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Human mast cells (MCs) and eosinophils were first described and named by Paul Ehrlich. 
These cells have distinct myeloid progenitors and differ morphologically, ultrastructurally, 
immunologically, biochemically, and pharmacologically. However, MCs and eosinophils 
play a pivotal role in several allergic disorders. In addition, these cells are involved in auto-
immune disorders, cardiovascular diseases, and cancer. MCs are distributed throughout 
all normal human tissues, whereas eosinophils are present only in gastrointestinal tract, 
secondary lymphoid tissues, and adipose tissue, thymus, mammary gland, and uterus. 
However, in allergic disorders, MCs and eosinophils can form the “allergic effector unit.” 
Moreover, in several tumors, MCs and eosinophils can be found in close proximity. 
Therefore, it is likely that MCs have the capacity to modulate eosinophil functions and 
vice  versa. For example, interleukin 5, stem cell factor, histamine, platelet-activating 
factor (PAF), prostaglandin D2 (PGD2), cysteinyl leukotrienes, and vascular endothelial 
growth factors (VEGFs), produced by activated MCs, can modulate eosinophil functions 
through the engagement of specific receptors. In contrast, eosinophil cationic proteins 
such as eosinophil cationic protein and major basic protein (MBP), nerve growth factor, 
and VEGFs released by activated eosinophils can modulate MC functions. These bidi-
rectional interactions between MCs and eosinophils might be relevant not only in allergic 
diseases but also in several inflammatory and neoplastic disorders.
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iNTRODUCTiON

Mast cells (MCs) and eosinophils are important cells of the 
immune system with critical roles in allergic (1–3) and autoim-
mune disorders (4–7), cardiovascular diseases (8–15), and cancer 
(16–19). Human MCs and eosinophils were first described and 
named in 1878 and 1879, respectively, by Paul Ehrlich who discov-
ered their property to be stained by specific dyes (20–22). Mature 
MCs and eosinophils differ morphologically, ultrastructurally, 
immunologically, biochemically, and pharmacologically (23, 24). 
Moreover, they synthesize a plethora of distinct mediators and 
display a constellation of different surface receptors (24, 25).

The recent assessment of the transcriptional profiles of MCs 
and eosinophils revealed the MC heterogeneity across different 
tissues and their different gene expression program compared 
to eosinophils (26). The latter findings are consistent with the 
identification of a distinct myeloid progenitor expressing the 
gene encoding the transcription factor GATA-1, which generates 
separately eosinophils and MCs (27). Human MCs derive from 
CD34+, CD117+ pluripotent hematopoietic stem cells in the bone 
marrow (28). MC progenitors enter the circulation and complete 
their maturation in different tissues such as skin, bronchi, tonsils, 
nasal and intestinal mucosa, conjunctiva, lymph nodes, and breast 
parenchyma (29). The main differentiation, maturation, survival, 
priming, and chemotactic factor for human MCs is stem cell 
factor (SCF), which acts by binding the tyrosine kinase receptor 
Kit (CD117) (30). CD34+ IL-5Rα+ eosinophil lineage-committed 
progenitors give rise to mature cells in the bone marrow under 
the control of critical transcription factors such as GATA-1, PU-1, 
and C/EBP (31). Eosinophil maturation in the bone marrow is 
driven by interleukin 5 (IL-5), IL-3, and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) that share the common 
receptor β subunit (βc) (3, 32). Recent evidence indicates that 
IL-33 precedes IL-5 in regulating eosinophil commitment and 
is required for eosinophil homeostasis (33). Under the effect of 
chemotactic stimuli, together with IL-5, eosinophils migrate to the 
gastrointestinal tract, secondary lymphoid tissues, and adipose 
tissue, thymus, mammary gland, and uterus, where they reside 
under homeostatic conditions (see Marichal et al. in this issue) 
(34–36). In response to inflammatory stimuli (e.g., eotaxins),  
peripheral blood eosinophils migrate into inflamed tissues, where 
their survival is presumably prolonged (37, 38).

BiDiReCTiONAL MC–eOSiNOPHiL 
iNTeRACTiONS

Although human MCs are distributed throughout, nearly all 
normal tissues (39, 40) their density is increased at sites of allergic 
reactions (1), autoimmune disorders (4, 5), and at the edge of 
several solid (41–55) and hematologic tumors (56–64). In several 
allergic disorders (e.g., bronchial asthma, allergic rhinitis, chronic 
urticaria, and eosinophilic esophagitis), MCs and eosinophils 
can be found in close proximity forming the “allergic effector 
unit” (AEU) (65). In addition, there is in vitro evidence that the 
physical interaction between MCs and eosinophils induces a 
hyperactivation state and release of soluble mediators (65–67). 

Therefore, MCs likely have the capacity to modulate eosinophil 
functions and vice versa. We discuss examples of such two-way 
interactions below.

MC Mediators
Histamine, released immunologically and non-immunologically 
from MCs, induces eosinophil chemotaxis through the engage-
ment of the histamine 4 receptor (H4R) (68, 69). Similar to 
eosinophils, histamine-induced chemotaxis can be also observed 
in MCs (69).

Adenosine, an endogenous nucleoside released by activated 
MCs (70), acts in an autocrine and paracrine fashion via bind-
ing to four G protein-coupled receptors: the A1, A2a, A2b, and A3 
receptors (71) and is involved in airway hyperresponsiveness in 
asthma (72). Adenosine and its stable analogs potentiate media-
tor release from human lung MCs (HLMCs) (73, 74) through 
the activation of adenosine receptors (75) and modulate eosino-
phil functions (76, 77). MC tryptase can stimulate eosinophil 
activation and degranulation by cleavage of protease-activated 
receptor 2 (78).

eosinophil Mediators
On the other side, eosinophil granule proteins such as MBP and 
eosinophil cationic protein (ECP) act as complete secretagogues 
on MCs isolated from human heart (HHMC) (8, 9). ECP, and to a 
lesser extent MBP, induces the release of histamine and tryptase 
and the de novo synthesis of PGD2 from HHMC. This observa-
tion highlights a mechanism by which infiltrating eosinophils 
can cause myocardial damage in patients with eosinophilia  
(3, 79–84). ECP and MBP do not induce histamine release from 
isolated HLMCs (8, 9). Interestingly, Piliponsky et al. reported 
that HLMCs became responsive to MBP only in coculture with 
human lung fibroblasts (85). Recently, the Mas-related gene 
X2 (MRGPRX2) has been identified as a receptor for several 
basic peptides on human and rodent MCs (26, 86), and indeed 
ECP and MBP activate human MCs through the interaction 
of the MRGPRX2 receptor expressed on their surface (87). 
Eosinophil MBP-1 activates MCs through the interaction with 
integrin-β1 (88).

MC and eosinophil Mediators
Stem cell factor (SCF) is a potent activator of human MCs (89, 
90) and induces the release of eosinophil peroxidase (EPO) and 
cysteinyl leukotriene C4 (LTC4) from eosinophils (91). SCF, pro-
duced by both human MCs (90) and eosinophils (92), acts on Kit 
receptor (CD117) on MCs (30) and eosinophils (93).

Osteopontin (OPN) is a multifunctional glycoprotein impli-
cated in allergic disorders and cancer. OPN can be released by 
IL-5-activated human eosinophils and induces their migration 
(94). OPN is also produced by MCs and modulates their IgE-
mediated degranulation and migration (95).

Interleukin-5, produced by human MCs, activates the IL-5R, 
highly expressed on the surface of human eosinophils, basophils, 
and MCs (96). In addition to MCs, Th2 cells, group 2 innate 
lymphoid cells (ILC2), invariant NK T  cells, and eosinophils 
themselves are major cellular sources of IL-5 (97). GM-CSF 
released by activated human MCs (98), and eosinophils binds 
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FiGURe 1 | Schematic representation of some of the bidirectional 
interactions between MCs and eosinophils. (A) Several preformed mediators 
such as stem cell factor (SCF), histamine, adenosine, and tryptase, released 
by activated MCs can exert paracrine and/or autocrine functions through the 
engagement of Kit, H4R, adenosine receptors, and protease-activated 
receptor 2 (PAR-2), respectively. On the other side, cationic proteins 
[eosinophil cationic protein (ECP) and MBP], released by activated 
eosinophils modulate mast cell functions through the activation of MRGPRX2 
on their surface. Osteopontin released by both activated eosinophils and 
MCs exert paracrine and autocrine effects. (B) Several de novo synthesized 
mediators such as IL-5, granulocyte-macrophage colony-stimulating factor 
(GM-CSF), LTC4, PGD2, platelet-activating factor (PFA), nerve growth factor 
(NGF), and VEGF-A, released by activated MCs, can modulate eosinophil 
functions via the activation of IL-5R, CysLTR1/2, CRTH2, platelet-activating 
factor receptor (PAFR), TrkA, and VEGF-R1/2, respectively, on their surface. 
IL-5, GM-CSF, LTC4, PGD2, NGF, and VEGF-A can also exert paracrine and/
or autocrine effects.
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its receptor expressed by both cell types (99). The cysteinyl leu-
kotrienes (CysLTs LTC4 and LTD4), produced by activated MCs 
(18, 100), stimulate the proliferation of eosinophil progenitors 
in the presence of IL-5 and GM-CSF (101). In addition, CysLTs 
acting through CysLTR1/2 induce the release of IL-4 from 
human eosinophils (102). PGD2 is the major cyclooxygenase 
metabolite released by activated MCs (8) and a minor product 
of eosinophils (103). PGD2 is involved in asthma and allergic 
rhinitis (104, 105), mastocytosis, rheumatoid arthritis, and 
cardiac dysfunction (6, 106). PGD2 induces eosinophil and MC 
chemotaxis in a paracrine and autocrine fashion via binding to 
CRTH2 receptor on these cells (107, 108). Platelet-activating 
factor (PAF), synthesized by human MCs and eosinophils  
(109, 110), is involved in asthma (111) and exerts multiple 
effects on eosinophils (112, 113).

Nerve growth factor (NGF), produced by both MCs (114, 115) 
and eosinophils (116, 117), is increased in patients with asthma 
(118). NGF enhances MC survival (119) through the activation 
of TrkA receptor (115). NGF is preformed in and activates human 
eosinophils (116).

Human MCs produce several proangiogenic (VEGF-A, 
VEGF-B, and FGF-2) (120–125) and lymphangiogenic fac-
tors (VEGF-C and VEGF-D) (100, 124). Human eosinophils 
induce angiogenesis (126) through the production of VEGF-A 
(127, 128), MBP (129), and OPN (94). Interestingly, VEGF-A, 
produced by both MCs and eosinophils, is also chemotactic for 
MCs through the engagement of VEGFR-1/2 present on their 
surface (124).

The bidirectional interactions between MCs and eosinophils 
mediated by soluble mediators and the autocrine modulation of 
these cells are schematically illustrated in Figures 1A,B.

DiSORDeRS iN wHiCH MCs AND 
eOSiNOPHiLS ARe PReSeNT AND  
LiKeLY DRive DiSeASe PATHOGeNeSiS

Asthma
Asthma is a chronic inflammatory disorder of the airways 
in which cells of the innate and adaptive immune system act 
together with epithelial cells to cause bronchial hyperreactivity, 
mucus overproduction, airway wall remodeling, angiogenesis, 
and airway narrowing (123, 130, 131). MCs and their mediators 
display important roles in the pathogenesis of asthma (2, 39). 
Indeed, MC-derived histamine, proteases, chemotactic factors, 
cytokines, and metabolites of arachidonic acid act on vasculature, 
smooth muscle, connective tissue, goblet cells, and inflamma-
tory cells in the airway inducing acute bronchoconstriction (1). 
MCs synthesize and release a vast array of pro-inflammatory 
chemokines and cytokines and recruit other immune cells, 
such as eosinophils, activated macrophages, and lymphocytes. 
Therefore, MCs are involved both in the early and the late phases 
of allergic responses in sensitized individuals (132). Compelling 
evidence suggests that in asthma MCs are constantly activated 
resulting in enhanced mediator release and the establishment of 
chronic airway inflammation. Moreover, MCs reside close to key 
structures of the bronchial wall, such as airway smooth muscle 

(ASM) epithelium and submucosal glands, contributing to ASM 
hypertrophy and other remodeling features (133).

Numerous stages of the MC life cycle have the potential for 
therapeutic intervention in allergic disorders (134). Targeting 
the progenitor recruitment offers an upstream checkpoint that 
could be used to limit tissue MC activity. However, since the 
mechanisms regulating MC progenitor recruitment to the human 
lung are not fully understood, no potential therapeutic targets at 
this level of MC biology have been defined so far. Once within 
tissue, MC survival, growth, differentiation, and maturation are 
driven by the local cytokine melieu, with a pivotal role played by 
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SCF and its receptor Kit, which retains protein tyrosine kinase 
(TK) activity. MC eradication via TK inhibitors may also be a 
means to treat MC-driven diseases such as asthma. Indeed, the 
TK inhibitor imatinib decreased airway hyperresponsiveness, 
MC counts, and tryptase release in patients with severe asthma 
(135). In addition, masitinib, an inhibitor of Kit and the platelet-
derived growth factor receptor, showed some benefit in a small 
phase II trial over 16 weeks in severe glucocorticoid-dependent 
asthma (136).

High-affinity receptor for the Fc region of IgE (FcεRI) is 
expressed on MCs and basophils as a tetrameric complex of 
three chains with the stoichiometry αβγ2. FcεRI is also expressed 
in either a trimeric form, αγ2, or the tetramer, on a range of 
other cell types [e.g., various antigen-presenting cells (APCs), 
dendritic cells, Langerhans cells, macrophages, eosinophils, and 
platelets] contributing to IgE-mediated allergic pathophysiology 
(137). The “low affinity” FcεRII, first discovered on B cells, is also 
expressed on several other cell types, including various APCs, 
and also airway and gut epithelial cells (137). FcεRI-dependent 
MC activation occurs following exposure to allergens, bacterial 
and viral superantigens, and IgE antibodies. This pathway has 
been targeted successfully with omalizumab, which prevents IgE 
binding to the FcεRI and has been approved for use in asthma 
and chronic urticaria (138, 139). Indeed, anti-IgE therapy with 
omalizumab, added to medium- or high-dose inhaled glu-
cocorticoids, has proven effective in the treatment of patients 
with moderate-to-severe and severe allergic (IgE-mediated) 
asthma by reducing exacerbations and associated use of sys-
temic glucocorticoids in addition to improving other clinical 
outcomes (140, 141). Since omalizumab reduces the expression 
of FcεRI on circulating basophils and MCs, it seems to lower 
the activity potentials of basophils and MCs, thereby reducing 
the potential reactivity of these cells. Concordantly, serum 
tryptase was reported to decrease under omalizumab therapy 
in two mastocytosis patients, but it remained unchanged in two 
other patients (142). A recent study performed on 18 non-atopic 
asthmatic patients showed improved lung function and reduced 
total bronchial mucosal IgE+ cells in bronchial biopsies, but not 
changed total MCs, plasma cells, B lymphocytes, eosinophils, 
and plasmablast (143). A pooled analysis of five randomized, 
double-blind, placebo-controlled trials demonstrated that the 
reduction of serum-free IgE by omalizumab was associated 
with a reduction in peripheral eosinophil counts in patients 
with moderate-to-severe asthma receiving moderate-to-high 
doses of glucocorticoids [see Stokes in this issue and Ref. 
(144)]. Smaller studies already reported an inhibitory effect of 
omalizumab on eosinophils, in the peripheral blood and in the 
sputum or in bronchial biopsies, but no significant results on 
tissue MC numbers (145–149). A decrease in blood eosino-
philia during omalizumab therapy was proposed as predictor 
of less asthma exacerbations (150) as well as higher IL-13 
levels in sputum predicted the response to omalizumab (151). 
However, despite these clinical evidences, the mechanisms 
whereby reductions in circulating IgE lead to a reduction in 
eosinophils remain unclear. It is possible that omalizumab leads 
to the inhibition of the release of pro-inflammatory mediators, 
cytokines, and chemokines from MCs/basophils or inhibition 

of the allergen-induced differentiation of T cells to Th2 cells by 
reducing the expression of FcεRI on APCs. Indeed, omalizumab 
was shown to reduce IL-4+ cells in the bronchial submucosa 
(145). A reduction in circulating IL-13 has also been reported 
in patients with moderate-to-severe allergic asthma treated with 
omalizumab (147). A decrease in eotaxin expression in exhaled 
breath condensate, exhaled NO, eosinophil blood count, serum 
ECP after 16  weeks of omalizumab treatment was observed 
(152). Increased eosinophil apoptosis and reduced numbers 
of GM-CSF+ lymphocytes have been observed in peripheral 
blood of omalizumab-treated patients with coexisting allergic 
asthma and rhinitis, which may also contribute to the inhibitory 
action of omalizumab on eosinophils (146). A direct effect of 
omalizumab on eosinophils may be possible via the FcεRI that 
have been detected on eosinophils, even though their functional 
significance has yet to be established (153).

Given the pivotal role played by eosinophils in the patho-
genesis of severe eosinophilic asthma (3, 154), targeting IL-5 or 
IL-5Rα appears an interesting therapeutic approach (3, 131). 
Several randomized, double-blind, placebo-controlled stu-
dies demonstrated that mepolizumab (155, 156), reslizumab  
(157, 158), and benralizumab (159, 160) improved lung func-
tion and decreased asthma exacerbations in adult patients with 
severe eosinophilic asthma.

eosinophilic esophagitis
Eosinophils, normally present in the gastrointestinal tract, 
are absent in the esophagus of healthy subjects. Eosinophilic 
esophagitis (EoE) is a chronic, immune-mediated esophageal 
disease, characterized by dysphagia, abdominal pain, and pres-
ence of ≥15 eosinophils/field at 400× magnification in the proxi-
mal and distal esophagus (161). In EoE, eosinophils are present 
in all layers of the esophagus, but predominate in the lamina 
propria and submucosal regions, and are considered the main 
effector cells in this disorder (161). Activated MCs and their 
products (e.g., TGF-β) have been described in the esophageal 
biopsies of active EoE patients (162, 163). The relative contribu-
tion of MCs and eosinophils to disease pathogenesis is still under 
investigation. There is no evidence supporting MC-targeting 
therapies in EoE (164–166). However, an open label, single arm, 
unblinded small study showed a statistically significant reduction 
in MCs and eosinophils in endoscopic biopsies of EoE patients 
 following omalizumab treatment, which correlated with clinical 
outcome (167). IL-5 targeting therapies resulted in a reduction 
of esophageal inflammation, but only in minimal symptom relief 
(168). Interestingly, mepolizumab did not deplete eosinophils 
nor MCs in the duodenal mucosa of patients (169). In contrast, 
a pediatric retrospective study showed a reduction in esopha-
geal eosinophil numbers upon mepolizumab treatment, which 
was more pronounced in a subgroup of responders that also 
displayed a marked reduction of tryptase+ MCs after treatment. 
These esophageal MCs were found adjacent to eosinophils, and 
the frequency of these MC/eosinophil couplets in the esophagus 
of the responders was reduced after mepolizumab treatment. 
Moreover, activated MBP+ eosinophils and unidentified cells 
adjacent to tryptase+ MCs in the esophagus produced IL-9, 
a pleiotropic cytokine with a pivotal role in activation and 
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maturation of MCs. Interestingly, the authors reported that the 
esophageal MC numbers correlated with the severity of EoE 
symptoms, but the reduction of eosinophil numbers did not 
correlate with symptoms severity. In the subgroup of patients 
with a greater than 70% decrease in MC density, numbers of 
MCs correlated with the severity of symptoms. By contrast, there 
was no correlation between eosinophil numbers and symptom 
severity. This study suggests an additional role for eosinophils in 
EoE, as providers of IL-9 that promotes esophageal mastocytosis 
and indicates that interactions between MCs and eosinophils 
can regulate the severity of EoE symptoms (170). Reslizumab 
reduced intraepithelial esophageal eosinophils without improve-
ments in symptoms (171). Thus, although the involvement of 
eosinophils and presumably MCs in EoE is likely, their relative 
contribution to the pathogenesis and symptoms of EoE is not 
fully understood.

eosinophilic Granulomatosis with 
Polyangiitis (eGPA)
Eosinophilic granulomatosis with polyangiitis, previously known 
as Churg–Strauss syndrome, is characterized by increased blood 
level of IL-5 and eosinophilia in peripheral blood and affected 
tissues (172). In EGPA, eosinophilic inflammation affects the 
upper (chronic rhinosinusitis) and lower airways (asthma) (173). 
Endocardial inflammation, coronary vasculitis, and pericarditis 
can be observed in patients with EGPA (79, 80). A preliminary 
study in a small group of EGPA patients demonstrated the effi-
cacy of mepolizumab in reducing blood eosinophils, but not in 
improving the pulmonary functions (174). A recent multicenter, 
double-blind, parallel-group, phase 3 trial demonstrated that in 
patients with EGPA mepolizumab (300  mg s.c. every 4  weeks) 
was associated with more accrued time in remission than was 
placebo, which allowed for reductions in the glucocorticoid dose 
over a period of 52 weeks (175). We have found that omalizumab 
resulted in clinical improvement of asthma, reduction of periph-
eral blood eosinophils, and prednisone administration in EGPA 
patients (173, 176). However, the role of MC in the pathogenesis 
of EGPA is not fully understood.

eosinophilic endomyocarditis and 
Atherosclerosis
The association between endomyocardial disease and eosino-
philia was first described by Löffler in 1936 (177). Cardiac 
involvement is the most common cause of morbidity and mortal-
ity in patients with hypereosinophilia (3, 81–84). Eosinophils and 
their granule proteins have been found in cardiac biopsies from 
patients with eosinophilic endomyocardial disease (178, 179).  
Recently, an association of EoE and cardiomyopathy has been 
reported (180).

Eosinophil cationic protein and, to a lesser extent, MBP 
stimulate the release of preformed (histamine and tryptase) and 
the de novo synthesis of PGD2 and LTC4 from human HHMC 
(8, 181). Activated HHMCs release histamine and CysLTs, which 
exert profound cardiovascular and metabolic effects (182, 183). 
In addition, MBP and eosinophil peroxidase induce platelet 
aggregation (184). These observations suggest that infiltrating 

eosinophils and their mediators contribute to cardiac dysfunc-
tion in patients with eosinophilia.

Activated MCs are increased at site of atheromatous rupture 
in myocardial infarction (10). MCs in human coronary plaques 
release angiogenic factors, such as FGF-β (11), which enhance 
atherosclerotic plaque progression. Cardiac MC-derived renin 
promotes local angiotensin formation leading to cardiac dysfunc-
tion (12). Activated MCs may also promote abdominal aortic 
aneurysms (13, 14) presumably through the release of chymase 
(185, 186) and CysLTs (15).

Skin Disorders
Bullous pemphigoid (BP) is the most frequent autoimmune 
blistering dermatosis, characterized by autoantibodies directed 
against the dermal–epidermal junction proteins BP180/BP230 
typically causing pruritic bullous eruptions. The immune 
response leading to blister formation in BP involves different 
inflammatory cells and molecules, including CD4 T  cells, 
B  cells, complement factors, neutrophils, as well as MCs and 
eosinophils (187). Serum levels of ECP were elevated in patients 
with active BP compared with healthy controls. Moreover, 
MC tryptase serum levels were associated with circulating 
anti-BP180 autoantibodies and decreased at the time of 
clinical remission (188). In a murine model of BP, blistering 
was dependent on C5a–C5aR interaction on MCs, which led 
to the activation of the p38 MAPK pathway in MC and their 
degranulation (189). Moreover, blood, skin, and blister-derived 
eosinophils were activated in patients with BP compared to 
controls. Activated eosinophils produced CCL26, IL-6, IL-8, 
and IL-1α in BP skin and blister fluid and displayed apoptosis 
features (190). Interestingly, IL-5-activated eosinophils were 
shown ex vivo to directly contribute to BP blister formation 
in the presence of BP autoantibodies. Indeed, IL-5-activated 
eosinophils induced dermal–epidermal separation, which 
was dependent on eosinophil adhesion, FcγR activation, ROS 
production, degranulation, and eosinophil extracellular trap 
formation (191).

Psoriasis is a frequent, chronic recurrent inflammatory skin 
disease which results from dysregulation between environmental 
factors, epithelial cells and immune cells (100). MCs infiltrate 
skin lesions of psoriatic patients and were identified as high pro-
ducers of IL-17A and IL-22, both cytokines involved in psoriasis 
pathogenesis (192, 193). MCs and keratinocytes also induced 
angiogenesis by producing IL-8 and VEGF-A (194). In contrast, 
eosinophils were not increased in the skin or peripheral blood of 
psoriatic patients.

Atopic dermatitis (AD) is a common chronic inflammatory 
skin disease driven by specific genetic and immunological 
mechanisms (100). MC-derived histamine, tryptase, chymase, 
and other inflammatory mediators contribute to itching and 
inflammation in patients with AD (195). However, MCs were 
not required for the development of disease in a murine model 
of AD (196). AD is characterized by an increased number of 
circulating eosinophils and dermal and epidermal infiltrates 
of eosinophils. Tissue and blood eosinophilia and increased 
circulating levels of ECP, MBP, and eosinophil-derived neuro-
toxin have been correlated with disease activity. Serum levels of 
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IL-5 were increased in AD patients and correlated with disease 
activity. However, although eosinophils might have important 
roles in AD pathogenesis, their exact mechanisms are not fully 
understood (197).

Tumor-Associated MCs (TAMCs) and 
Tumor-Associated eosinophils in Cancer
Tumor-associated eosinophilia was first described in 1893 
(198). Eosinophilia is frequently observed in patients with solid 
tumors (199–201) and Hodgkin’s lymphoma (202). Eosinophils 
are recruited to tumors by chemoattractant CCL11 (eotaxin-1), 
which binds to CCR3 (203) and damage-associated molecular 
patterns, notably the alarmin high-mobility group box 1, released 
by necrotic tumor cells (204, 205).

Clinical studies addressing the role of eosinophils in tumors 
provided conflicting results. Tumor-associated eosinophilia was 
related to good prognosis in colorectal, head and neck, bladder and 
prostate cancers (206–208). By contrast, in Hodgkin’s lymphoma, 
oral squamous cell carcinoma, and cervical carcinoma, eosinophils 
have been linked to poor prognosis (206, 207, 209, 210).

Experimental studies also provided inconclusive results 
(211). Indeed, human eosinophils exert tumoricidal activity 
toward cancer cells through the release of TNF-α and granzyme 
A, contained in their secondary granules (17, 212). On the other 
hand, tumor-recruited eosinophils influence tumor angiogen-
esis, through distinct mechanisms. Human eosinophils and their 
supernatants induce endothelial cell proliferation in  vitro and 
angiogenesis in vivo (213). Eosinophils contain VEGF in their 
secretory granules that can be secreted upon activation by IL-5 
(127). In addition, eosinophils can contribute to tumor angio-
genesis through the release of other proangiogenic molecules 
such as OPN (94) and MBP (129). Recently, activated eosinophils 
were shown to be essential for tumor rejection (16). Indeed, 
tumor-homing eosinophils secreted chemoattractants such as 
CCL5, CXCL9, and CXCL10, which recruited CD8+ T cells to 
the tumor (16).

Tumor-associated MCs are present in several human solid 
(41–55) and hematologic tumors (56–64). Peritumoral and/or 
intratumoral MC density is increased in different types of human 
cancer (18). Although the role of MCs and their mediators in 
experimental and human tumors is still controversial (19, 214), 
the bidirectional interaction between MCs and eosinophils can 
influence tumor angiogenesis and lymphangiogenesis.

Tumor immunologists have just scratched the surface of 
the complexity of the multidirectional interactions between 
eosinophils, MCs, and their neighboring tumor cells in tumor 
microenvironment.

MCs and eosinophils in Myeloproliferative 
Disorders
Mast cells and eosinophils can also found to be increased in 
primary myeloproliferative disorders of the bone marrow. The 
mechanism of the increased numbers of MCs and eosinophils 
in myeloproliferative disorders involves a primary defect in 
a tyrosine kinase gene resulting in uncontrolled proliferation 
and dysregulated apoptosis. Two such disorders are particularly 

associated with increased numbers of both cell types: systemic 
mastocytosis (SM) and chronic eosinophilic leukemia (CEL).

Mastocytosis is an abnormal clonal MC expansion and 
accumulation in several tissues including the bone marrow and 
the skin (215, 216). Cutaneous mastocytosis is associated with 
gain-of-function Kit mutations in approximately 8% of cases 
(217). Almost all patients with SM present a somatic mutation 
in codon 816 (D816V) of the gene encoding the receptor Kit, 
which leads to the substitution of a valine for an aspartate in the 
protein. Because of the D816V mutation, Kit is constitutively 
active, resulting in autophosphorylation and enhancement of 
MC differentiation and survival. A variable percentage (15–28%) 
of patients with SM also presents peripheral blood eosinophilia, 
which predicted poorer prognosis in some studies (218–220). In 
patients with cutaneous or SM, a correlation between the levels 
of soluble IL-5Rα (sIL-5Rα) and eosinophils in peripheral blood 
was also found (219).

In 2003, the FIP1L1–PDGFRA fusion was identified in 
patients with idiopathic hypereosinophilic syndrome and its 
presence redefined such patients having a neoplasm instead of 
idiopathic hypereosinophilic syndrome. Before the discovery 
of this cytogenetic rearrangement, the patients carried a poor 
prognosis due to early cardiac death in the absence of effective 
treatment. The identification of this fusion rearrangement as 
therapeutic target of imatinib dramatically changed the per-
spectives of these patients, due to a prompt hematologic and 
clinical remission. Patients with FIP1L1–PDGFRA+ CEL exhibit 
features of myeloproliferative syndromes such as splenomegaly, 
hypercellular bone marrow, and clinicopathological aspects that 
overlap with systemic MC diseases, such as increased number 
of abnormal MCs, elevated circulating tryptase levels, and bone 
marrow fibrosis (221). These similarities raised the doubt that 
FIP1L1–PDGFRA+ CEL could be considered a subtype of SM, 
rather than a primary eosinophil disease (222). Indeed, even 
though less dense clusters of MCs compared to the typical 
multifocal aggregates of D816V Kit+ SM, in some cases MCs 
exhibited spindle-shaped morphology and aberrant surface 
expression of CD25, both minor criteria for SM according to the 
WHO criteria (223). In the revised 2008 WHO semi-molecular 
classification of myeloid neoplasms, FIP1L1–PDGFRA+ disease 
is not considered a subtype of SM. To date, FIP1L1–PDGFRA 
and D816V Kit mutations appear to be mutually exclusive. In 
the D816V Kit+ patients, gastrointestinal symptoms, urticaria 
pigmentosa, thrombocytosis, median serum tryptase value, and 
the presence of MC dense infiltrates in the bone marrow were 
increased compared to patients with FIP1L1–PDGFRA muta-
tion. By contrast, cardiac and pulmonary symptoms, median 
eosinophil count, eosinophil to tryptase ratio, and serum B12 
levels were higher in the FIP1L1–PDGFRA+ patients. Whether 
a patient with peripheral eosinophilia and increased bone mar-
row MC infiltration carries a D816V Kit or FIP1L1–PDGFRA 
mutation is important for guiding therapeutic decisions. Indeed, 
FIP1L1–PDGFRA mutation is highly sensitive to imatinib treat-
ment, which induces clinical remission as early as 4 weeks. By 
contrast, the vast majority of SM carrying D816V Kit mutation 
are imatinib resistant and candidate to second-line tyrosine 
kinase inhibitors or cytoreductive therapy (224).
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CONCLUSiON

Mast cells and eosinophils were identified and named by Paul 
Ehrlich based on their capacity to be stained by specific dyes. 
These cells and their mediators have been classically associated 
with the pathogenesis of allergic disorders. However, there is 
now evidence that MCs and eosinophils are involved in auto-
immune disorders, vasculitis, cardiovascular diseases, as well 
as solid and hematologic tumors. MCs and eosinophils play 
complex, sometimes complementary, but also distinct roles in 
these conditions. The latter findings are not surprising given the 
observations that these cells have distinct myeloid progenitors, 
are activated by different agonists, and differ morphologi-
cally, ultrastructurally, immunologically, biochemically, and 
pharmacologically.

In allergic disorders (e.g., asthma, allergic rhinitis, chronic 
urticaria) and certain solid (e.g., gastric and prostate cancers) 
and hematologic tumors (e.g., Hodgkin’s lymphoma), MCs and 
eosinophils can be found in close proximity. In particular, in 
allergic diseases, these cells can form the AEU (65). It is now 
clear that MCs modulate several eosinophil functions through 
the release of a plethora of preformed (e.g., SCF, histamine, and 

adenosine) and de novo synthesized mediators (e.g., IL-5, LTC4, 
SCF, PGD2, and PAF). On the other side, eosinophils modulate 
MC functions through the production of several mediators 
(e.g., IL-5, PAF, ECP, MBP, and NGF). These bidirectional 
interactions between MCs and eosinophils might be important 
not only in allergic diseases but also in several inflammatory 
and neoplastic disorders.
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