Apart from these, the 
minimum distance between any 2 isolates from this study was 
34 SNPs, indicating that there was no cross-transmission of M. 
abscessus within the hospital, except between 1 sibling pair (93).

Another large-scale survey using WGS was reported recently 
(94). The authors investigated whether cross-infection, rather 
than independent environmental acquisition, might be the 
major source of infection for M. abscessus. They performed a 
WGS analysis of 1,080 clinical isolates of M. abscessus obtained 
from 517 patients in UK CF clinics and their associated regional 
reference laboratories, e.g., CF centers in the USA, the Republic 
of Ireland, Europe, and Australia. They illustrated that most  
M. abscessus infections were acquired through the transmission, 
potentially via fomites and aerosols, of recently emerged, domi-
nant circulating clones that have spread globally.

These reports confirm the ability of WGS techniques to suc-
cessfully investigate infection sources for NTM. WGS has great 
potential to reshape our understanding of the infection sources 
and transmission dynamics of MAC and other NTM organisms 
in the near future.

PReveNTiON OF COLONiZATiON AND 
DiSiNFeCTiON OF NiCHeS

How can we prevent MAC from colonizing environmental 
niches? One possibility is to ensure that such niches remain 
dry. Nishiuchi et  al. (42) performed a questionnaire survey. 
They asked volunteer pulmonary MAC patients, who provided 
water and biofilm samples, about the maintenance of their 
bathrooms. Their results showed that promptly draining bath 
water and increasing ventilation times effectively decreased 
MAC recovery from bathrooms. Thus, drying the bathroom is 
likely to be an effective method for preventing mycobacterial 
colonization.

Copper pipelines might be effective for preventing NTM 
colonization. Inkinen et al. (95) surveyed water samples supplied 
through a copper pipeline and a polyethylene pipeline. All the 
samples were collected from an office building in Rauma, Finland. 
The drinking water distribution network of the building connects 
to copper and cross-linked polyethylene in cold-water pipelines 
and to two hot-water pipelines (copper and polyethylene). After 
1 year of operation, samples were collected at five different sites 
of the building, and a microbial community analysis using NGS 
was performed for water and biofilm samples. Surprisingly, 
Mycobacterium spp. sequences were absent from the copper pipe-
line samples, and they were detected only in the cold polyethylene 
pipeline water and biofilm samples. The identified Mycobacterium 
spp. operational taxonomic units were closely related to M. terrae 
and M. nonchromogenicum (95).

Chlorination is usually performed to disinfect drinking 
water treatment plants, and it is believed that the chlorination 
of drinking water could be effective to decrease the number of 
NTM pathogens. However, the ability of NTM to tolerate chlo-
rine could be a great driving force that allows NTM to inhabit 
drinking water. In addition, there is an interesting report that 
showed that NTM were not found in water samples in which the 
concentration of residual chlorine was greater than 0.5  mg/L. 
At residual chlorine concentrations between 0.0 and 0.5 mg/L, 
NTM were found in 11.2% (n = 376) of the samples, including M. 
gordonae (n = 154, 41.0%), M. fortuitum (n = 144, 38.3%), and M. 
peregrinum (n = 26, 6.9%) (37). Many regional authorities require 
minimum chlorine concentrations at water treatment plants: 
Spain (1.0  mg/L), France (0.5  mg/L), Switzerland (0.1  mg/L), 
Italy (0.2 mg/L), and Morocco (0.2 mg/L) (CWWA n.d.). Japan 
requires a minimum of 0.1 mg/L at the tap, and actual values may 
range from 1.0 mg/L at the plant to 0.6–0.7 mg/L at the tap (96). 
The formation of mycobacterial biofilms has been reported inside 
the water main of a WDS (71). Therefore, further investigation 
is required to evaluate the effect and suitable concentration of 
chlorine in WDSs. In contrast, performing ozonation and filtra-
tion treatments at drinking water treatment plants (the ozone 
concentration multiplied by the contact time ranged from 4.2 to 
13.3 min mg/L) does not reduce M. avium recovery (65).

Higher temperatures in household plumbing might effectively 
reduce NTM colonization. Households with water heater tem-
peratures of <50°C were more likely to yield NTM (17/20, 85%) 
compared with households in which the water temperature was 
>55°C (6/15, 40%) (50). Heat susceptibility analyses at 50, 55, 60, 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


14

Nishiuchi et al. Infection Sources of MAC

Frontiers in Medicine | www.frontiersin.org March 2017 | Volume 4 | Article 27

and 70°C showed that M. avium, M. chelonae, and M. xenopi were 
more thermo-resistant than L. pneumophila (97). The authors 
determined the decimal reduction time (D value), which is the 
time needed to inactivate 90% of the bacterial population, at dif-
ferent temperatures. The D value of M. avium at 70°C was 2.3 s, 
and at 60°C, it was 240 s.

The prevention of NTM colonization and the elimination of 
these pathogens from infection sources are critical issues that 
must be solved rapidly. This requires the accumulation of reliable 
data to ascertain the effectiveness of dryness, copper pipeline 
usage, appropriate chlorine concentrations in drinking water, 
high temperature, and new elimination methods.

CONCLUSiON

Water, soil, and dust have been reported to be MAC niches. 
Environmental MAC tends to gather in households, and in these 
niches, household tap water, bathrooms, potting soil, and garden 
soil are infection sources. Mycobacterial transmission routes 
are believed to proceed from natural reservoirs to households 
(i.e., via WDSs). The global spread of pulmonary MAC disease 
might be caused by human activities, as individuals carry MAC 
organisms that concomitantly attach to their belongings and 
the environments they live in. Thus, global human mobility and 
trade may increase the global transmission of MAC via fomites. 
Epidemiological surveys that include WGS techniques should 
verify this hypothesis in the near future.

Our living environment is more comfortable and much cleaner 
than that of several decades ago. Social needs also seem to aim to 

create cleaner and safer environments. Medical treatments have 
improved greatly, which has increased longevity. In addition, 
compromised hosts can live normally outside of hospitals. While 
these social changes should be beneficial, comfortable environ-
ments may also hospitable to MAC because of the reduction of 
competitors by disinfection. To stop the increase of MAC preva-
lence and to prevent pulmonary MAC disease, our goal should 
be to create a comfortable environment for humans and an 
uncomfortable environment for MAC, as well as to develop new 
and effective treatments for MAC diseases. To achieve our goal, 
investigations of the ecology of the MAC in environment and its 
sources and routes of infection, as well as the development of new 
and effective elimination methods, including new disinfectants 
and new medical treatments, are urgently needed.
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