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Large multicenter clinical trials have led to two recently approved drugs for patients 
with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease 
progression and do not provide a definitive cure. Traditionally, preclinical trials have 
utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several 
limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis 
occurs in other animal species, including dogs, horses, donkeys, and cats. While the 
fibrotic lungs of these animals share many characteristics with lungs of patients with 
IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. 
Additional studies that profile these examples of spontaneous fibroses in animals for 
similarities to human IPF should prove useful for both human and animal investigators. 
In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most 
clinically relevant model for preclinical study for human IPF. Addressing issues such as 
time course of treatment, animal size and characteristics, clinically irrelevant treatment 
endpoints, and reproducibility of therapeutic outcomes will improve the current status 
of preclinical studies. Elucidating the mechanisms responsible for the development of 
fibrosis and disrepair associated with aging through a collaborative approach between 
researchers will promote the development of models that more accurately represent the 
realm of interstitial lung diseases in humans.

Keywords: bleomycin, idiopathic pulmonary fibrosis, murine model, asbestosis, aged mice

BACKGROUND

Idiopathic pulmonary fibrosis (IPF) is a devastating chronic lung disease, primarily affecting middle 
aged and older adults (1, 2). Lung function decline is gradual, with the potential for intermittent, 
unpredictable, acute exacerbations and the development of associated pulmonary hypertension 
(3). Disease diagnosis is primarily based on a typical radiology pattern (high-resolution computed 
tomography—HRCT) of usual interstitial pneumonia (UIP) characterized by reticulation and hon-
eycomb cysts of subpleural and bibasilar distribution coupled with exclusion of other known causes 
of lung fibrosis as assessed by absence of exposures (occupational, environmental, drug), a negative 
immunologic profile and compatible bronchoalveolar lavage fluid (BALF) findings (i.e., absence 
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TABle 1 | Selected pulmonary fibrosis conditions in animal species.

Selected pulmonary fibrosis conditions in animal species

Species Model/disease Features Histology

Mouse (C57BL/6J) Bleomycin (BLM) (experimental) Increased collagen deposition

Patchy fibrosis associated with inflammatory infiltrates

Resolution in young mice starting at 3 weeks

Dog (West Highland Terrier) Interstitial lung disease (ILD) Septal widening and collagen deposition

Normal alveolar cells

Donkey Chronic pleuropulmonary fibrosis Associated with asinine herpesvirus 5 infection

Pleural, subpleural, and septal fibrosis extending to 
interstitium

Intra-alveolar fibrosis and alveolar septal elastosis

Horses Equine multinodular pulmonary 
fibrosis

Associated with equine herpesvirus 5 infection

Multifocal coalescing nodules within parenchyma, 
centered on alveoli

Cats Idiopathic pulmonary fibrosis Temporally heterogeneous fibrosis without 
inflammation

Patchy remodeling leading to honeycomb lung in late 
disease

A variety of animal species exhibit pulmonary fibrosis conditions with characteristics similar to idiopathic pulmonary fibrosis (IPF) in humans. ILD has been studied as fibrosis occurs 
spontaneously in many animals, including West Highland Terriers, donkeys, cats, and horses. Mice have been used as experimental models with BLM-induced pulmonary fibrosis. 
Histologic images are provided at 10–20× magnification on Trichrome stain to display representative characteristics and similarities. Reproduced with permission, from Dr. Paul 
Mercer. Clin Sci (2015) 128:235–256, © The Biochemical Society (97).
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TABle 2 | Pros/cons of animal models for studying pulmonary fibrosis.

Murine models Pros Cons

Bleomycin Early molecular signature most similar to accelerated acute phase 
of IPF in humans

Patchy, young mice resolve spontaneously unless repeatedly doses

Silica Good model of lung injury in humans and persistence of fibrotic 
lesions

Lack of reproducibility, difficult delivery, prolonged time to fibrosis, 
absence of usual interstitial pneumonia (UIP)-like lesions

Asbestosis Recapitulates asbestos exposure in human lung fibrosis Inhalation model requires at least a month for fibrosis to develop. 
Single intratracheal dose leads to central fibrosis rather than 
subpleural, unevenly distributed between lungs

Cytokine overexpressing Ability to dissect downstream signaling events relevant to specific 
fibrotic-inducing cytokines

Models limited to dissecting specific pathways, rather than 
recapitulating the complexity of human disease

Fluorescent isothiocyanate Relatively reproducible and persistent fibrotic phenotypes Lack representative UIP and inflammatory infiltrates preceding 
fibrosis

Radiation induced Results in fibrosis, not pneumonitis if B6 mice are used Need to wait a long time for development of fibrosis

Familial models Gave insight on telomere and telomerase gene involvement in IPF May produce a susceptible phenotype, requiring a second hit

Humanized (NOD/SCID mice) Can afford insight into role of different fibroblast populations, 
dissects the contribution of epithelial-fibroblast crosstalk in the 
absence of immune cells

May not be representative of human disease where immune cells 
play a role. Expensive and requires specialized housing

Domestic animals Pros Cons

Dogs Usually present in middle to old age. IPF in Westies shares some 
features of human disease; foci with severe lesions, histological 
criteria more typical for UIP may be present. Spontaneously 
develop ILD

The diffuse interstitial lesion, present in all affected Westies, 
histologically resembles fibrotic NSIP in man

Cats Anatomy of distal lung similar to humans. UIP-like disease. 
Spontaneously develop ILD

Strain-dependent

Donkeys Spontaneously develop ILD Majority of cases of APF share key pathological features with human 
pleuroparenchymal fibroelastosis not IPF

Horses Spontaneously develop ILD. Overlapping features of pulmonary 
fibrosis including weight loss and characteristic radiologic findings

Pathology not the same as IPF
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of lymphocytosis). Hallmark features of UIP include epithelial 
cell hyperplasia, basement membrane denudation, honeycomb 
cysts, and accumulation of myofibroblasts foci in a pattern with 
regional and temporal heterogeneity (4).

Disease pathogenesis still remains elusive and controversial. 
Currently, the prevailing hypothesis assumes an ineffective wound 
healing response to alveolar epithelial cell injury (5, 6). Injury 
magnitude and susceptibility appears to be related to aging and 
genetic predisposition, with subsequent innate immune system 
and fibroblast activation (3, 5, 7). The overall prognosis of patients 
with IPF is highly unpredictable and poor with median survival 
after diagnosis being approximately 3.8 years (3, 8, 9). Attempts 
to understand disease pathogenesis, identify prognosticators, and 
unravel novel therapeutic targets (10–14) have relied on animal 
models. Unfortunately, no animal model fully recapitulates the 
histologic pattern of UIP or exhibits features of progressive dis-
ease. This, however, should not underestimate the fact that animal 
models are essential prerequisites for the subsequent application of 
prognostic tests and therapeutic interventions. Numerous clinical 
trials have been completed based on preclinical studies in animals 
and have led to the FDA approval of two drugs, pirfenidone and 
nintedanib (15, 16). Although these drugs slow disease progres-
sion, they do not cure IPF (5, 17), thus at the best case leaving 
patients with significant pulmonary disability. Therefore, further 
studies in animal models that more closely mimic human IPF are 

needed to investigate potentially curative therapies. Although it is 
recognized that the spontaneous development of lung fibrosis in 
domestic animals (cats, dogs, etc.) can be informative, the most 
indispensable models for studies of pathogenesis and preclinical 
therapeutic assessment involve rodents. Many traditional and 
newly developed experimental models have provided us with 
valuable insights into disease pathogenesis and helped us to 
identify novel therapeutic targets to assess and validate in clinical 
trials (18–20). For a tabular representation of these models, see 
Table 1. This review aims to summarize current state of knowl-
edge on animal modeling of lung fibrosis, mainly focusing on 
rodents, including environmental and genetic models, highlight 
limitations, and suggest future potentials.

MURiNe MODelS

Bleomycin (BlM)
The model of BLM-induced lung fibrosis represents the most 
commonly applied experimental model. BLM is a chemothera-
peutic antibiotic that has been identified as a pro-fibrotic agent 
when lymphoma patients developed pulmonary fibrosis after 
intravenous administration of BLM. It has been used in multiple 
species including mice, rats, guinea pigs, hamsters, dogs, and 
primates; yet, mice are most common (21). A sheep model is also 
currently under development (22). A recent ATS workshop report 
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confirmed that there is a consensus view of the intratracheal BLM 
model as “the best-characterized animal model available for 
preclinical testing” (23).

Mechanism of Action and Kinetics of Injury
It is believed that BLM acts by causing single and double-strand 
DNA breaks in tumor cells and thereby interrupting cell cycle 
leading to apoptosis. BLM hydrolase, a BLM-inactivating 
enzyme, majorly affects drug effects on a tissue-specific basis. 
The lungs maintain low levels of the enzyme, as compared to 
liver, and therefore are more susceptible to BLM-induced injury. 
An overproduction of reactive oxygen species, due to chelation 
of metal ions and reaction of the formed pseudoenzyme with 
oxygen, leads to epithelial cell death (days 1–3), excessive inflam-
matory infiltrates (days 3–9, neutrophils found in the BALF at 
day 3 and lymphocytes at day 6), and ultimately to fibroblasts 
activation, extracellular matrix deposition, and development of 
fibrosis (days 10–21 with a peak around day 14), at the molecular 
(24–26) and histologic (21, 24, 25, 27) levels. Relative to IPF, it 
has been shown that the early molecular signature in mice is most 
similar to the accelerated acute phase of IPF in humans (28). 
Measurements of alveolar septal thickening, intra-alveolar fibro-
sis, increases in alveolar macrophages, and dilation of bronchioles 
and alveolar ducts demonstrated a rather uniform fibrotic state in 
a large sample size (29). Nevertheless, BLM-induced lung fibrosis 
has been severely criticized for not being representative of IPF 
due to the rapidity of its development, inflammation preceding 
fibrosis, and self-resolution nature usually after 21–28 days fol-
lowing BLM challenge.

Strains, Gender, and Age
C57BL/6J mice have been the predominant animal model, as 
this particular strain is highly susceptible to lung injury follow-
ing intratracheal BLM administration (30, 31). Conversely, the 
BALB/c or SV129 strains confer resistance to BLM-induced 
pulmonary fibrosis, presumably due to alterations in transform-
ing growth factor (TGF)-β expression (31). This phenomenon 
parallels the experience in humans regarding genetic susceptibil-
ity and other potential risk factors for development of fibrosis in 
end organs following exposure to BLM. The majority of studies 
investigating BLM-induced pulmonary fibrosis to date have 
used young male mouse models, aged 8–12 weeks (28, 29, 32). 
Young mice, however, have been shown to undergo spontaneous 
resolution of BLM-induced pulmonary fibrosis, a phenomenon 
not observed in aged mice (24, 33, 34). Whether sex differences in 
mice parallel human IPF, which exhibits a tendency toward male 
predominance has not been fully determined. However, the use 
of aged male mice may provide a more clinically relevant model 
of IPF (33).

Route of Delivery and Dose Regimens
So far, BLM has been delivered by multiple methods including 
intratracheal, intraperitoneal, subcutaneous, intravenous, and 
inhalational. However, intratracheal is the most commonly route 
of administration (21, 24, 26, 28, 29, 32, 35–39). It is believed that 
intratracheal administration better recapitulates the human phe-
notype that is limited to the lungs. However, it requires a surgical 

incision at the level of the trachea, and thus, it is associated with 
considerable peri-operative mortality. To this end, investigators 
are now applying the orotracheal route of delivery that exhibits 
similar kinetics of injury as intratracheal administration with 
significantly less side effects.

Another issue identified in studies using the BLM mouse 
model is the wide range of dosing regimens used (40). In mouse 
studies, weight-based dosing is most common, beginning at 
1.25 U/kg (39) and up to a maximum of 4 U/kg (35, 36). This 
dose is usually suspended in 50–100  µL of phosphate-buffered 
saline for intratracheal instillation. Peng et al. performed BLM 
dose-escalation experiments with mortality rates of 19% with 
3  U/kg and 50% with 5  U/kg (28). A slightly lower dose of 
2.0–2.5 U/kg appears to provide the most effective model of lung 
fibrosis, while reducing sample loss due to high mortality. With 
regard to frequency of dosing, Degryse and colleagues directly 
addressed the issue of single versus repetitive dosing to model 
IPF using BLM-induced pulmonary fibrosis (24). Results from 
their investigation in young mice found that repetitive dosing 
of BLM promoted persistent fibrosis, evidenced by measures 
of hydroxyproline content and inflammatory cell infiltrates, in 
contrast to single dose experiments that demonstrated spontane-
ous resolution in young mice (24, 34). Most studies evaluating 
therapeutic interventions have not used repetitive dosing; rather, 
the use of a single dose of intratracheal BLM is usually followed 
shortly by administration of the therapy under investigation 
(35–38). Potential therapies are usually administered within 
1–7 days following BLM exposure, leading to the conclusion that 
the therapeutic measures may provide benefit primarily through 
prevention of the inflammatory cascade rather than reversal of 
fibrosis, thus limiting their applicability to human IPF (40). More 
recent studies have begun to explore administration of drugs after 
7 days (41, 42). To our knowledge, only two studies to date have 
evaluated repetitive BLM injury (43, 44). Lee et al. administered 
intratracheal BLM (0.04 U) biweekly for a total of 4 months in 
young mice (43). They reported that in response to repeated 
BLM administration, mice developed hyperplasia of Club cells 
(Clara cells) and cuboidal alveolar epithelial cells, infiltration of 
the perialveolar ducts by inflammatory cells, septal thickening, 
enlarged alveoli, and extensive fibrosis (43).

Silica
Silica administration into murine lungs leads to the development 
of fibrotic nodules that resemble lesions that develop in humans 
following exposure to mineral fibers and particulate aerosols 
(45). Silica delivery presents with many variations including 
aerosolization, intratracheal, or orotracheal instillation (46–50). 
The fibrotic response is strain dependent with C57BL/6 mice 
found to be more susceptible than CBA/J mice after intratracheal 
delivery of silica fibers. Nodules develop around silica deposits 
and silica fibers are easily identified both by histology and 
polarization microscopy (47). The fibrotic response is associated 
with limited inflammation and enhanced fibrotic lesions medi-
ated by increased production of pro-fibrotic growth factors and 
cytokines including PDGF, TGF-β, TNFa, and IL-10 (51–53). 
Kinetics of injury is highly heterogeneous and dependent upon 
route of administration, dose regimens, and formulations of 
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silica particles (45). In particular, intratracheal models are 
easier, shorter (fibrosis develops within 14–28 days), and cost-
efficient, while aerosolized route of delivery takes longer to 
produce fibrotic lesions (40–120 days) (45). Heating preparation 
procedures before instillation are mandatory in order to inac-
tivate any trace endotoxin (45). The greatest advantage of the 
silica model of lung fibrosis is the persistence of fibrotic lesions 
due to diminished clearance of silica particles from the lungs  
(51, 52, 54). However, the model presents with major caveats 
including problematic and highly expensive equipment for aero-
solized delivery, prolonged waiting periods until development of 
fibrosis (4–16 weeks), lack of reproducibility of fibrotic pattern, 
and absence of characteristic UIP-like lesions such as fibroblastic 
foci, regional heterogeneity, and hyperplastic epithelium. These 
have severely limited its widespread applicability in the preclini-
cal setting (20).

Asbestosis
Another model that recapitulates an important form of human 
lung fibrosis is that of asbestos exposure. Asbestos-induced 
model of lung fibrosis is clearly distinguished from IPF by several 
histologic findings including asbestos bodies embedded within 
the fibrous tissue, fewer myofibroblasts foci and bronchial wall 
fibrosis. In some cases, the pattern of UIP can be also present  
(55, 56). Some of these features are recapitulated in inhalation 
models in animals and have helped us understand the pathogen-
esis of both asbestosis and IPF (57–61). A single intratracheal 
administration of asbestos fibers mediates development of 
fibrosis; however, the model presents with several caveats since 
fibrosis that tends to be central rather than subpleural and is 
quite often unevenly distributed between lungs. Inhalation 
models develop a more peripheral pattern; yet, disease develop-
ment can be prolonged, especially if using chrysotile fibers. The 
intratracheal animal models with amphibole fibers follow the 
kinetics of BLM models, with fibrosis development at day 7 and 
peak at day 14. Inhalation models may take up to a month for 
establishment of fibrotic injuries. Mechanistically, the deposition 
of asbestos fibers triggers fibrosis through alveolar epithelial cell 
apoptosis, M2 polarization of macrophages, and overproduction 
of pro-fibrotic cytokines by activated T lymphocytes, all events 
leading to myofibroblast differentiation and extracellular matrix 
production (57–61).

Age-Related Models
IPF is an age-related disease paradigm, and more recently, it has 
been proposed that many of the hallmarks of aging including 
genomic instability, telomere attrition, epigenetic alterations, 
deregulated cellular bioenergetics, and cellular senescence, can 
be considered characteristics of the fibrotic lung (62–64). Studies 
have shown that older mice are more susceptible than younger 
mice to pro-fibrotic stimuli including BLM (26). This is of par-
ticular interest given that IPF is predominant in older individuals. 
Transgenic deletion of senescence-related genes including RAGE, 
and relaxin has been associated with spontaneous age-dependent 
development of lung fibrosis indicating the cardinal role of aging 
in disease susceptibility (65–67). On the other hand, the role of 
“virome” as a pro-fibrotic mediator has been further dissected 

in the context of aged-related development of lung fibrosis 
by demonstrating that only aged mice (>15  months) develop 
γ-herpesvirus-68-induced lung fibrosis through a mechanism 
that involved alveolar epithelial cell reprogramming to produce 
pro-fibrotic factors and enhanced TGF-β signaling in lung 
fibroblasts (68). In addition, Torres-Gonzalez et al. (69) reported 
that aging mice receiving gamma herpesvirus responded with 
endoplasmic reticulum stress, apoptosis of type II lung epithelial 
cells, and activation of profibrotic pathways.

This evidence could be reminiscent to the presence of herpes 
viral genomes within IPF lungs and the epidemiological associa-
tion between viral infections and IPF acute exacerbations (70).

Cytokine Overexpression
During the past two decades, more sophisticated and advanced 
methods have been widely used to study the features of lung fibro-
sis on an experimental setting. Both gene transfer via adenoviral 
or lentiviral vectors and transgenic approaches have been used 
to overexpress pro-fibrotic cytokines including TGF-β, TNF-α, 
IL-1β, and IL-13 and promote fibrotic phenotypes by dissecting 
downstream signaling pathways that are highly relevant to human 
lung fibrosis (71–73). The overexpression of TGF-β can be pro-
duced via adenoviral intranasal delivery or doxycycline-induced 
transgenic overexpression in CC-10-positive lung epithelial cells. 
Both models are strain dependent with C57BL/6 mice being more 
susceptible that BALB/c. In the doxycycline-inducible Clara cell 
(CC10)-promoter driven model of TGF-β-induced lung fibrosis, 
addition of doxycycline to the water of animals leads to release 
of the tetracycline-controlled transcriptional suppressor allowing 
the reverse tetracycline transactivator to bind to the transgene 
(TGF-β) and promote its acute expression even 12 h after treat-
ment with doxycycline (74). That leads to alveolar epithelial 
apoptosis and myofibroblast accumulation leading to airway and 
parenchymal fibrotic response starting at day 7 and peaking at 
days 14–21. Fibrosis may persist and progress over the duration 
of doxycycline exposure for up to 2 months (74). Similar kinetics 
are also observed with adenoviral delivery of TGF-β through 
the intranasal route leading to epithelial cell apoptosis (day 1), 
mononuclear cell infiltration (days 3–7), and fibrotic scarring 
that tends to be more persistent than those produced by BLM 
exposure and thus tend to mimic better human disease features 
(71). Nevertheless, both models quite often produce highly 
variable and heterogeneous kinetics of injury with regards to 
severity and extent of lesions and lack of major reproducibility. 
A similar concept has been also applied for adenoviral-mediated 
gene transfer of IL-1β (75) and TNF-α (76, 77) or lung-specific 
transgenic overexpression of IL-13 (78), thereby resulting in 
an early inflammatory response and later collagen deposition 
through activation of TGF-β signaling pathway. Nonetheless, 
these models are not well established and thus can only be used 
to dissect relevant pathogenic pathways and not on a general basis 
to recapitulate the complexity of human disease.

Other Models
Fluorescent isothiocyanate (FITC) is another chemical 
compound used to induce experimental lung fibrosis (79). 
Fluorescein acts as a hapten and binds to airway proteins, thus 
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acting as a depot for prolonged exposure to the injurious stimu-
lus leading to fibrotic responses within 2–4 weeks that persist 
up to 24 weeks (79, 80). The model produces relatively repro-
ducible and persistent fibrotic phenotypes in both BALB/c and 
C57BL/6 mice. Disadvantages include absence of representative 
UIP findings and predominant inflammatory infiltrates that 
precede fibrosis (80). The model is mostly dependent on Th2 
cytokines (IL-13) and was seminally discovered to explore 
the relationship between the chemokine signaling receptor 2 
(CCR2) and its ligand CCL12 for recruitment of fibrocytes dur-
ing progression of fibrosis (81). It offers the advantage of easily 
trackable fluorescence-labeled fibrotic tissues. Nevertheless, 
model robustness is largely dependent on technical issues that 
are highly variable including the batch of FITC and the size 
of the particles formulated through sonication (20). Smaller 
particle sizes due to prolonged sonication may lead to acute 
toxicity and death (20). Finally and most important, FITC is 
an artificial chemical compound with limited human relevance 
since this type of injurious stimulus has never been described 
in humans (20).

Radiation-induced fibrosis represents a human relevant injury 
that leads to development of fibrosis which is strain dependent 
(C57BL/6 are the most susceptible) and can be local or systemic 
if other organs are not shielded (82–87). It is a relatively slow pro-
cedure that results in mature fibrosis after 24 weeks; yet, fibrosis 
is majorly dependent on inflammation and free-radical-mediated 
DNA damage and less on TGF-β (84).

Familial models of IPF have been also used to study the contri-
bution of the disease genetic background that significantly altered 
our perspective regarding disease pathogenesis and treatment 
response. Mice with targeted deletion of shelterin, a six-protein 
complex that binds and preserves telomeric repeats, from type 
alveolar epithelial cells, have been shown to develop spontaneous 
fibrosis (88, 89).

Mutations in the telomere and telomerase genes have been 
associated with familial IPF (90). Telomere dysfunction results 
in alveolar epithelial stem cell senescence, which is sufficient to 
drive lung remodeling and recruit inflammation. Telomerase 
reverse transcriptase has been reported to be transiently increased 
in BLM, hypoxic, or silica-induced lung injury (91–93). On the 
other hand, telomerase-deficient mice, despite significant tel-
omere shortening, did not present with enhanced BLM-induced 
fibrotic responses (94).

Although mutations resulting in SP-C deficiencies are linked 
to a small subset of spontaneous and familial cases of interstitial 
lung disease (ILD) and interstitial pulmonary fibrosis (95, 96), 
SP-C-deficient mice do not fully recapitulate familial intersti-
tial pulmonary fibrosis (97) as they develop mild ILD and an 
emphysematous phenotype. It is more than evident that these 
mutations may generate a susceptible phenotype; yet, a second 
hit of environmental origin is needful to partially recapitulate 
human phenotype.

Finally, humanized models of lung fibrosis involving the 
intravenous instillation of human IPF lung fibroblasts into im mu-
nodeficient non-obese diabetic mice (NOD/SCID) have recently 
garnered much attention (98–100). This model allows for cell 
trafficking during different stages of fibrosis development and 

progression, offers unique insights into different fibroblast popu-
lations that reflect IPF heterogeneity, and dissects the contribution 
of epithelial–fibroblast crosstalk into the disease pathogenesis 
considering the absence of immune cells (99). Nevertheless, the 
latter is not representative of human disease where immune 
cells appear to play cardinal role. Another major disadvantage 
that limits its widespread applicability is the high cost and the 
specialized housing that is required (101). The use of animals with 
humanized immune system may also provide unique insights and 
fully recapitulate features of IPF (101).

DOMeSTiC ANiMAlS

The field of comparative oncology has set the stage for collabora-
tions that utilize spontaneous models of progressive fibrotic lung 
diseases of mutual interest to veterinary and human medicine. 
The results of these kinds of studies promise to enhance the 
understanding of common factors important to disease develop-
ment in a variety of species and to refine treatments for both 
humans and animals. Moreover, they may provide insights into 
unanswered questions involving naturally occurring models of 
pulmonary fibrosis.

In contrast to the six million dogs and cats that develop 
cancers, the incidence and prevalence of pulmonary fibrosis in 
animals is not known (102). West Highland Terriers (Westies), 
cats, donkeys, and horses develop ILD (102–107). There is 
limited information on the spectrum of clinical parameters  
(e.g., radiology) and pathology of these lung diseases leading to 
the classification of “idiopathic pulmonary fibrosis” being applied 
to such cases, without using the same strict clinical criteria that 
have been developed for human IPF. Recent evidence suggests 
that in contrast to IPF in humans, applying the term “idiopathic” 
in animals may be premature because of more non-specific 
features in lung interstitial disease in animals. The American 
Thoracic Society/European Respiratory Society definition of 
IPF incorporates histology, radiographic, and clinical course in 
the definition and the exclusion of other known causes of ILD, 
including environmental exposures, connective tissue disease, 
and drug toxicity (108). Further studies using multidisciplinary 
classification of veterinary lung disease to better characterize the 
disease in animals will help to define their relation to human 
disease and their potential role as models to develop treatments 
for both human and veterinary medical practice.

A study on Westies (109) found that the majority of dogs with 
IPF showed multifocal areas of accentuated subpleural and peri-
bronchiolar fibrosis with occasional “honeycombing” and profound 
alveolar epithelial changes, reminiscent of human UIP and not 
commonly seen in NSIP. Interstitial fibroblastic foci, characteristic 
of UIP, were not seen in WHWTs with IPF. Progressive fibrosis, 
with intra-alveolar organizing fibrosis alongside interstitial mature 
collagen deposition, was present within the more severely affected 
areas of lung in WHWTs with IPF. Severe pulmonary lesions were 
seen more commonly in the caudal than in the cranial lung lobes.

A more recent study correlating CT scans and course of 
disease in Westies found a generalized ground-glass pattern 
was determined to be a sign of a mild form of canine idiopathic 
pulmonary fibrosis, whereas mosaic ground-glass and mild 
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honeycombing patterns was identified in moderate and severe 
forms of the disease (110).

The ubiquitous gammaherpesvirus equine herpesvirus 5 
(EHV 5) has been detected in lung tissue from horses that develop 
progressive pulmonary fibrosis and is now considered to be the 
likely cause of this disease in these animals (111). The pathology 
of this disease is distinct from human IPF, demonstrating multiple 
nodules and is therefore termed equine multinodular pulmonary 
fibrosis (111). Although the pathology is not the same as IPF, 
there are striking overlapping features including weight loss 
and gradual exercise intolerance, accompanied by characteristic 
radiologic features (111). Temporal heterogeneity or fibroblast 
foci, hallmarks of human disease, are not present in the disease 
in horses, though these characteristics have been described in 
feline pulmonary fibrosis (111, 112). Similar to EBV in humans, 
which has been associated with IPF, EHV 5 is a ubiquitous sub-
clinical gammaherpesviral infection in horses (113). Considered 
largely non-pathogenic in the natural host, some strains of EHV5 
appear to be pathogenic and capable of inducing lung fibrosis 
(103). While EHV5 was isolated from horses with spontaneous 
disease, the virus was not isolated from dead inoculated horses 
that developed lung fibrosis (111). This model raises interesting 
questions regarding induction of lung fibrosis by EHV 5 during 
viral latency versus lytic infection.

For a tabular representation of the overall advantages and 
disadvantages of each model, see Table 2.

Read-Out Assays for Assessment  
of Fibrotic injury
Each experimental model presents with its own kinetics of fibrotic 
injury; however, investigators have applied standard operating 
procedures for reproducible evaluations of lung fibrosis. In view 
of the pathologic hallmarks of IPF, appropriate read-out assays 
include assessment of collagen deposition, alveolar epithelial cell 
apoptosis, and BALF complemented by survival analysis and 
respiratory mechanics. These are achieved with the following 
modalities: (1) histological analysis with Masson trichrome and 
H&E staining coupled with Aschroft score that quantifies extent 
of fibrotic changes, (2) hydroxyproline or total collagen content 
for quantification of lung collagen deposition, (3) TUNEL assay 
for the identification of apoptotic cells, (4) BALF analysis to assess 
changes in differential cell count and levels of inflammatory and 
fibrotic markers, (5) survival analysis with Kaplan–Meier plots, (6) 
in vivo lung function measurements (elastance and compliance) 
using the Flexi-vent ventilator, and (7) micro-CT imaging which 
provides state-of-the art multidimensional imaging of the injured 
lung that is reminiscent of HRCT applied for IPF diagnosis (19).

limitations
The past 35 years more than 500 experimental studies have been 
performed describing therapeutic efficacy of novel compounds 
in the BLM model. Unfortunately, less than 5% have applied a 
therapeutic protocol indicated by drug administration at >7 days 
following BLM challenge (18, 114). Even day 7 in most of the experi-
mental models represents a stage of inflammation or early fibrosis, 
evidence that comes in contrast to the clinical situation in which 

treatment is initiated after onset of symptoms and when fibrosis has 
already been established. Intriguingly, pirfenidone and nintedanib 
received approval to proceed to clinical trials based on preventive 
protocols or even therapeutic protocols targeting the inflammatory 
or the early-fibrotic phase of the BLM model (115–117). In addi-
tion, most of the therapeutic compounds have been preclinically 
tested in young animals while it has been clearly shown that aged 
mice are more susceptible to fibrotic injury (26), which is in accord-
ance with patients with IPF. Importantly, preclinical efficacy of the 
majority of anti-fibrotic agents was tested in a single model, majorly 
the BLM-induced model, and based on histologic end points, such 
as collagen deposition that are not clinically relevant, at least to the 
extent of lung function tests or survival analysis. Moreover, many of 
the therapeutic outcomes were subject to evaluation bias consider-
ing that most of the preclinical studies were not blinded and the 
investigator was aware of the animals’ treatment. Reproducibility 
issues arising from different experimental settings between differ-
ent labs could also account for discrepancies in treatment effects 
and lack of generalizable results. Finally, it is worth mentioning 
that animal size needs to be balanced with the statistical power 
needed to generate robust data and that insufficient reporting of 
experimental animal data or unpublished negative therapeutic 
results severely hamper the validity of experimental studies.

Conclusion and Personal view
An animal model is a simple representation of a complex biology 
system. Critics focusing on the reasons why an animal model 
cannot fully reproduce human disease are not helpful and do not 
elicit a solution. The role of an animal model is to recapitulate 
specific aspects of a disease. Consequently, animal models should 
be carefully selected, designed, and conducted in order to bridge 
translational gaps between bench and bedside. Currently, the BLM 
model of lung fibrosis represents the cheapest, easiest, fastest, most 
reproducible, and thus most extensively used animal model of IPF; 
advantages that overcome the handicap of minimal representation 
of human disease. So far, it has provided us with invaluable insights 
into IPF pathogenesis, prognosis, and treatment. We recommend 
the use of the male aged BLM mouse model as the first-line animal 
model to test safety and efficacy of a therapeutic compound admin-
istered during the stage of established fibrosis. Nevertheless, effi-
cacy preclinical studies should be enriched with two or even three 
animal models including clinically relevant end points such as lung 
function mechanics, survival analysis as well as biomarkers (28). 
Collaboration bet ween veterinary and human clinical researchers 
must be encouraged in order to establish and solidify a common 
language, and common diagnostic criteria and nomenclature, thus 
strengthening the opportunity for advancements toward a cure 
for lung fibrosis in both animal and humans. Humanization of 
animal models, spontaneous fibroses animals and application of 
high-throughput “omics” tools may help us improve the clinical 
translation in the near future.
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