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Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 
(PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant 
receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors 
EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either 
one or multiple receptors, characteristically have a short half-life in vivo, and are quickly 
degraded into metabolites with altered affinity and specificity for a given receptor 
subtype. Prostanoid receptors signal mainly through G proteins and naturally activate 
signal transduction pathways according to the G protein subtype that they preferentially 
interact with. This can lead to the activation of sometimes opposing signaling pathways. 
In addition, prostanoid signaling is often cell-type specific and also the combination of 
expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, 
it is assumed that eosinophils and their (patho-)physiological functions are governed 
by a sensitive prostanoid signaling network. In this review, we specifically focus on the 
functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their 
significance in allergic and non-allergic diseases and summarize potential targets for 
drug intervention.
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THe PROSTAnOiD—eOSinOPHiL AXiS in ALLeRGiC DiSeASeS

Atopy is a genetically determined disorder, which results in characteristic inflammatory responses 
to per se innocuous antigens. Atopic diseases can manifest in different tissues as allergic rhinitis, 
conjunctivitis, bronchial asthma, dermatitis, or food allergies, and are associated with a major reduc-
tion in quality of life and life expectancy. In addition, some diseases, such as intrinsic asthma, aspirin 
sensitivity, nasal polyposis, adenoid hyperplasia, or chronic idiopathic urticaria, share several clinical 
and pathophysiological aspects of allergy, but with less clear ties to allergens. The basic concept 
of atopic reactions is grounded in an inadequate activation of immune cells by both specific and 
non-specific stimuli, with a shift toward the type-2 spectrum of inflammatory mediators, such as 
interleukin (IL)-4, -5, -9, and -13 (1). In allergen-specific IgE-mediated hypersensitivity reactions 
mast cells release preformed and newly synthesized mediators [histamine, leukotriene C4, prosta-
glandin (PG) D2, TNFα, and many others] (2). This is the pivotal step in the inflammatory cascade 
as it initiates the early phase of an allergic reaction. On the one hand, these mediators provoke 
symptoms such as sneezing, nasal congestion, rhinorrhea, wheezing, skin rash, etc., on the other 
hand, they trigger the infiltration of innate and adaptive immune cells, which favors the development 
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of the late phase response that is characterized by symptoms such 
as bronchoconstriction, mucus hypersecretion, edema, pain, 
heat, and erythema.

Eosinophils are regarded as crucial effector cells in chronic 
allergic inflammation. Activated eosinophils release an array of 
cytotoxic and pro-inflammatory mediators promoting mucosal 
damage in chronic asthma and allergic inflammation. The tissue 
damage repeatedly initiates repair mechanisms that can lead 
to imbalance of epithelial-to-mesenchymal transition (3, 4). 
Consequently, eosinophils also play a role in airway remodeling 
and angiogenesis in chronically inflamed tissue, and hence 
contribute to the progression of the disease (5, 6). Consequently, 
eosinophil-deficient mice are protected against allergen-induced 
pulmonary inflammation and airway hyperresponsiveness (7, 8). 
The pathogenic role of eosinophils was eventually highlighted in 
a pivotal study showing that patients whose treatment is adjusted 
according to sputum eosinophil counts have significantly 
fewer severe asthma exacerbations than patients on standard 
management therapy (9). Therefore, eosinophils are currently 
considered a major therapeutic target in allergic diseases, such as 
conjunctivitis, rhinosinusitis, asthma, and atopic dermatitis, but 
they might also play pathogenic roles in several other diseases, 
such as eosinophilic esophagitis and gastroenteritis, pancreatitis, 
colitis ulcerosa, hypereosinophilic syndrome, renal disease, and 
cancer (10–19).

Importantly, the role of eosinophils in murine models of 
allergic airway inflammation is discussed controversially. IL-5 
transgenic mice show pronounced eosinophilia and intrinsic 
airway hyperreactivity whereas the latter is abolished when 
CD4+ cells are depleted in these mice (20). However, it has also 
been observed that IL-5 transgenic mice are protected from 
airway hyperreactivity, and eosinophils isolated from BAL of 
OVA-challenged IL-5 transgenic mice do not release superoxides 
when activated with physiological stimuli (eotaxin, IL-5, PAF, 
or IgG) (21), which is in sharp contrast to human eosinophils. 
Therefore, the role of mouse vs. human eosinophils might differ 
in the pathophysiology of allergic diseases.

Human eosinophils express a distinct pattern of prostanoid 
receptors, comprising the receptors for PGD2, DP1 [also D-type 
prostanoid (DP)] (22) and DP2 [also chemoattractant receptor 
homologous molecule expressed on Th2 cells (CRTH2)] (23), 
the prostaglandin E2 receptors EP2 and EP4 (24), and the PGI2 
(prostacyclin) receptor IP (25). When activated, these seven-
transmembrane receptors couple to G proteins, which initiate 
further intracellular signaling events and are eventually eliciting a 
cellular response. Depending on the G protein subtypes involved, 
this can lead to the activation of opposing signaling pathways 
(26–29). For instance, the DP2 receptor couples to Gαi and Gαq 
causing eosinophil shape change and migration, while the IP 
receptor inhibits these eosinophil responses, likely through Gαs. 
In the mouse, eosinophils express DP1 and DP2 (30). EP2 is 
expressed on murine eosinophils since the EP2 agonist butaprost 
inhibits eosinophil trafficking, and in OVA-sensitized mice, the 
infiltrating leukocytes after allergen challenge were immunohis-
tologically stained EP2 positive (31). The expression of EP1, EP3, 
EP4, and IP remains elusive; however, IP-deficient OVA-sesitized 
mice show less eosinophils in the brochoalveolar lavage and 

airway inflammation after allergen challenge as compared to 
wild type mice (32, 33).

PROSTAGLAnDin D2 (PGD2)

Prostaglandin D2 is the principal ligand for two receptors, DP1 
and DP2 (34), of which both are expressed on the surface of 
eosinophils (35). At micromolar concentrations, PGD2 is also 
an agonist of the thromboxane receptor, TP, which mediates the 
direct bronchoconstrictor effect of PGD2 (36). Moreover, a major 
metabolite of PGD2, 15-deoxy-Δ12,14-PGJ2 is a potent agonist of 
peroxisome proliferator-activated receptor (PPAR)-γ, which is 
also expressed by eosinophils (37). PGD2 had been known to 
stimulate eosinophil locomotion for some time (38, 39), but it 
was only in 2001 that the DP2 receptor was found to mediate this 
effect (22, 40, 41). Also, DP2 activation by PGD2 or DP2-selective 
ligands triggers Ca2+ flux, CD11b upregulation, respiratory burst, 
and release of eosinophil cationic protein (22, 40–42). Eosinophil 
responses to DP2 activation seem to depend on Gαq proteins, 
exemplified by the lack of effect of pertussis toxin on PGD2-
induced eosinophil shape change, which—however—is abrogated 
by phospholipase C inhibition (43). However, PGD2-induced 
chemotaxis was abrogated by pretreatment of eosinophils with 
pertussis toxin (unpublished observation). In addition to directly 
stimulating eosinophil migration, we also observed that PGD2 is 
capable of priming eosinophils for other chemoattractants like 
eotaxin, 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), 
or complement factor C5a, an effect that is likewise mediated 
by the DP2 receptor (42, 44). Conversely, eosinophil migration 
toward PGD2 is impaired by eotaxin or 5-oxo-ETE in a pathway 
depending on phosphoinositide 3-kinase as well as p38 mitogen-
activated protein kinase (44). The subcellular signaling cascades 
that mediate the priming effect of PGD2 are not yet understood, 
while the priming effect of the PGD2 metabolite 15-deoxy-
Δ12,14-PGJ2 seems to involve PPAR-γ (45). Thus, it appears that 
a hierarchy exists among eosinophil chemoattractants: PGD2 
might be regarded as an initial chemoattractant, since its potency 
is sustained also in whole blood and primes eosinophils for other 
chemoattractants; however, eotaxin seems to be an end-point 
chemoattractant, as it has reduced efficacy in blood as compared 
to isolated eosinophils, and effectively downmodulates eosinophil 
migration toward other chemoattractants (44).

Besides PGD2, DP2 is also activated by the PGD2 metabo-
lites 13,14-dihydro-15-keto- (DK-) PGD2, PGJ2, Δ12-PGJ2 and 
15-deoxy-Δ12,14-PGJ2 (42, 46, 47). Considering that PGD2 is as 
short-lived molecule and rapidly degraded into metabolites (48), it 
is interesting that the PGD2 actions on eosinophils are maintained 
through metabolites binding to DP2. Moreover, one of the major 
metabolites of the thromboxane pathway, 11-dehydro-TXB2, and 
even the common precursor of all prostanoids, PGH2, are also 
potent DP2 agonists (49, 50). Similarly, PGF2α has been found to 
activate eosinophils through DP2 (51).

In human disease, DP2 on peripheral blood eosinophils is 
upregulated in allergic dermatitis and rhinitis patients (52, 53), 
but it is diminished in active ulcerative colitis (26).

Although PGD2 binds to DP1 with similar affinity as to DP2 
(34), the exact function of this receptor in immune cells has not 
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FiGuRe 1 | PGD2, PGE2, and PGI2 direct the functions of eosinophils. Eosinophils express receptors for PGD2 (DP1, DP2), PGE2 (EP2, EP4), and PGI2 (IP). Via DP2, 
PGD2 attracts eosinophils to the site of inflammation, enhances eosinophil mobilization from the bone marrow, and upregulates CD11b expression. In line with the 
chemotactic response, PGD2-mediated activation of eosinophils results in increased size and altered cell shape. DP1 and DP2 cooperatively regulate the synthesis 
of LTC4. DP1 has been shown to enhance the DP2-mediated Ca2+ response and to prolong the survival of eosinophils in vitro. Counteracting pro-inflammatory 
mechanisms PGE2 and PGI2 suppress the activation of eosinophils and hence dampen pro-inflammatory signals. Despite the negative regulation of eosinophil 
effector and chemotactic functions by PGE2 and PGI2, PGE2 was shown to decrease eosinophil apoptosis in vitro.
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been fully elucidated yet, and both pro- and anti-inflammatory 
effects have been reported (29). For instance, DP1 mediates 
the PGD2-induced expression of the airway mucin MUC5B in 
human nasal epithelial cells (54) and stimulates mucus produc-
tion in vitro (55) but inhibits the functions of platelet, neutrophils, 
basophils, and dendritic cells (56–62). Unlike DP2, which is 
preferentially expressed on immune cells, such as eosinophils, 
basophils, macrophages, mast cells, a subset of Th2 lymphocytes 
and group 2 innate lymphoid cells (23, 40, 63–66), DP1 is more 
widely expressed, including the vasculature, the central nervous 
system, the retina, and the lungs (55, 67–69).

DP1-deficient mice were shown to be protected from devel-
opment of allergic lung inflammation in terms of airway hyper-
responsiveness, reduced numbers of BAL eosinophils, and BAL 
levels of IL-4, IL-5, and IL-13 (70). In contrast, intratracheal 
administration of DP1 agonist BW245c protected mice from air-
way hyperresponsiveness and lung eosinophilia in a OVA models 
of experimental asthma, thereby counteracting DP2-mediated 
proinflammatory responses (30, 71). DP1 activation has also been 
linked to inhibition of dendritic cell function (60) and to reduce 
inflammation in an IL-10-dependent mechanism (71). DP1, but 
not DP2, expression in lung tissue (mRNA) is upregulated upon 
OVA challenge (72). More recently, in guinea pigs, PGD2 aerosols 
were shown to induce the activation of sensory nerves and cough 
via DP1 receptor activation. Interestingly, DK-PGD2 modulated the 
sensory nerve activity by inhibiting the response to capsaicin (73).

In eosinophils, the DP1 receptor transmits antiapoptotic 
signals by PGD2 (22), but has been found to limit DP2-mediated 
CD11b upregulation (41). At micromolar concentrations, 
however, PGD2 and 15-deoxy-Δ12,14-PGJ2 drive eosinophils 
into apoptosis in a nuclear factor κB-dependent manner (74). 
Regarding other eosinophil responses, there is growing literature 

reporting cooperative signaling of DP1 and DP2 receptors. 
In guinea pigs, both DP1 and DP2 activation can stimulate 
the mobilization of eosinophils from the bone marrow (75). 
Moreover, DP1-dependent eosinophil responses such as migra-
tion and production of reactive oxygen species are—to some 
extent—co-mediated by DP1 (75, 76). On the molecular level, 
we have shown that DP1 activation is substantially involved in 
DP2-triggered Ca2+ signaling in a heterologous expression system 
and in human peripheral blood eosinophils and, therefore, might 
be an important regulator of DP2-mediated pro-inflammatory 
signaling (35). Cooperative signaling of the two receptors also 
converges in the PGD2-induced synthesis of leukotriene C4 syn-
thesis in eosinophils. Only a simultaneous activation of DP1 and 
DP2 led to a sufficient response while the activation of either one 
or the other receptor did not equal the full PGD2 response (77).  
This finding does not only substantiate the significance of PGD2 
in stimulating the synthesis of LTC4 but also highlights the coop-
erative function of the two PGD2 receptors (Figure 1).

TARGeTinG PGD2 SiGnALinG in 
eOSinOPHiLiC DiSeASeS

DP2 Receptor Antagonists
Blood and tissue eosinophilia is a key feature of allergy and asthma. 
It correlates with the severity of the disease on the one hand, and 
levels of PGD2 on the other hand (78). Exogenously applied PGD2 
and DP2 agonists provoke peripheral blood eosinophilia and infil-
tration of eosinophils into the conjunctiva, lung, nose, and skin in 
animal models (30, 38, 79–82), whereas pharmacological block-
ade of DP2 can ameliorate models of atopic dermatitis, asthma, 
rhinitis, and conjunctivitis (83–88). Interestingly, DP2-deficient 
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mice develop a normal chronic allergic inflammatory response 
to allergen challenge after sensitization and challenge, while the 
acute inflammatory response and eosinophil infiltration in the 
skin are abrogated (89).

The effects of the DP2 antagonist timapiprant (OC-459) was 
studied in a large patient cohort (n = 482) of mild-to-moderate 
persistent asthma. In this randomized, double-blind placebo-
controlled study, the DP2 antagonist was given over 12  weeks 
with overall beneficial effects on lung function. A post  hoc 
analysis revealed that the greatest improvement of lung function 
by timapiprant was observed in patients with active eosinophilia 
(≥250/μl peripheral blood) and—even more pronounced—in 
younger patients (90). This applies also for the humanized 
murine IL-5 antibody mepolizumab, which is most effective and 
only given in asthma patients with severe eosinophilic airway 
inflammation (91). In eosinophil esophagitis, timapiprant sig-
nificantly reduced the esophageal eosinophil load and induced 
some clinical improvement (92). Timapiprant also successfully 
reduced nasal and ocular symptoms in allergic subjects exposed 
to grass pollen (93).

Fevipiprant (QAW039) is another DP2 antagonist, but as com-
pared to timapiprant, it has slower dissociating properties and 
is, therefore, a candidate compound with potentially improved 
efficacy (94). In 170 patients with uncontrolled asthma, however, 
fevipiprant administered once daily did not meet the overall 
expected primary clinical end point (increase in FEV1), but led to 
an improvement of clinical symptoms in a sub-cohort with severe 
asthma (FEV1 < 70%), leading to a significant improvement in 
FEV1 and the asthma control questionnaire score, in addition to 
being well tolerated by the patients (95). It has to be considered, 
however, that post hoc analyses like these performed with fevip-
irant and timapiprant (90) need to be interpreted with caution. 
Importantly, fevipirant reduced eosinophilic airway inflammation 
in a separate, small trial comprising 61 patients with persistent 
moderate-to-severe asthma, uncontrolled by inhaled corticoster-
oids and elevated sputum eosinophil counts (96).

Several other DP2 antagonists have been subject to clinical 
trials in asthma or even COPD, but showed little efficacy and are 
discussed elsewhere (97).

DP1 Receptor Antagonists
Based on in situ hybridization and immunohistochemistry, DP1 
mRNA and DP2 protein expression were detectable in eosino-
phils in nasal polyp tissue of allergic rhinitis patients; in contrast, 
only DP1 but not DP2 was observed in nasal tissue of healthy 
subjects (67).

A pivotal study using DP1-knockout mice suggested that DP1 
plays an important role in the OVA-induced asthma model. DP1-
deficient mice not only showed markedly reduced eosinophils in 
BAL fluid but also did not develop airway hyperresponsiveness 
(70). In a rat model of OVA-induced pulmonary inflammation, 
DP1 expression was upregulated in the lungs while bronchial 
hyperresponsiveness and immune cell infiltration was dimin-
ished by the DP1 antagonist S-5751 (98). In an OVA-induced 
allergic rhinitis model in guinea pigs, S-5751 inhibited late phase 
responses such as infiltration of eosinophils and mucosal plasma 
exudation (99). A newly developed DP1 antagonist (S-555739, 

asapiprant) showed improved affinity and bioavailability, and 
reversed antigen- and PGD2-induced nasal congestion and airway 
hyperresponsiveness in guinea pigs and sheep, respectively, along 
with significantly decreased eosinophils and other inflammatory 
cells in nasal lavage fluid (100). A phase II clinical trial in the USA 
(NCT01651871) and a phase III clinical trial (JapicCTI-132046) 
in Japan are underway testing asapiprant in seasonal allergic 
rhinitis. The results are yet to be announced. Previously, another 
DP1 antagonist, laropiprant (MK-0524), was shown to prevent 
nasal congestion induced by PGD2 in healthy subjects (101) 
but failed in phase II trials in allergic rhinitis and asthma (102). 
Similarly, the dual DP1/DP2 antagonist vidupiprant (AMG 853)  
provided no benefit as an add-on to inhaled corticosteroid ther-
apy in moderate-to-severe asthma (103).

inhibition of PGD2 Synthases—HPGDS and 
Lipocaline Prostaglandin D2 Synthase 
(LPGDS)
In mammals, two isoforms of PGD2 synthases are expressed: the 
lipocaline type (LPGDS), which is highly abundant in the central 
nervous system and the hematopoietic type (HPGDS), which is 
mainly expressed in mast cells, but also can be found in mac-
rophages and Th2 lymphocytes (Table 1). Additionally, resident 
eosinophils themselves might be a late source of PGD2 at the site 
of allergic inflammation acting in an autocrine manner to attract 
and activate further eosinophils (104, 105). An interesting novel 
link between PGD2 and eosinophils is the recent discovery of pro-
eosinophilic, so-called pathogenic effector (pe)Th2 lymphocytes, 
which highly express IL-5 and IL-13, and can be found at elevated 
levels in eosinophilic patients suffering from atopic dermatitis 
and eosinophilic gastrointestinal disease. These cells express not 
only DP2 but also HPGDS (106).

Both PGD synthases are regarded as promising drug targets 
in a variety of diseases, such as allergic inflammation, masto-
cytosis, asthma and chronic obstructive pulmonary disease, 
metabolic disorders, muscular dystrophy, Alzheimer’s disease, or 
spinal cord injury (127), stimulating the development of several 
selective inhibitors (128–136). Transgenic mice overexpressing 
LPGDS show exaggerated eosinophilic pulmonary inflammation 
(72), which was reversed by AT-56, a LPGDS inhibitor (129). 
In contrast, eosinophil numbers in OVA-induced pulmonary 
inflammation are not significantly increased in transgenic mice 
overexpressing HPGDS, but the HPGDS inhibitor HQL-79 abro-
gated eosinophilic pulmonary inflammation in OVA-challenged 
mice (128). HPGDS in healthy nasal mucosa is expressed only 
in mast cells, but in allergic rhinitis and nasal polyps also in 
infiltrating inflammatory cells including eosinophils (67, 137). 
In a guinea-pig model of allergic inflammation, the HPGDS 
inhibitor TAS-204 prevented OVA-induced nasal obstruction 
and eosinophil infiltration (132).

Activation of PPAR-γ
In an OVA-induced allergic model, 15-deoxy-Δ12,14-PGJ2 and the 
PPAR-γ agonist rosiglitazone abrogated peritoneal accumulation 
of eosinophils and eosinophil proliferation in bone marrow (138). 
Similarly, several studies have shown that synthetic PPAR-γ 
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TAbLe 1 | PGD2 release and expression of hematopoietic prostaglandin D2 synthase (HPGDS) and lipocaline prostaglandin D2 synthase (LPGDS) in human cells.

Cell type HPGDS LPGDS PGD2 release

Astrocytes Mohri et al. (68)
Basophils Tanaka et al. (107); Dahlin et al. (108)
Dendritic cells Shimura et al. (109) Shimura et al. (109)
Endothelial cells Taba et al. (110) Taba et al. (110), Camacho et al. (111)
Eosinophils Luna-Gomes et al. (112) Luna-Gomes et al. (112)
Epithelial cells (choroid plexus) Blödorn et al. (113)
Bronchial epithelial cells (HBEC) Jakiela et al. (114) (mass spectrometry)
ILC2 Björklund et al. (115)
Keratinocytes Kanda et al. (116)
Langerhans cells (epidermal) Shimura et al. (109)
Macrophages Jandl et al. (65) Tajima et al. (117)
Mast cell progenitors Dahlin et al. (108)
Mast cells Nantel et al. (67) Schleimer et al. (118); Lewis et al. (119)
Megakaryoblastic cells (CKM, Dami cells) Mahmed et al. (120); Suzuki et al. (121)
Microglia Mohri et al. (68)
Myocardial cells Eguchi et al. (122)
Oligodendrocytes Mohri et al. (68); 

Kagitani-Shimono 
et al. (123)

Osteoarthritic chondrocytes Zayed et al. (124) Zayed et al. (124)
Smooth muscle cells (arteriosclerotic plaques) Eguchi et al. (122)
Th2 subsets Mitson-Salazar et al. (106); Tanaka et al. (107); 

Wang et al. (125); Nagata et al. (126)
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agonists are beneficial in mouse models of allergic pulmonary 
inflammation and rhinitis (139, 140). Pioglitazone was tested in 
patients with mild asthma but did not reproduce the results from 
animal studies (141).

PROSTAGLAnDin e2

Infiltration of eosinophils along with other proinflammatory 
parameters in OVA-induced asthma model was found to be 
markedly enhanced in COX-1 and COX-2 knockout mice (142) 
and after pharmacological blockade of these enzymes (143). 
Conversely, inhaled PGE2 reduced airway inflammation, hyper-
responsiveness, and eosinophil counts in BAL fluid of asthmatic 
patients (144). These findings suggested a possible inhibitory 
effect of PGs on eosinophils.

In airways, PGE2 is released by epithelial-, endothelial-, and 
smooth muscle cells, macrophages, and fibroblasts, and potently 
counteracts the pro-inflammatory actions of PGD2. PGE2 has 
bronchodilator functions and reduces airway hyperresponsive-
ness via activation of EP2 receptors (145). Recently, we found 
that PGE2 promotes the endothelial barrier by EP4 receptors 
expressed on the endothelium and protects against thrombin-
induced junctional disruption (146).

Early studies indicated that PGE2 inhibits the release of 
eosinophil cationic protein (39) and homotypic aggregation 
of eosinophils (147) that is mediated by the β2-integrin CD18 
(148). Of the known PGE2 receptors (EP1, EP2, EP3, and EP4), 
eosinophils express mRNA for EP2 and EP4 (24). Accordingly, 
we found both EP2 and EP4 protein in eosinophils using flow 
cytometry and Western blot, respectively (27, 31). By directly 
addressing the significance of PGE2 in eosinophil function, we 
could show that PGE2 acts to suppress eosinophil responses 

such as chemotaxis and degranulation, which seemed to be 
mediated by both EP2 and EP4 receptors (27, 31). On the sub-
cellular level, EP4 receptor activation resulted in blockade of 
intracellular Ca2+ release, cytoskeletal reorganization, and pro-
duction of reactive oxygen species (27). EP4 agonist treatment 
inhibited CD11b upregulation, activation, and clustering of β2 
integrins, and L-selectin shedding of eosinophils, which were 
all abolished using an EP4 antagonist (149). We could delineate 
the underlying signaling pathways to involve phosphoinositide 
3-kinase, phosphoinositide-dependent kinase 1, and protein 
kinase C but not the cyclic AMP/protein kinase A pathway 
(27, 150). Likewise, the PGE2—EP4 axis acted inhibitory on 
the interaction of eosinophils with endothelial cells, including 
adhesion and transmigration (149). In contrast, mobilization 
of eosinophils from guinea pig bone marrow was mediated by 
the EP2 receptor (31). Previously, in  vitro eosinophilopoiesis 
stimulated by IL-5 was also observed to be under negative 
control of PGE2 in normal and OVA-sensitized mice by selec-
tively inducing apoptosis in developing eosinophils (151, 152). 
Unexpectedly, PGE2 has been found to be antiapoptotic for 
peripheral blood eosinophils (153, 154), which might be linked 
to elevated PGE2 levels in airways of asthmatic patients (155), 
and even more in non-asthmatic eosinophilic bronchitis (156). 
Another study, however, found an inverse relationship between 
sputum eosinophil counts and PGE2 levels (157). Nevertheless, 
activation of the EP2 receptor inhibited the allergen-induced 
increase of eosinophils in the bronchoalveolar lavage fluid of 
OVA-sensitized mice (31).

Hence, the activation of EP2/EP4 receptors can be protective 
against the accumulation and activation of eosinophils in the 
affected tissue, and is therefore considered as a potential treat-
ment strategy in allergy (Figure 1).
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PROSTAGLAnDin i2

Parts of the immune-suppressive effects of PGE2 are shared by 
PGI2 (prostacyclin). In contrast to EP2/EP4 signaling, the activa-
tion of PGI2 receptors (IP) is mediated by intracellular cAMP, 
thereby inhibiting eosinophil functions. PGI2 and the stable PGI2 
mimetic iloprost negatively regulate the trafficking of guinea pig 
bone marrow eosinophils via IP receptor activation (158). In 
experimental asthma in mice, iloprost attenuates dendritic cell 
function and the concomitant allergen-specific Th2 response and 
inhibits eosinophilia in lung tissue (159). After repeated allergen 
challenge, endogenous PGI2 abrogates airway remodeling (32).

In an in vitro study using human eosinophils and endothelial 
cells, we found that endothelium-derived PGI2 is an important 
modulator of eosinophil–endothelial interaction and might have 
a bearing on eosinophil accumulation at sites of allergic reaction. 
Moreover, PGI2 promotes the barrier function of lung endothe-
lial cells and limits eosinophil adhesion and transendothelial 
migration (25). Our data might hence explain previous findings 
that deletion of IP receptors in mice augments the eosinophilic 
infiltrate in allergic responses of the lung and skin and enhances 
airway remodeling (32, 33).

THe PROSTAnOiD—eOSinOPHiL AXiS in 
nOn-ALLeRGiC DiSeASeS

Aspirin-exacerbated Respiratory Disease 
(AeRD)
Also referred to as aspirin intolerance or Samter’s triad, AERD 
is a chronic inflammatory state of the airways resulting in rhi-
nosinusitis, nasal polyps, and asthma. In some patients, these 
symptoms are accompanied by skin rash such as urticaria or 
angioedema, while in others the skin manifestations are pre-
vailing. These symptoms are aggravated after intake of aspirin 
(acetylsalicylic acid) or any other non-selective COX inhibitor, 
occasionally culminating in massive anaphylactoid reactions or 
even death. In contrast, selective COX-2 inhibitors are mostly 
tolerated. A comprehensive overview on clinical presentations 
and pathobiologic mechanisms is provided elsewhere (160–162). 
In brief, an imbalance of anti-inflammatory PGE2 and proinflam-
matory LTC4 exists in these patients at baseline, which is further 
enhanced after intake of COX inhibitors, which alludes into 
activation of mast cells, eosinophils, and several other immune 
cells. In addition to mast cells, LTC4 biosynthesis in eosinophils 
is upregulated in AERD patients. Similarly, both cell types express 
more HPGDS and release excessive levels of PGD2 in this condi-
tion (163). Urinary levels of a stable PGD2 metabolite were found 
to be twofold higher in patients with AERD relative to those 
in control subjects and—most remarkably—increased further 
upon aspirin exposure. This correlated with reductions in blood 
eosinophil counts and lung function, and clinical symptoms such 
as nasal congestion (164). Aspirin-induced secretion of PGD2 
was abrogated after successful aspirin desensitization therapy 
(165). Aspirin by itself was found to activate blood eosinophils in 
terms of Ca2+ flux, degranulation, and CD11b upregulation, the 
latter being more pronounced in AERD patients (166, 167). These 

effects were reversed by PGE2. We observed that the expression 
of the EP4 receptor in blood eosinophils tended to be reduced 
in AERD patients, and inhibition of eosinophil chemotaxis by 
PGE2 or an EP4 agonist was less pronounced in AERD patients as 
compared to healthy controls (168). Single nucleotide polymor-
phisms of the ptger2 and ptger4 were detected in aspirin-intolerant 
Korean patients, predicting lower EP2 and EP4 receptor expres-
sion levels (169, 170). A single nucleotide polymorphism in the 
DP2 gene crth2 was also observed to correlate with increased 
levels of the eosinophil chemoattractant, eotaxin-2 in Korean 
AERD patients (171). Similarly, the prevalence of a crth2 single 
nucleotide polymorphism was found to be increased in a female 
Japanese AERD patient cohort (172). These findings suggest that 
targeting PGE2 and PGD2 receptors might provide potential novel 
treatment options for AERD. Whether these genetic alterations 
specifically contribute to AERDS pathophysiology is still unclear, 
as similar finding have also been made for allergic disease and 
asthma (173).

Miscellaneous
Eosinophil infiltration into tumor-surrounding areas is observed 
in various types of cancer (174). The presence of tumor-associated 
tissue eosinophils (TATEs) seems to beneficially influence the 
prognosis of oral squamous cell carcinoma and other types of 
cancer. Davoine et al. have shown that eosinophil lysates inhibit 
the growth of the oral squamous carcinoma cells line (SCC-9) 
in  vitro and correlates with the amount of released eosinophil 
peroxidase. Inhibition of HPGDS by HQL-79 in oral squamous 
cell carcinoma abrogated the migration of eosinophils toward 
the tumor cells. These results suggest an antitumor activity of 
PGD2 via the activation of release of eosinophil peroxidase from, 
or by cytolysis of, eosinophils (175). By using HPGDS-deficient 
mice, Murata et al. have shown that mast cell-derived PGD2 is 
an antiangiogenic factor in lung carcinoma (176). Therefore, 
stimulating the HPGDS/PGD2 axis could be a beneficial strategy 
in cancer, with TATEs serving as an additional biomarker.

Eosinophils have been shown to play a significant role in 
inflammatory bowel disease, ulcerative colitis, and Crohn’s 
disease (13, 177, 178). We have shown in experimental Crohn’s 
disease that eosinophils contribute to intestinal inflammation 
via activation of DP2. Timapiprant inhibited the recruitment of 
eosinophils into the colon, reduced intestinal inflammation, and 
decreases cytokine levels (TNFα, IL-1β, IL-6) in mice. In Crohn’s 
patients, PGD2 and Δ12-PGJ2 levels were increased as compared 
to control individuals (179). In a subsequent study, increased 
expression of LPGDS in myenteric and submucosal neurons, 
and enhanced PGD2 release, was observed in tissue samples from 
colon of patients with active Crohn’s disease (180). In ulcerative 
colitis, we observed opposing effects of DP1 and DP2 as blockade 
of DP2 improved, whereas a DP1 antagonist worsened, inflam-
mation in a mouse model of colitis (26). In ulcerative colitis 
patients, DP2 expression was downregulated on peripheral blood 
eosinophils, while DP1 was upregulated, and both findings cor-
related with disease activity. Biopsies of colitis patients revealed 
an increase of DP2-positive cells in the colonic mucosa and high 
DP2 protein content. Both PGD2 and PGE2 levels were elevated 
in serum of colitis patients (26). Eosinophils and macrophages 
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were suggested to be the main source of PGE2 in colitis (181). 
Current literature suggests that, like in allergy, PGE2 through its 
EP4 receptor opposes the pro-inflammatory action of PGD2 in 
inflammatory bowel disease and plays a protective role in mouse 
models of colitis (182–184). In contrast, a large body of evidence 
supports EP4 receptors to predominantly mediate the overall 
pro-tumorigenic action of PGE2 (185). Whether inhibition of 
eosinophil function is involved in the anti-inflammatory and 
pro-tumorigenic roles of the EP4 receptor in the gut has not been 
investigated yet.

COnCLuDinG ReMARKS

Accumulating data suggest that the DP2 receptor is an impor-
tant activator of eosinophils, as it does not only respond to its 
cognate ligand, PGD2, but also to most of its metabolites, and 
even unrelated prostanoid species. PGD2 is generated by a large 
variety of immune cells under different conditions. Among 
other leukocytes, eosinophils are probably the most important 
DP2-bearing cells. Thus, it is believed that DP2, and to some 
extent also DP1, crucially contribute to various pathologies that 
involve eosinophils, and provide novel therapeutic approaches 
to conditions such as asthma, allergic rhinitis, conjunctivitis, 

esophagitis and skin disease, nasal polyposis, aspirin-intolerance, 
Crohn’s disease, and certain types of cancer. In contrast, PGE2 
transmits inhibitory signals onto eosinophils through EP2 and 
EP4 receptors, and is thus a natural antipode to its isomer, PGD2. 
For instance, HPGDS expression is enhanced, while microsomal 
PGE2 synthase is decreased in chronic rhinosinusitis that results 
in eosinophilic inflammation favoring polyp formation (186). 
In asthma patients, a decrease of PGE2 as compared to other 
prostanoids including PGD2 correlates with airway obstruction 
(187). Similar findings are typical for AERD. An imbalance of 
PGD2/PGE2 secretion might hence potentially underlie and/or 
sustain the abovementioned, eosinophilic pathologies, and might 
constitute novel therapeutic targets.
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