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Crohn’s disease is an idiopathic disorder of the gut thought to be caused by a combination  
of environmental and genetic factors in susceptible individuals. It is characterized by 
chronic transmural inflammation of the terminal ileum and colon, with typical transmural 
lesions. Complications, including fibrosis, mean that between 40 and 70% of patients 
require surgery in the first 10 years after diagnosis. Presently, there is no evidence that 
the current therapies which dampen inflammation modulate or reverse intestinal fibrosis. 
In this review, we focus on cytokines that may lead to fibrosis and stenosis and the 
contribution of experimental models for understanding and treatment of gut fibrosis.
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inTRODUCTiOn

The transmural nature of the chronic inflammation in Crohn’s disease (CD) often leads to fibrosis of 
the deeper layers of the gut, particularly the submucosa and muscle, in about 30–50% of patients (1). 
At diagnosis about 27% of patients already have complications such as stenosis, fistulae, or abscesses. 
After 10 years of disease, the rate of complications reaches 70% (2). In ulcerative colitis (UC), which is 
another distinct type of inflammatory bowel disease (IBD) apart from CD and traditionally thought 
of as having only mucosal lesions, fibrosis occurs in about 5% of patients with longstanding disease 
(3). The fibrotic response causes narrowing of the gut lumen, stenosis, and eventually obstruction. 
It is not known why in some cases the inflammation becomes penetrating (fistulae) while in oth-
ers becomes fibrotic. Complications including fibrosis are the reason why between 40 and 70% of 
patients require surgery in the 10 years after diagnosis (4). Traditionally, strictures were dealt with by 
resecting the stenotic bowel. However, in cases of multiple strictures or short bowel, other surgical 
techniques are being used. These include endoscopic dilation with a balloon, particularly useful 
for ileo-cecal strictures or anastomotic strictures following a previous resection, or stricturoplasty, 
where a number of different procedures are used to increase the lumen of the gut at the strictured 
region. There is no evidence that any medical intervention can modulate or reverse intestinal fibrosis.

The bulk of the literature on the immunology of CD has used lamina propria mononuclear cells 
(LPMCs) isolated from inflamed mucosa. In contrast, the literature on the immune events deep in 
the bowel wall is sparse because the tissue cannot be sampled at colonoscopy, and it is more difficult 
to purify inflammatory cells. There is a more extensive literature on the factors that control matrix 
production compared to matrix degradation by intestinal fibroblasts; however, the relationship to 
in vivo events is unclear. Finally, it is now appreciated that stenosis in CD also involves the cells of 
the circular and longitudinal muscle layers, and these cells are very poorly studied (5).

In this review, we would like to focus on the cytokines that may control the excess matrix produc-
tion, which leads to fibrosis and stenosis.
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wHiCH CYTOKineS ARe iMPORTAnT in 
inTeSTinAL FiBROSiS

Production of pro-inflammatory cytokines released during 
chronic inflammation leads to an initial fibrosis with prominent 
proliferation of myofibroblasts in the submucosa compartment 
(6–8). When the fibrogenic process and inflammatory stimuli 
persist, also smooth muscle cells differentiate and proliferate caus-
ing the smooth muscle hyperplasia/hypertrophy, characteristic of 
strictured CD (5, 9). The difficulty is dissecting out whether it is 
a combination of cytokines or if there is a single cytokine that if 
neutralized could prevent fibrosis.

Transforming Growth Factor Beta (TGF-β)
Transforming growth factor beta is the best characterized pro-
fibrogenic agent. The major role of one of its three isoforms, 
 TGF-β1, in the pathogenesis of CD fibrosis has been widely stud-
ied for more than 20 years. In the 90s, it was first observed that 
colonic mucosa of CD patients overexpressed TGF-β, and in vitro 
studies demonstrated that TGF-β1 selectively activates extracel-
lular matrix (ECM) synthesis, mainly collagen production, by 
human intestinal smooth muscle cells (10, 11). TGF-β1 receptors 
are also overexpressed in the intestinal mucosa of CD patients 
(11). On ligand binding, the receptor I kinase directly phophoryl-
ates Smad2 and Smad3, which then bind to the common mediator 
Smad4, and the complex translocates onto the nucleus to regulate 
target gene transcription (12, 13). Other pathways, such as 
MAPK and the phosphatidilinositol-3-kinase cascade, can also 
be directly activated by TGF-β1 (14). The pathway is negatively 
regulated by the inhibitory Smad proteins Smad6 and Smad7, 
which act by competing with Smad2/3 for the TGF-β receptor 
I kinase promoting the ubiquitination of the type I receptor 
for degradation in the proteasome. The expression of Smad7 is 
lower in mucosa overlying strictures in CD patients compared to 
mucosa overlying non-strictured areas, and in these sites, TGF-β 
expression is increased, concomitantly leading to higher levels of 
Smad2 and 3 phosphorylation and collagen deposition, as well as 
increasing the production of matrix metalloproteinases (MMPs) 
and their inhibitors (TIMPs) (15). Moreover, the changes 
produced by TGF-β1 are restricted to the strictured intestine 
(the Montreal B2 CD phenotype), as the phenotypes B1 (non-
stricturing, non-penetrating) and B3 (penetrating) show lower 
levels of TGF-β1 and collagen I in the affected intestine (16). In 
an attempt to understand these differences, a recent study from Li 
et al. has demonstrated using intestinal smooth muscle cells that 
the increased autocrine production of IL-6 results in an abnormal 
STAT3 phosphorylation, which regulates increased TGF-β1, 
collagen and connective tissue growth factor gene expression 
and increased cellular proliferation, exclusively in patients with 
the Montreal B2 phenotype (17). Overall, the overexpression of 
TGF-β1 observed in CD patients to compensate the impaired 
regulatory function of this cytokine exerts a direct pro-fibrogenic 
effect through its action on mucosal myofibroblasts. In this sense, 
even though Mongersen, an oral antisense oligonucleotide target-
ing Smad7 to increase Treg cells, has been effective in inducing 
clinical remission in approximately 60% of patients with active 

CD, there is no reported evidence about its therapeutic efficacy on 
CD fibrosis (18–20). This highlights the different roles of TGF-β1 
in inflammation and fibrosis (21). We suggest that patients should 
be screened for the intestinal TGF-β1 level before starting the 
treatment.

iL-1β
A role of IL-1β in intestinal wound healing and stricture 
formation has also been proposed. IL-1 is produced 
predominantly by myeloid cells in response to many dif-
ferent pro-inflammatory stimuli such as pathogens, pathogen- 
associated molecular patterns, and endogenous molecules 
such as uric acid. After activation, the cell assembles the 
NLRP3 inflammasome-containing caspase 1, which cleaves 
pro-IL-1 into active IL-1 (22, 23). IL-1β is mitogenic for human 
intestinal smooth muscle cells, but strongly inhibits collagen 
synthesis and induces collagenase and TIMP-1 production by 
smooth muscle cells (24–26). Thus, the collagenolytic effect  
of IL-1β might be important for the initial phase of the repair 
process favoring the migration of mesenchymal cells to the 
area of injury; but if its production is sustained during the 
chronic inflammation, the overall effect would be an impair-
ment of intestinal repair and a compromise in the integrity of 
the intestinal wall (24).

iL-6
Human colonic smooth muscle cells secrete IL-6 after pro-
inflammatory stimuli (27, 28). Li et al. have reported that patients 
with Montreal B2 CD phenotype have increased IL-6 produc-
tion by activated mesenchymal cells. IL-6 directly induces the 
phosphorylation of STAT3 in muscle cells from these patients, 
which results in TGF-β1-driven collagen I-dependent production 
leading to fibrosis (17).

iL-13
IL-13 is a type 2 cytokine with pleiotropic effects. It is pro-
duced by a variety of cell types including CD4+ Th2 cells, type 
2 innate lymphoid cells, eosinophils, mast cells, basophils, and 
NK T  cells, and it has emerged as a key cytokine in numer-
ous type 2-driven diseases (29, 30). IL-13 signaling has been 
implicated in CD intestinal fibrosis and in fibrosis in the 
chronically induced trinitrobenzene sulfonic acid (TNBS) 
colitis model (see below) in mice (31), as well as in lung and 
liver fibrosis (32). IL-13 and its receptor are overexpressed in 
areas of fibrosis in CD patients (33). This study also identified 
a novel population of infiltrating IL-13Rα1+, KIR+ innate lym-
phoid cells into fibrotic muscle and also observed that IL-13 
diminishes TNF-α-induced synthesis of MMP-1 and MMP-9, 
but does not directly stimulate collagen synthesis. Thus, the 
effect of IL-13 in intestinal fibrosis and in other tissues may 
be indirect, related to a downregulation of ECM degradation 
(33) along with induction of TGF-β1 production (34). Biologic 
therapy with anti-IL-13 antibodies has been used in UC with 
different success grades, suggesting that initial promising 
therapeutic strategy to neutralize IL-13 may be not clinically 
effective (35, 36). Nevertheless, the role of IL-13 in CD is quite 
debatable (37).
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TnF-α
Tumor necrosis factor family members, notably TNFSF2 or TNF-α,  
have a well-established inflammatory role in IBD. Various 
antibodies against TNF-α have been used in clinical practice in 
IBD for the last 20 years (38, 39). Other family members such 
as TL1A (TNF-like protein 1 A, TNFSF15) (40), FasL (TNFSF6) 
(41), LIGHT (lymphotoxin-like inducible protein that competes 
with glycoprotein D for binding herpes virus entry mediator on 
T cell, TNFSF14) (42), TRAIL (TNF-related apoptosis-inducing 
ligand, TNFSF10) (43), and TWEAK (TNF-like weak inducer 
of apoptosis, TNFSF12) (44) also contribute to the pathogenesis 
of IBD not only by enhancing pro-inflammatory function of 
T  cells in the intestinal mucosa but also by directly disrupting 
the integrity of intestinal epithelium (45, 46). TNF-α and TL1A 
are potent inducers of the strictures and fibrostenotic outcome in 
CD: TNF-α stimulates human intestinal fibroblasts to produce 
excessive amounts of collagen, increases expression of MMPs, 
and diminishes myofibroblast mobility, which may impair 
mucosal healing (6, 46–48). Unfortunately, therapeutic strategies 
to block TNF to prevent fibrostenosis in CD were only success-
ful in animal models (49–51). It is generally considered that 
anti-TNF antibodies do not prevent strictures in CD, although 
it has been demonstrated that they can promote TIMP secretion  
(52, 53) and cure CD fistulae and stenosis in vitro (54).

TL1A
The role of the TL1A in colonic fibrosis has also been widely 
studied in terms of elucidating new molecular targets. Variants 
in the TLA1A coding gene TNFSF15 has been associated with 
IBD, and particularly CD-associated TNFSF15 genetic vari-
ations has been reported to contribute to enhanced induction 
of TL1A, resulting in severe, chronic mucosal inflammation, 
denoting fibrostenosis susceptibility in these patients (55, 56). 
Constitutive TL1A expression induces intestinal stricturing 
disease in two chronic colitis mouse models, and patients with 
higher TL1A levels (in peripheral mononuclear cells determined 
by ELISA) showed higher rates of intestinal strictures in CD (57). 
In two murine models of chronic colitis, the established colonic 
fibrosis was reversed using an anti-TL1A or by deletion of its 
receptor DR3 (57). In addition, neutralizing TL1A has resulted 
in lower expression of connective tissue growth factor, IL31Ra, 
TGF-β1 and insulin-like growth factor-1, known mediators of 
myofibroblast proliferation, and ECM synthesis (57). TIMP-1 
was also reduced by TL1A inhibition (58). While TL1A-signaling 
intervention has shown promising effects in reversing colonic 
fibrosis in mice, there are no data in man.

Aryl Hydrocarbon Receptor (AhR)
Signaling through AhR, a receptor for environmental toxins, can 
induce activation and proliferation of many cell types, such as 
fibroblasts (59, 60). By selectively stimulating or inhibiting AhR 
on isolated fibroblasts from CD patients, Monteleone et al. (61) 
have shown that AhR negatively regulates TNF-α- or TGF-β-
driven collagen production, by affecting activation of NF-κB and 
Smad2/3, respectively. Moreover, they also demonstrated in vivo 
that specific stimulation of AhR in mice reduces the fibrosis 

associated with chronic long-term administration of TNBS in 
mice.

iL-17
Since the discovery of the helper T cell subset 17 (Th17) in 2005, 
these cells and their characteristic cytokines (IL-17A, IL-17F. 
and IL-22) have been implicated in the pathogenesis of many 
autoimmune and inflammatory diseases, including IBD. Despite 
the increased production of IL-17A by mucosal T  cells from 
IBD patients (62), the neutralizing anti-IL-17A antibody had 
no therapeutic effect on CD (63, 64). IL-17A signaling plays 
an important role in fibrogenesis of the liver (65), skin (66), 
and lung (67). Several studies have demonstrated that IL-17A 
directly interacts with colonic myofibroblasts, and it is a key trig-
gering factor for stricture development in CD (68–70). Recently, 
we have shown, comparing the expression of IL-17A and its  
receptor in CD strictured and non-strictured gut, that IL-17A 
is overexpressed in strictures (71). Subepithelial myofibroblasts 
(SEMFs) isolated from the mucosa of CD patients express 
IL-17A receptors, and the IL-17A-specific response of these cells 
consisted on a defective migration and intensive production of 
collagen and TIMP-1 (71). These findings led us suggest a pro-
fibrotic role for IL-17A in CD. This was further supported by the 
observation that the interaction between IL-17A and heat shock 
protein 47 (HSP47), a collagen-specific molecular chaperone 
involved in fibrotic disease, contributes to intestinal fibrosis in 
CD (72). Moreover, the expression of HSP47 was significantly 
elevated in intestinal tissue from patients with active CD. 
HSP47 and collagen I expression in isolated intestinal SEMFs 
were increased in response to IL-17A. Furthermore, TL1A has 
been identified as a local inducer of IL-17A expression in the 
colonic mucosa of CD patients (73), suggesting another potential 
mechanism that links inflammation and fibrosis in CD.

iL-33
IL-33, an alarmin belonging to the IL-1 cytokines family, and 
its receptor ST2, have been implicated in the pathogenesis of 
IBD. Elevated expression of both molecules has been reported 
in inflamed mucosa from UC patients and, to a lesser extent, in 
CD mucosa (74, 75). Intestinal epithelial cells and SEMFs are the 
principal source of IL-33 in UC, but ex vivo studies on isolated 
intestinal mucosal cell populations and immunolocalization on 
full-thickness intestinal tissues show that IL-33 is also expressed 
by smooth muscle cells, endothelial cells, and adipocytes  
(76, 77). Several studies in acute and chronic colitis mouse mod-
els have suggested a pro-inflammatory role for IL-33 (78, 79). 
Interestingly, although fibrosis is usually associated with CD, it 
has been reported by Kobori et al. (80) and later confirmed (77) 
that IL-33 is expressed in activated SEMFs situated below ulcera-
tive lesions in UC but not in CD, supporting a functional role for 
IL-33 in ulceration and wound healing in UC. However, it has 
been recently described in pediatric patients with CD that IL-33 is 
increased in stricturing ileitis (81). The epithelial IL-33 secretion 
induces recruitment and activation of eosinophils, which secrete 
peroxidase and IL-13, perpetuating the chronic inflammation 
status and priming fibroblasts to produce fibrogenic molecules 
(81). In these sense, IL-33 has got an indirect pro-fibrotic role, 
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which has been described in lungs (82), skin (83), and gut  
(77, 84) with cell activation and increased production of TGF-β 
and collagen.

CYTOKine-DRiven ePiTHeLiAL–
MeSenCHYMAL TRAnSiTiOn

It has been suggested that myofibroblasts can be derived from 
various cell sources, such as resident tissue fibroblasts (85), 
bone-marrow-derived CD34+ fibrocytes (86), or intestinal 
epithelial cells, in areas of fibrosis. Epithelial cells undergo 
morphologic and phenotypic changes in a process known as 
epithelial to mesenchymal transition (EMT) (87, 88). It has 
been recently reported that another source of activated myofi-
broblasts in fibrotic sites are endothelial cells that go through 
a phenotypic change to mesenchymal cells by endothelial to 
mesenchymal transition (EndoMT) process. Briefly, this pro-
cess takes place when endothelial cells become delaminated 
and detach from the endothelial layer. Cells show the ability 
to change their shape from round to elongated and fusiform 
type, along with loss of their specific molecular markers, such 
as CD31/PECAM-1, von Willebrand Factor, and VE-cadherin, 
and novel expression of mesenchymal molecules such as 
α-SMA, vimentin, and type I collagen (89). Rieder et al. (90) 
demonstrated that EndoMT occurs in microvessels of IBD 
mucosa and in a mouse model of colonic fibrosis. They observed 
that IL-1β along with TGF-β1 and TNF-α or activated LPMCs 
supernatants induced morphological and phenotypic changes 
in human intestinal microvascular endothelial cells, as they 
lose their endothelial phenotype and function (LDL-uptake, 
migratory capacity) and they acquire de novo collagen synthesis 
capacity. Authors also showed that these cytokines induced a 
transient gene-specific pattern of histone modifications on 
activated collagen type I gene during EndoMT, supporting the 
hypothesis that epigenetic factors regulate fibrotic gene tran-
scription (91). Particularly in fibrotic CD, the occurrence of 
epithelial to mesenchimal transition has been recently studied 
on patient tissue by Scharl et al. (92). In this study, several EMT 
markers were detected to be differentially expressed in fibrotic 
areas of CD mucosa, compared to non-fibrotic or non-IBD 
mucosa. An increased frequency of CD68+ cells (monocytes/
macrophages) around fibrotic areas of colonic tissue also indi-
cated a link between inflammation and fibrosis. Authors found 
an upregulated production of TGF-β and loss of cell membrane 
β-catenin expression with an increased nuclear localization in 
CD cells in fibrotic areas, suggesting that during EMT β-catenin 
translocates from the cell membrane to cytosol, and then onto 
the nucleus to initiate the expression of EMT-associated genes 
(α-SMA, vimentin, or TGF-β). Notwithstanding, it is likely 
that the transition from epithelial cells into myofibroblasts 
may not need to proceed through completely, as there is strong 
experimental evidence from several EMT studies demonstrat-
ing that partial EMT transition without a complete progres-
sion of epithelial cells into myofibroblasts may participate in 
pathologic fibrogenesis (93). However, similar studies have not 
been performed in EndoMT yet.

Finally, the contribution of monocytes and macrophages to 
fibrosis development has been recently elucidated. A novel atypi-
cal monocyte progenitor has been identified in the incitement 
of experimental fibrosis (94). These monocytes have a bi-lobed 
segmented nuclear shape and many cytosolic granules. The 
cellular morphology and hybrid features between monocytes 
and granulocytes let them be named as segregated-nucleus-
containing atypical monocytes (“SatM”). Although they showed 
to induce fibrosis in mice, SatM did not express TGF-β. However, 
SatM produced large amounts of TNF-α, so the authors proposed 
that SatM constitutes an additional cell that may be involved in 
the activation of fibroblasts and initiation of fibrosis. Despite the 
description of these interesting findings have only been reported 
in lung fibrosis, it is relevant to other fibrotic disorders, such as 
CD fibrosis. As far as disorder-specific monocyte/macrophage 
cell subtypes become identified and characterized in this inflam-
matory disorder, they are potential targets for novel therapies for 
CD fibrosis with fewer side effects.

LeSSOnS FROM MURine MODeLS  
OF FiBROSiS FOR new THeRAPeUTiC 
STRATeGieS

Murine models of fibrosis have been helpful in studying potential 
therapeutic strategies for fibrosis. For example, nintedanib is a 
receptor tyrosine kinase inhibitor used in the United States for idi-
opathic pulmonary fibrosis, which mainly interferes with fibroblast 
growth factor receptor, platelet-derived growth factor receptor, 
and vascular endothelial growth factor receptor; these targets were 
identified in the bleomycin-induced lung fibrosis in mice (95).

Experimental models for intestinal fibrosis have been less 
productive. One of the most widely used models of Crohn’s 
fibrosis involves the repeated instillation (8× at weekly intervals) 
of TNBS into the mouse colon (47). It was demonstrated that the 
intestinal-induced inflammation was initiated by a Th1-mediated 
immune response, followed by Th17 and finally completed by 
IL-13-derived Th2 T cells (96). The prophylactic or therapeutic 
blockade of the NF-κB pathway or IL-13R alpha 2 ameliorated 
the fibrosis. The pro-fibrogenic role of IL-13 and TGF-β1 in 
colon was also described with this TNBS model (31). Therefore, 
the TNBS-induced fibrosis mouse model may constitute a useful 
biologic tool to optimize different therapies focused on suppres-
sion of fibrosis. It has been used to test the effect of vitamin D (97), 
anti-melanin-concentrating hormone (98), a vaccine against 
TGF-β (49), and novel small molecules (99) that were proposed 
as promising candidates for intestinal fibrosis.

The dextran sodium sulfate (DSS)-induced colitis is also widely 
used to induce fibrosis. The repeated administration of this chemical 
irritant shed light on the role of peroxisome proliferator-activated 
receptor gamma (PPAR-γ) on fibrosis. It was demonstrated that 
the induction of PPAR-γ ameliorated hepatic, lung, or intestinal 
fibrosis (100). Pirfenidone, an orally active small molecule com-
prising a modified phenyl pyridine, was used in a clinical trial for 
lung fibrosis, and it was showed that fibrosis can be controlled 
(101); a similar effect was observed with sesame oil (102) and 
irsogladine maleate (103) in the DSS-driven fibrosis model.
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A new model of fibrosis involving subcutaneously transplanted 
small bowel has also been shown to be ameliorated with the 
administration of pirfenidone (104). Authors have demonstrated 
that fibrosis was inhibited through downregulation of TGF-β1 
and TGF-β1-dependent intracellular cell signaling that involves 
Smad2/3 and MAPK. Fibroblasts proliferation and collagen 
production were reversed (101, 104).

A major drawback of the chemically induced models of fibrosis 
is that the increased collagen production is confined mainly to the 
submucosa, and there is no involvement of the muscle layers. This 
contrasts markedly with CD where there is massive involvement 
of the deeper layers of the gut. An exception to this is the granu-
lomatous colitis seen when peptidoglycan polysaccharide from 
streptococcal cell walls are injected directly into the bowel wall 
of the ileum and cecum in rats (105). In this model, anti-TNF-α 
antibodies (50) and the natural phenol from berries, resveratrol, 
reduce fibrosis (106).

COnCLUSiOn

Figure 1 and Table 1 summarize the process that leads to fibroste-
nosis of the gut in CD. Several cytokines that are increased in the 
inflamed gut mucosa of CD patients can also induce fibrosis and 
fibrostenosis in advanced stages of the disease. We have reviewed 
here the most relevant cytokines that are involved directly in 
CD-associated fibrosis. Although some of these can directly 
induce fibrosis through their effect on fibroblasts activation/
proliferation (TGF-β, IL-1β, TNF-α, and IL-17A), others exert an 
indirect effect on fibroblasts through interaction with other cell 
types with induction of pro-fibrotic cytokines and ECM synthesis 

TABLe 1 | Role of the principal cytokines and molecules involved in Crohn’s 
disease (CD) fibrosis.

Molecules Role in CD fibrosis

Transforming growth 
factor beta (TGF-β)

Induces extracellular matrix (ECM) synthesis 
(collagen), matrix metalloproteinases (MMPs), and 
TIMP production by strictured intestinal smooth 
muscle cells and myofibroblasts

IL-1 β Increases collagenase and TIMP-1 production by gut 
smooth muscle cells

IL-6 Induces TGF-β1-driven collagen production by 
smooth muscle cells

TNF-α Stimulates excessive collagen production and 
expression of MMPs by intestinal fibroblasts. 
Diminishes myofibroblast mobility

TLA1 Induces expression of connective tissue growth 
factor, IL31Ra, TGF-β1 and insulin-like growth factor, 
important mediators of myofibroblast proliferation, and 
ECM synthesis

IL-17A Overexpressed in stricture CD gut. Induces collagen 
and TIMP-1 production by subepithelial myofibroblasts 
(SEMFs). Diminishes myofibroblast mobility

IL-13 Diminishes TNF-α-induced synthesis of MMP-1 
and MMP-9: downregulates ECM degradation and 
increases collagen deposition

IL-33 Induces cell activation, TGF-β, and collagen 
production by SEMFs

MMPs Matrix metaloproteinases: degrade ECM components

TIMP MMPs tissue Inhibitor: inhibits MMPs-driven excessive 
degradation of ECM
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