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Over the last decade, significant interest in the contribution of three “epithelial-derived 
cytokines,” such as thymic stromal lymphopoietin, interleukin 25, and interleukin 33 
(IL-33), has developed. These cytokines have been strongly linked to the early events 
that occur during allergen exposures and how they contribute to the subsequent type 
2 immune response. Of these three cytokines, IL-33 has proven particularly interest-
ing because of the strong associations found between both it and its receptor, ST2, 
in several genome-wide association studies of allergic diseases. Further work has 
demonstrated clear mechanisms through which this cytokine might orchestrate allergic 
inflammation, including activation of several key effector cells that possess high ST2 
levels, including mast cells, basophils, innate lymphoid cells, and eosinophils. Despite 
this, controversies surrounding IL-33 seem to suggest the biology of this cytokine might 
not be as simple as current dogmas suggest including: the relevant cellular sources of 
IL-33, with significant evidence for inducible expression in some hematopoietic cells; the 
mechanistic contributions of nuclear localization vs secretion; secretion and processing 
mechanisms; and the biological consequences of IL-33 exposure on different cell types. 
In this review, we will address the evidence for IL-33 and ST2 regulation over eosinophils 
and how this may contribute to allergic diseases. In particular, we focus on the accu-
mulating evidence for a role of IL-33 in regulating hematopoiesis and how this relates to 
eosinophils as well as how this may provide new concepts for how the progression of 
allergy is regulated.

Keywords: interleukin 33, eosinophils, stem cells, ST2/ST2L, asthma, allergy and immunology

inTRODUCTiOn

Allergic diseases are increasing worldwide, and the mechanisms of both allergic sensitization and 
the subsequent effector responses following reexposure, including by eosinophils, are still not fully 
understood. Significant focus has recently centered on three cytokines as regulating type 2 immunity 
in allergic individuals: thymic stromal lymphopoietin (TSLP), interleukin 25, and interleukin 33  
(IL-33). Evidence shows that these cytokines influence allergic mechanisms that include activating 
type 2 innate lymphoid cells (ILC2s), the development of T helper type 2 (Th2) cells, and several 
other effector cells, including eosinophils. Development of antibodies targeting these epithelial-
derived cytokines in allergic disease is underway: an antibody against TSLP is currently showing 
beneficial effects in patients (1), and anti-IL-33 has entered phase two in clinical trials (2). IL-33 in 
particular seems important for eosinophil biology, both in homeostatic development and activation 
during disease. As an example, a recent loss-of-function mutation in Il33 was identified in patients 
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and associated with reduced blood eosinophils and protection 
from asthma (3). In this review, we will discuss not only how 
IL-33 contributes to eosinophil biology but also recent evidence 
for roles of IL-33 in eosinophil development, which challenge the 
accepted view of IL-33 as regulating mainly local tissue responses.

COnTROveRSieS in iL-33 BiOLOGY

Interleukin 33 was originally found as a nuclear factor of high 
endothelial venules and termed NF-HEV (4). Interest was reig-
nited when computational predictions showed a characteristic 
β-trefoil domain similar to the IL-1 family of cytokines (i.e., 
IL-1α, IL-1β, and IL-18), thus becoming the 11th family member 
known as IL-33 (5). Notably, Schmitz et al. also identified IL-33 
as the ligand for the previously orphan receptor suppression of 
tumorigenicity 2 (T1/ST2) (also called interleukin 1 receptor-
like 1), which had already been associated with allergic disease; 
indeed, IL-33 injection into mice led to increased spleen weight, 
IgE, type 2 cytokines, mucus production by epithelial cells, and 
significant eosinophilia. Thus, much of the early research on the 
IL-33/ST2 axis defined clear roles in type 2 immune-mediated 
responses.

Despite this, controversy has surrounded IL-33 with unan-
swered questions related to its cellular sources, subcellular loca-
tion, and release mechanisms. While many have assigned IL-33 
as an epithelial-derived cytokine, we and others have established 
that immune cells also express IL-33 upon activation, includ-
ing macrophages, dendritic cells (DCs), eosinophils, B  cells, 
monocytes, and mast cells (6–11). While IL-33 has been shown 
to be present in surface epithelial cells from human biopsies (12), 
studies of gene expression using a reporter mouse demonstrate 
that type 2 pneumocytes are the dominant cell expressing IL-33 
within the lung (6) and that Clara cells, ciliated epithelial cells 
of the bronchiolar system, do not express IL-33 unless inflam-
mation is induced (13). A point of contention is the question of 
functional contributions of structural- vs immune cell-derived 
IL-33. In mouse studies addressing this question, IL-33 from 
macrophages (14), DCs (8), and monocytes (7) are sufficient 
to support the development of Th2 responses and eosinophilia. 
In contrast, one study showed that transferring IL-33 knockout 
(KO) bone marrow into irradiated mice had no effect on allergic 
inflammation (15). Further studies are needed, especially given 
the significant caveat that several of these immune cells are highly 
radiation resistant. Taken together, while current evidence shows 
clear roles for immune cell-derived IL-33, the relative impor-
tance of structural- vs immune cell-derived IL-33 remains to be 
determined.

The mechanism of how cells release IL-33 is also subject to 
debate. IL-33 has been described as residing exclusively in the 
nucleus of structural cells (16), yet evidence now suggests this 
conclusion is likely influenced by alterations in the IL-33 protein 
upon fusion with fluorescent tags used to track the protein; a 
more careful assessment of native IL-33 revealed both nuclear 
and cytoplasmic presence (17) in endothelial cells and fibro-
blasts—indeed, we demonstrated cytoplasmic location within 
mast cells (18). Unlike many other IL-1 family members, IL-33 
does not utilize the inflammasome pathway (19). Although 

its release upon necrotic cell death gave rise to the concept of 
IL-33 as an “alarmin” (20), mechanical stress could also induce 
IL-33 release from fibroblasts in the absence of necrosis (17). 
Relevant to allergy, IL-33 release was shown in response to the 
established adjuvant aluminum hydroxide (alum) (21). Allergens 
interact with mucosal tissue surfaces in many ways including 
through toll-like receptors 2 and 4 (TLR2 and TLR4), dectin-1, 
and protease-activated receptor-2 (PAR-2) (22), wherein dectin-1 
and PAR-2 are necessary for allergen-induced increases in IL-33 
in lung tissues (23, 24). The source of such increases in IL-33 
remains poorly defined: while several studies have described 
IL-33 secretion from structural cells (17, 25–27), mast cells (28), 
DCs (9), and human monocytes (29) can also express and release 
IL-33. Since alveolar macrophages serve as a front line of allergen 
exposure in the airway and TLR ligands being shown to stimulate 
IL-33 in macrophage (30), immune cells as a source of IL-33 
might occur both within the airspace and tissues.

THe eFFeCTS OF iL-33 On MATURe AnD 
DeveLOPinG eOSinOPHiLS

Eosinophil expansion is a hallmark of most allergic disease, but 
the underlying mechanisms are not fully understood. Several 
scenarios may explain this expansion: proliferation of resident 
eosinophils, increased trafficking of blood eosinophils into tis-
sues, increased output from the bone marrow, increased survival, 
and local maturation of progenitors in tissues. Mature eosino-
phils, which respond to IL-33, do not seem to possess a robust 
proliferative capacity, and so focus has been on developmental 
processes. The current knowledge of the ways in which IL-33 
influences eosinophil biology during homeostasis and disease is 
discussed below.

iL-33 on Mature eosinophils
Cellular responses to IL-33 have been extensively studied. The 
ST2 receptor is highly expressed on several “allergy-associated” 
immune cells, including eosinophils, Th2 cells, ILC2s, mast cells, 
and basophils, as well as structural cells like epithelial and endothe-
lial cells (31). IL-33 induces the production of type 2-associated 
cytokines from many of these cell types. Consequently, IL-33 
had been presumed to affect eosinophilic inflammation through 
induction of IL-5—a cytokine known to activate eosinophils. For 
example, early work concluded that IL-33-induced eosinophilia 
was dependent on IL-5, but this conclusion was based largely on a 
neutralizing antibody approach and limited markers for defining 
eosinophils (32). As outlined in this review, IL-33 is now under-
stood to act directly on eosinophils and regulate their biology, 
including survival, activation, and adhesion (Figure 1B).

Administration of IL-33 is sufficient to drive in vivo eosino-
philia in various tissues (5). While IL-33 does not act as an 
eosinophil chemoattractant (33), several studies show that 
IL-33 regulates eosinophil survival. For example, transferring 
ST2 KO eosinophils into recipient mice led to significantly 
fewer lung eosinophils after allergen challenge than wild-type 
(WT) eosinophils despite normal migratory functions, implying 
impaired survival (34). IL-33 also induces GM-CSF that acts in an 
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FiGURe 1 | Regulation of eosinophils by interleukin 33 (iL-33). IL-33 regulates eosinophils during three stages: development within the bone marrow, 
activation of mature cells, and development and/or activation of progenitors within the tissue. (A) In the bone marrow, GATA-1+ common myeloid progenitor (CMP) 
differentiates into GATA-1+-pre-granulocyte macrophage progenitor (Pre-GMP) (Lin−Sca-1−c-kit+CD41−CD16/32−CD105−CD150−GATA-1+), then to GATA-1+-
granulocyte and macrophage progenitor (GMP), also known as eosinophil/mast cell progenitors (EoMP, Lin−Sca-1−c-kit+CD41+CD16/32+GATA-1+). At this early 
stage, IL-33 regulates the expansion of eosinophil precursor (EoPre) through differentiation of the EoMP/GMP. Since IL-33 also upregulates IL-5Rα on EoPre, it 
regulates commitment to the eosinophil lineage. Simultaneously, IL-33 induces another currently unidentified cell within the bone marrow to make IL-5, which 
promotes final eosinophil maturation. (B) In the tissue, IL-33 can activate mature eosinophils, leading to cytokine production and upregulation of CCR3, CD69, and 
CD11b. Notably, IL-33-driven production of GM-CSF and IL-13 promote eosinophil survival and differentiation of alternatively activated macrophages, respectively. 
(C) Finally, IL-33 can regulate EoP outside of the bone marrow. IL-33 increases the number of EoP in blood as well as activates EoP to produce many cytokines. 
Although allergens increase CCR3+ progenitors in tissue, it is unclear if increases in EoP in asthma patients are due to EoP leaving the bone marrow or 
extramedullary eosinophilopoiesis. It has yet to be determined if IL-33 also regulates eosinophilopoiesis within the tissue.

3

Johnston and Bryce IL-33 and Eosinophil Biology

Frontiers in Medicine | www.frontiersin.org May 2017 | Volume 4 | Article 51

autocrine fashion to promote survival by inducing the antiapop-
totic protein Bcl-xL (35), a response that is negatively regulated 
by dual-specificity phosphatase 5 (36). Beyond these positive 
effects of IL-33 on eosinophil survival, IL-33-primed human 
eosinophils are more susceptible to Siglec-8-induced death; while 
this priming effect is less effective than IL-5, the two cytokines 
may function synergistically (37). Thus, the effects of IL-33 on 
eosinophil survival support a role on both survival and death, 
most likely in a context-specific fashion.

Interleukin 33 is a potent activator of eosinophils, even more 
so than IL-5 in terms of triggering degranulation and superoxide 
release from human eosinophils (38). In mice, IL-33 stimulation 
alters over 500 genes, many of which are immune related, includ-
ing IL-6, IL-13, CCL17, CXCL2, CXCL3, and CXCL10 (39). IL-33 

can also upregulate several cell-surface markers, including the 
adhesion molecule CD11b (33), the eotaxin receptor CCR3 (32), 
and the activation marker CD69 (36).

The functional nature of IL-33-activated eosinophils has been 
addressed. Transfer of eosinophils activated with GM-CSF, IL-4, 
and IL-33 into eosinophil-deficient asthmatic mice drove IL-13-
dependent mucus production and accumulation of alternatively 
activated macrophages (40). In a complementary approach, 
increased IL-13 and alternatively activated macrophages were 
again observed after intranasal IL-33 administration to ST2 KO 
mice after adoptive transfer of WT eosinophils; recruitment of 
several cell types, including macrophages, neutrophils, lympho-
cytes, and the recipient’s own eosinophils were also observed in 
this model (32). In the skin, IL-33 has been proposed to directly 
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TABLe 1 | Cell-surface markers of cells involved in murine 
eosinophilopoiesis.

Common 
myeloid 

progenitor

Granulocyte and 
macrophage 
progenitor

eosinophil 
precursor 

(eoPre)

eoP Mature 
eo

Lineage − − higha − ND
Sca-1 − − − − −
c-Kit + high − low −
CD34 + + − + −
FcγRII/III low high ND ND ND
IL-5Rα − − + + +
IL-3R ND + ND ND +
IL-4Rα ND ND ND ND +
GM-CSFR ND + ND ND +
Siglec-F ND ND low + +
CCR3 ND ND ND ND +
Granularity 
(SSC)

low low low high high

ST2 +/− +/− − + +

+ indicates expression; − indicates no expression; ND indicates expression not 
determined.
aUnlike other studies, this study included CD11b in the lineage cocktail and 
demonstrated that the EoPre is CD11bhi.
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act on eosinophils to promote fibrosis in an IL-4- and IL-13-
dependent manner (41).

iL-33 on eosinophilopoiesis
Typically, eosinophils develop in the bone marrow, enter the 
bloodstream as terminally differentiated cells, and become acti-
vated in tissues. However, CD34+ progenitors can be detected in 
blood, and the idea that hematopoiesis can occur in tissues as well 
as the bone marrow is now accepted. IL-33 appears to have effects 
on these eosinophil precursors (EoPres) at both locations.

Histologically, eosinophil development was characterized into 
four classes (I–IV) based on nuclear morphology, granular mor-
phology, and Wright–Giemsa staining. While Class I cells were 
described as granulocytic but not eosinophilic, Class II cells had 
small numbers of granules and appeared to have committed to the 
eosinophil lineage. Prior to terminal differentiation, Class III cells 
exhibited the characteristic donut-shaped nucleus. Class IV cells 
were the only eosin-positive cells and maintained the ring-shaped 
nucleus, which could twist into a figure 8-like structure (42). More 
recently, EoPres have been phenotyped using flow cytometry for 
cell-surface markers, including ST2 (Table 1). When the eosino-
phil lineage-committed progenitor (EoP) was initially identified 
in mice (43), it was proposed that eosinophils developed in 
four defined stages within the myeloid pathway. Originating 
from common myeloid progenitors (CMPs) that differentiate 
to granulocyte and macrophage progenitors (GMPs), a lineage 
decision into EoPs then occurs before terminal differentiation 
into eosinophils. Importantly, although EoP stains with eosin, 
eosin-negative precursors have been reported (42), suggesting 
a precursor stage prior to the granulation events occurring in 
EoP. We identified an EoPre that is eosin negative and exhibits 
the characteristic donut-shaped nuclei, which is driven by IL-33 
exposure (44) (Figure 1A). Both EoP and EoPre are IL-5Rα+, but 
EoPre is Siglec-FloSSClo whereas EoP is Siglec-F+SSChi.

From all of the markers defining eosinophils, three appear 
to be important for defining stages of eosinophil develop-
ment: in mice, these are IL-5Rα, Siglec-F, and CCR3. IL-5Rα 
is an indicator of commitment to the eosinophil lineage, as 
it is a key differentiator between the EoP and earlier stages of 
development. Siglec-F, originally thought to only mark mature 
eosinophils and alveolar macrophages outside of the bone 
marrow, is expressed on EoP; moreover, colony forming assays 
comparing Lin−CD34+CD117intIL-5Rα+ (EoP–IL-5Rα) vs 
Lin−CD34+CD117intSiglec-F+ (EoP–Siglec-F) show that only 
EoP–IL-5Rα gave rise to pure eosinophils while EoP–Siglec-F 
cultures generate a mixture of eosinophils and macrophages (45). 
Thus, Siglec-F appears to mark eosinophil potential in the bone 
marrow, whereas IL-5Rα indicates commitment to the eosinophil 
lineage. Finally, CCR3 is a late marker, as it allows eosinophils to 
enter tissues in response to eotaxin (46).

In humans, the hEoP (IL-5Rα+CD34+CD38+IL-3Rα+ 
CD   45RA−) differentiates directly from the hCMP (Lin−CD34+ 
CD38+IL-3Rα+CD45RA−IL-5Rα−). Furthermore, the hGMP 
(Lin−CD34+CD38+IL-3Rα+CD45RA+) is capable of generat-
ing neutrophils, monocytes, and basophils (47). Other stages 
of human eosinophil progenitors have yet to be determined. 
Although IL-5Rα+ progenitors only generate eosinophils, IL-5Rα 
is expressed in blood on both mature eosinophils and mature 
basophils (47). Thus, it is unclear if IL-5Rα may be used to 
identify commitment to the eosinophil lineage as it does in mice. 
Furthermore, Siglec-8, the human functional paralog of Siglec-F, 
is expressed at late stages of development of eosinophils, mast 
cells, and basophils and does not mark eosinophil potential in 
progenitors the way Siglec-F does in mice (48, 49).

ST2 expression on these progenitors has been controversial. 
Two studies examining bone marrow stem cells showed oppos-
ing results: while Le et al. reported ST2 on Lineage−c-Kit+Sca-1+ 
cells, CMP, GMP, megakaryocyte-erythroid progenitors (MEP), 
and common lymphocyte progenitors (50), Mager et  al. found 
no evidence for ST2 on long-term or short-term hematopoietic 
stem cells, multipotent progenitors (MPP1, MPP2, and MPP3), 
MEP, CMP, or GMP (51). More recently, Tsuzuki et  al. dem-
onstrated that ST2 was expressed on CMP, MEP, and EoP, but 
not GMP (52). We described a GMP-like cell (Lin−Sca1−Siglec-
F+IL-5Rα−SSCloc-KithiCD34−) that was ST2+, but EoPre was 
ST2−, although this finding came from IL-33-treated mice or 
in vitro cultures (44). These differences in ST2 expression may be 
partially resolved by new research that redefines the early stages 
in eosinophil development (53). Using single-cell RNA sequenc-
ing of pre-granulocyte macrophage progenitors (Pre-GMP, 
Lin−c-Kit+Sca-1−CD41−CD16/32−CD105−CD150−), Pre-GMP 
clustered into two groups: GATA-1+Flt3− and GATA-1−Flt3+. By 
sorting cells from a GATA-1–EGFP reporter and culturing them in 
eosinophil-promoting conditions, GATA-1+ Pre-GMPs generate 
eosinophils, whereas GATA-1− Pre-GMPs generate neutrophils 
and monocytes. Drissen et al. proposed that GATA-1+-GMPs be 
renamed eosinophil/mast cell progenitors, and GATA-1− GMPs 
retain their name. Thus, instead of the classical model (CMP, 
GMP, EoP, and mature eosinophil), the EoP population can 
develop independently of the GMP (Figure 1A). This aligns with 
the description of the hEoP arising from the hCMP and not the 
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hGMP (47). Notably, gene expression of ST2 differentiated the 
GATA-1+ Pre-GMP and GATA-1− Pre-GMP populations (53). 
Thus, despite continuing debate over ST2 on CMPs and GMPs, 
eosinophils likely arise from ST2-expressing progenitors.

GATA-1 is a member of the GATA family of transcription 
factors and known to be critical for eosinophil development. In 
agreement with the potential of GATA-1+ Pre-GMPs to produce 
eosinophils, human CD34+ stem cells transduced to express 
GATA-1 developed into eosinophils while disruption of GATA-1 
expression in mice ablated eosinophils (54). GATA-1 was also 
one of transcription factors identified as defining the eosinophil 
lineage through transcriptome analysis comparing GMPs, EoPs, 
and mature eosinophils; 56 transcription factors were identified 
including GATA-1, C/EBPε, NFκB, NFAT2, STAT1, STAT3, 
STAT6, IRF1, IRF2, Helios, and Aiolos (45). However, if and 
how all of these transcription factors play a role in eosinophil 
development has yet to be determined, and how IL-33 and ST2 
might impact these transcription factors is unclear. ST2 signal-
ing is known to lead to NFκB activation in mature cells (5), and 
GATA-1 and GATA-2 can regulate ST2 expression through two 
GATA binding sites upstream of the ST2 promoter (55), support-
ing a likely interplay at this level.

Several cytokines are important for eosinophil differentiation 
and maturation from bone marrow. Notably, IL-5 is the hallmark 
eosinophil-associated cytokine (56). IL-5-overexpressing trans-
genic mice (NJ.1638) have an excessive number of eosinophils 
in blood, bone marrow, and tissues with significantly more Class 
III and Class IV cells in the bone marrow, which, in conjunction 
with the fact that IL-5Rα marks eosinophil lineage commitment, 
indicates that IL-5 acts on later stages of development (42). 
Indeed, IL-5 promotes terminal eosinophil differentiation by 
upregulating CCR3 (57). IL-5 also upregulates its own receptor 
on human CD34+ cells, but whether this occurs in vivo and affects 
eosinophil development is unclear (58).

The IL-5 receptor shares a β-chain (CD131, CSF2RB) with recep-
tors for IL-3 and GM-CSF. While IL-3 and GM-CSF were initially 
thought to be important for eosinophil development, we now know 
that they promote the development of many myeloid cells (56). 
IL-3 drives mast cell and basophil development and affects mature 
eosinophils (59). While GM-CSF promotes survival of mature 
eosinophils, it appears to antagonize eosinophil development 
in vitro (60), although the mechanism has yet to be determined.

Current protocols for developing eosinophils from bone mar-
row also typically utilize stem cell factor (SCF) and Flt3 ligand 
(Flt3L) for 3–4 days before IL-5 treatment (61). Flt3L does not 
seem to be required for eosinophil development (53, 62) while 
the SCF receptor, c-Kit, is expressed on many stem cells and then 
lost in the later stages of eosinophil development. Interestingly, 
we demonstrated that culturing bone marrow cells with SCF and 
Flt3L for 3 days promoted the expansion of GMP-like cells and 
mature eosinophils but not the EoPre pool (44).

Recently, we reported that IL-33 may be the missing signal that 
directs stem cells to commit to the eosinophil lineage. IL-33 treat-
ment significantly expanded the EoPre pool and led to a significant 
upregulation of IL-5Rα on EoPre, enhancing their responsive-
ness to IL-5; simultaneously, IL-33 induced IL-5 and mature 
eosinophil development (44) (Figure 1A). We also demonstrated 

that NJ.1638 mice had diminished eosinophils in the absence of 
ST2, indicating that IL-33 regulated the capacity of IL-5 to drive 
eosinophilia. In agreement with our data, IL-33 treatment of 
cultured c-Kit+ bone marrow cells induced mature eosinophils 
in an IL-5-dependent manner (32). Interestingly, in  vitro ST2 
KO cells cultured with IL-5 do produce eosinophils, while ST2 
KO and IL-33 KO mice have significantly reduced—not absent— 
eosinophils (44), demonstrating that IL-5-driven eosino-
philopoiesis can occur in the absence of IL-33. Unlike GATA-1 
that is absolutely required for eosinophil development, the 
absence of IL-5 may be compensated by other cytokines or fac-
tors since IL-5 KO mice also develop basal eosinophil populations 
(63). Perhaps deleting ST2 and IL-5 or CD131 would be required 
to ablate eosinophil development.

iL-33 and Alternative eosinophilopoiesis 
Mechanisms within Tissues
There is increasing evidence that progenitors can circulate in the 
blood and that local hematopoiesis may occur in tissues [reviewed 
here (64); Figure 1C]. Eosinophil progenitors are increased in the 
blood and sputum of asthmatic patients (65, 66), but their role in 
disease not fully understood. Intravenous IL-5 increased not only 
circulating eosinophil progenitors but also CCR3 expression on 
CD34+ progenitors (67). Similarly, IL-33 increased peripheral blood 
EoP (52). In response to allergen, CD34+CCR3+ and Sca-1+CCR3+ 
cells proliferated within the lung tissue, demonstrating expansion of 
local eosinophil lineage-committed stem cells (68). Whether these 
lung stem cells express ST2 and how IL-33 may affect these cells is 
unclear. In vitro, IL-33 activated EoP to produce chemokines, Th2 
cytokines, and pro-inflammatory cytokines, with more IL-9, IL-10, 
IL-13, IL-1α, IL-1β, IL-6, TNFα, and GM-CSF than mature eosino-
phils (52); thus, these data implicate EoP as potential regulators over 
inflammation. Further research is certainly required to determine 
how eosinophil progenitors contribute to tissue eosinophilia in 
disease and if IL-33 serves to initiate their responses.

COnCLUSiOn

The biology of IL-33 continues to be a topic of significant dis-
covery and controversy. By focusing on eosinophils, our under-
standing of this cytokine has begun to be elucidated and shows 
a complex regulation that extends into homeostasis and disease. 
While much of this challenges some established views of IL-33 as 
a local epithelial-derived cytokine, these understandings should 
significantly impact the interpretations and predictions for using 
new therapeutics that target this pathway in human health.
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