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Guidelines for the management of severe asthma do not emphasize the measurement 
of the inflammatory component of airway disease to indicate appropriate treatments 
or to monitor response to treatment. Inflammation is a central component of asthma 
and contributes to symptoms, physiological, and structural abnormalities. It can be 
assessed by a number of endotyping strategies based on “omics” technology such as 
proteomics, transcriptomics, and metabolomics. It can also be assessed using simple 
cellular responses by quantitative cytometry in sputum. Bronchitis may be eosinophilic, 
neutrophilic, mixed-granulocytic, or paucigranulocytic (eosinophils and neutrophils not 
elevated). Eosinophilic bronchitis is usually a Type 2 (T2)-driven process and therefore 
a sputum eosinophilia of greater than 3% usually indicates a response to treatment 
with corticosteroids or novel therapies directed against T2 cytokines such as IL-4, 
IL-5, and IL-13. Neutrophilic bronchitis represents a non-T2-driven disease, which is 
generally a predictor of response to antibiotics and may be a predictor to therapies 
targeted at pathways that lead to neutrophil recruitment such as TNF, IL-1, IL-6, IL-8, 
IL-23, and IL-17. Paucigranulocytic disease may not warrant anti-inflammatory therapy. 
These patients, whose symptoms may be driven largely by airway hyper-responsiveness 
may benefit from smooth muscle-directed therapies such as bronchial thermoplasty or 
mast-cell directed therapies. This review will briefly summarize the current knowledge 
regarding “omics-based signatures” and cellular endotyping of severe asthma and give 
an overview of segmentation of asthma therapeutics guided by the endotype.

Keywords: endotype, severe asthma, omics, sputum cytometry, type 2-low asthma, type 2-high asthma

iNTRODUCTiON

The definition of asthma has not changed in over 50 years (1). The variability in airflow that charac-
terizes the disease may be driven by airway hyper-responsiveness or by airway inflammation that is 
one of the determinants of airway hyper-responsiveness (2). Despite this heterogeneity, guideline-
based therapy with inhaled beta agonists and corticosteroids do not consider measurements of these 
individual components in routine clinical care. While the majority of asthmatics are responsive 
to guideline-based therapy and have reduced symptoms, improved quality-of-life, increased lung 
function as well as decreased exacerbation frequency (3), in approximately 5–10% of asthmatics, 
anticipated outcomes are not achieved (4). These patients with severe disease are responsible for the 
majority of indirect and direct asthma-related costs and economic burden. The advent of biologic 
therapies calls for a new paradigm of personalized medicine based on inflammatory endotype to 
better-inform who is most likely to benefit from specific targeted therapies.
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Traditional asthma phenotyping (description of observable 
characteristics that do not provide an insight into the underlying 
pathobiology) classifies patients according to clinical charac-
teristics such as exacerbating factors (allergens, exercise, and 
infections), age of onset, concomitant comorbidities (sinusitis 
and obesity), and response to treatment. More recently, unbiased 
clustering algorithms that have the capacity to incorporate a 
range of clinical variables (e.g., FEV1, BMI, ACQ, atopic status, 
and blood eosinophils) have been applied to large patient data-
sets to objectively identify clinical phenotypes of asthma. Such 
datasets include the Severe Asthma Research Program (SARP) 
(5), Airways Disease Endotyping for Personalized Therapeutics 
(ADEPT) (6), and Unbiased Biomarkers for the Prediction of 
Respiratory Disease Outcomes (U-BIOPRED) (6, 7) cohorts, 
which have been partitioned into up-to five clinical phenotypes. 
However, composites of observable characteristics do not provide 
us insight into mechanisms of persistent symptoms, physiologi-
cal abnormalities, or inflammation, and therefore are of limited 
value to choose the appropriate biological agent. As opposed to 
phenotypes, characterizing severe asthmatics according to their 
endotype, a term applied to a “subtype of a condition that is defined 
by a distinct functional or pathophysiological mechanism,” may 
be more useful to directing therapy (8). This notion is strongly 
supported by the efficacy of biologic therapies that target-specific 
inflammatory mediators (e.g., IL-5) in well-defined patients char-
acterized based on inflammatory biomarkers (9, 10). Currently, 
however, asthma management guidelines fail to adequately 
emphasize the measurement of the inflammatory component of 
airway disease (bronchitis).

Inflammatory endotype characterization should be consid-
ered a central component of the workup and management of 
severe asthma. Widespread acceptance of this notion, however, 
has been slow, perhaps because there is no consensus as to how 
to best identify asthma endotypes and what therapy to use for 
a given endotype. While novel omics-based signatures of severe 
asthma have emerged, they have not been evaluated clinically. 
We suggest that asthma endotype characterization can be reliably 
done on the nature of underlying airway inflammation assessed 
by sputum cytometry (1). This review aimed to summarize the 
current knowledge regarding cellular endotyping and novel 
“omics-based signatures” of severe asthma and give an overview 
of segmentation of asthma therapeutics guided by the inflamma-
tory endotype. Molecular pathways and mechanisms associated 
with asthma endotypes were recently reviewed and therefore have 
not been discussed in detail here.

iNFLAMMATORY eNDOTYPeS

Wenzel et al. (11) defined two distinct inflammatory endotypes 
of severe, corticosteroid-dependent asthma based on the pres-
ence or absence of eosinophils in endobronchial biopsy and 
lavage. Since this landmark study, T-helper type 2 (Th2)-high 
and Th2-low have remained the most well recognized and 
described endotypes of severe asthma. The Th2-high endotype 
is characterized by the presence of eosinophilic airway inflam-
mation, whereas the Th2-low endotype is usually characterized 
by neutrophilic or paucigranulocytic airway inflammation. 

While several non-invasive biomarkers exist for the detection 
of the Th2-high endotype [blood eosinophils, serum IgE, serum 
periostin, and exhaled nitric oxide (eNO)], sputum cytometry is 
currently the most clinically validated quantitative and respon-
sive method to assess airway inflammation. Perceived difficulties 
in implementing this approach in routine clinical practice have 
limited its widespread use. In fact, as described by Lim and 
Nair (12), many easily accessible biomarkers with demonstrated 
clinical utility remain confined to the research arena or are only 
exploited in a small number of specialized academic centers. 
This may be due to the lack of measurement standardization, 
validated diagnostic or predictive thresholds, and evidence-based 
reference guidelines to inform how biomarkers should be used 
and interpreted in clinical practice. Cost and infrastructure 
constraints also limit generalizability of validated biomarkers. 
To overcome these issues, readily available or point-of-care 
diagnostic methods are welcomed. Quantitative cytometry of 
induced or spontaneous sputum is currently the most sensitive 
and specific non-invasive method to directly characterize the type 
and severity of airway inflammation in asthma (13). Importantly, 
standardized methodology for sputum induction, processing, 
and quantification (14, 15) is safe (16) and well tolerated by the 
majority of patients (17–19). The nature of bronchitis assessed by 
sputum cytometry can be stratified into four groups based on the  
percentage of sputum granulocytes: (1) eosinophilic, (2) neutrophilic,  
(3) mixed-granulocytic (eosinophils and neutrophils elevated), 
and (4) paucigranulocytic (eosinophils nor neutrophils elevated) 
(17, 20). In non-smoking healthy adults, Belda et al. established 
the 90th percentile for sputum eosinophil and neutrophil counts, 
reporting 1.1 and 64.4%, respectively, with a total cell count of 
9.7 million cells/g (21). However, standardized stratification 
cutoffs have not been established in asthma and as a result have 
varied between studies. Proposed thresholds for sputum eosino-
philia have ranged between >1.1 and 4% of the total cell count  
(17, 20, 22) with studies strongly suggesting that a cutoff of >3% is 
clinically relevant and can be used to guide treatment and reduce 
exacerbations (23). To indicate neutrophilia, thresholds >61% 
of the total cell count have been proposed (20). Overlooked by 
many centers, it is important to acknowledge that the presence of 
eosinophil free granules also indicates uncontrolled eosinophilic 
bronchitis (24). The prevalence of these groups have been reported 
in stable, severe, and exacerbated disease with the proportion of 
eosinophilic asthma ranging from 35 to 50% (17, 20). The groups 
differ with respect to their clinical characteristics and response 
to therapy. Patients with mixed-granulocytic asthma have more 
severe airflow obstruction, a higher frequency of exacerbations 
and daily wheeze, and increased health care utilization than 
patients with either eosinophilic or neutrophilic bronchitis alone 
(25). It is also important to note that asthmatics who exhibit con-
cordant blood and sputum eosinophilia experience more airway 
symptoms than those with isolated blood or sputum eosinophilia 
alone (19).

As mentioned above, there is no consensus on the specific defi-
nition of inflammatory cellular endotypes. Based on our clinical 
experience of over 20 years in over 5,000 patients, a patient can 
be determined to have eosinophilic asthma if there is evidence 
of elevated sputum (>3% with or without degranulation) and/or 
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blood eosinophils (≥400 cells/μL) on at least two occasions, and 
if treatment strategies aimed at suppressing eosinophils are effec-
tive in controlling symptoms and exacerbations (26). Likewise, a 
patient can be determined to have neutrophilic asthma if there 
is evidence of elevated neutrophils (≥64%) but not eosinophils 
(<3%) with an increased total cell count (≥9.7 million cells/g) on 
at least two occasions and if treatment strategies aimed at sup-
pressing eosinophils are not effective in controlling symptoms 
and exacerbations. Patients can exhibit features of both the 
eosinophilic and neutrophilic endotype. A patient can be deter-
mined to have mixed-granulocytic asthma if there is evidence of 
both neutrophils and eosinophils, independently or concurrently, 
on at least two occasions. Finally, a patient can be determined to 
have paucigranulocytic asthma if there is no evidence of elevated 
eosinophils (<3%) or neutrophils (<64%) and if treatment strat-
egies aimed at suppressing eosinophils and neutrophils are not 
effective in controlling symptoms and exacerbations. The workup 
and therapy regimen for these inflammatory endotypes have been 
described at the end of this review.

NOveL OMiCS eNDOTYPiNG 
STRATeGieS

The maturation of omics-based technologies has facilitated the 
investigation of transcriptomics (27–33), proteomics (25, 34), 
and metabolomics (35, 36) to better understand the molecular 
characteristics of asthma, which have all been recently reviewed. 
Large multicenter initiatives are now ongoing, including the 
U-BIOPRED project (37), which aim to identify distinct severe 
asthma endotypes by integrating inflammatory biomarkers 
derived from “omics” and clinical data. Thus far, omics meas-
urements have been utilized to (1) identify asthma endotypes 
(38), (2) identify genes related to inflammatory characteristics 
(39), and (3) to describe the molecular characteristics of clinical 
asthma phenotypes (6). Studies are required to investigate the 
clinical benefit of these more sophisticated and computationally 
intensive endotyping strategies, both to initiate the appropriate 
treatment and to longitudinally monitor responses to various 
anti-inflammatory (including biologics) therapies in asthma.

Transcriptomics
When compared with non-asthmatics, whole-genome expres-
sion in peripheral blood of severe asthmatics is different such 
that a severe asthma disease signature comprised of nearly 1,700 
genes was identified by Bigler et al. (38). Within severe asthma, 
distinct gene signatures associated with eosinophilia, mast 
cells, and group 3 innate lymphoid cells have been identified in 
patients with adult-onset asthma when compared with patients 
with childhood-onset asthma (32). Beyond asthma versus non-
asthma stratification, numerous studies (summarized in Table 1) 
have aimed to define transcriptomic endotypes of asthma by 
analyzing differential gene expression in bronchial epithelium 
(27) and induced sputum samples (28, 30, 31, 33). Woodruff 
and colleagues were the first to identify two evenly sized “Th2-
high” and “Th2-low” subgroups of mild, steroid naive asthma 
based on unsupervised hierarchical clustering of the expression 

levels of three Th2 cytokine induced genes (POSTN, CLCA1, and 
SERPINB2) in bronchial epithelial brushings. These subgroups 
were different with respect to their expression levels of IL-5 and 
IL-13 within the airway, airway hyper-responsiveness, IgE, blood 
and airway eosinophilia, and reticular basement membrane 
thickness. Not surprisingly, Th2-high gene expression was 
predictive of corticosteroid responsiveness as clinically relevant 
improvements in FEV1 following 8 weeks of fluticasone use were 
only observed in the Th2-high group (27). Wilson et  al. (39) 
identified seven genes (COX-2, ADAM-7, SLCO1A2, TMEFE2, 
and TRPM-1, and two unnamed genes) in bronchial brushing 
samples with expression levels that were moderately correlated 
with submucosal eosinophils, suggesting that they may also 
predict corticosteroid responsiveness. Given the limited clinical 
applicability of invasive bronchoscopic samples, Woodruff and 
colleagues went on to evaluate the variable expression of 14 
genes relevant to Th2 inflammation in induced sputum samples 
(30). Generating a quantitative composite metric of IL-4, IL-5, 
and IL-13 gene expression, termed the “Th2 gene mean,” the 
study population was again dichotomized into Th2-high (70%) 
and Th2-low (30%) subgroups (30). When compared with the 
Th2-low cluster, the Th2-high cluster had higher eNO levels as 
well as sputum and blood eosinophil counts (30). It is notable 
that sputum (AUC = 0.89) and peripheral blood (AUC = 0.89) 
eosinophil counts alone, but not eNO (AUC = 0.76), performed 
well as biomarkers of Th2-high asthma as assessed by the sputum 
cell “Th2 gene mean” (30). Acknowledging the limitations of 
analyzing pre-selected genes, Baines et al. (28) subjected whole-
genome gene expression profiles from induced sputum of adults 
with stable asthma to unsupervised hierarchical cluster analysis. 
Three distinct transcriptional asthma phenotypes (TAPs) were 
identified that had similarities to previously defined sputum 
inflammatory phenotypes of eosinophilic (TAP1), neutrophilic 
(TAP2), and paucigranulocytic (TAP3) asthma (28). In fact, 92% 
of the differentially expressed genes between the TAPs over-
lapped when the population was grouped according to sputum 
quantitative cell count (eosinophilic, neutrophilic, and pauci-
granulocytic). The same investigators subsequently identified a 
sputum gene expression signature comprised of six genes (CLC, 
CPA3, DNASE1L3, IL1B, ALPL, and CXCR2) that was able to 
discriminate asthmatics according to their inflammatory endo-
type and predict ICS response (29). Of most interest, the six-gene 
expression signature outperformed the ability of sputum eosino-
phil count to predict corticosteroid response (FEV1 responder 
vs. non-responder; AUC = 91.5) (29). Somewhat contradictory 
to the findings of Baines et  al., when unbiased hierarchical 
clustering was performed on 508 genes that were differentially 
expressed between severe asthmatics with and without eosino-
philic airway inflammation confirmed by sputum cytometry, one 
Th2-high and two non-Th2 transcriptome-associated clusters 
(TACs) were defined (33). When examining the distribution of 
the three TACs according to sputum inflammatory endotype, 
two TACs were associated with eosinophilic (TAC1 or TAC3) 
and neutrophilic (TAC2 or TAC3) inflammation, suggesting 
that two distinct transcriptional signatures are associated with 
both sputum eosinophilia and neutrophilia (33). Similarly, Yan 
et al. (31) did not detect significant between cluster differences 
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TAbLe 1 | Summary of transcriptomics studies.

Reference Subjects Transcriptomic 
analysis

Computational analysis Predictive 
investigation?

Approach Result

blood

Bigler et al. (38) Severe asthma non-smokers (n = 309);  
severe asthma current/ex-smokers (n = 110); 
mild–moderate asthma (n = 87); healthy 
controls (n = 100)

Microarray Whole-genome gene expression data were filtered and  
1,693 entities differentially expressed between severe 
asthmatics and non-asthmatics (“severe asthma disease 
signature”) were subjected to unsupervised hierarchical 
clustering and topological analysis

Two clusters: “Severe asthma- 
enriched cluster” and “mixed cluster”

No

bronchial brushings

Woodruff et al. (27) Mild-to-moderate asthma (n = 42); healthy 
controls (n = 28)

Microarray and  
qPCR

Unsupervised hierarchical clustering based on the gene 
expression profile of three IL-13-inducible genes  
(POSTN, CLCA1, and SERPINB2)

Two clusters: “Th2-high” and “Th2-low” 
asthma

Yes, ICS response

Wilson et al. (39) Severe asthma non-smokers (n = 46); severe 
asthma current/ex-smokers (n = 16); mild–
moderate asthma (n = 34); healthy controls 
(n = 41)

Microarray No cluster analysis. Association of gene expression profiles  
with eosinophil and neutrophil counts evaluated using a  
general linear model

NA No

Sputum

Baines et al. (28, 29) Adults with stable asthma (n = 59); healthy 
controls (n = 13)

qPCR Whole-genome gene expression data (22,218 entities)  
were filtered and 7,436 entities present in all asthmatics  
were subjected to unsupervised hierarchical clustering

Three “transcriptional asthma 
phenotypes”

Yes, ICS response

Peters et al. (30) Asthma (n = 37); healthy controls (n = 15) qPCR Supervised analysis of gene expression profiles of 14  
genes relevant to Th2 inflammation

Single quantitative metric: “Th2 gene 
mean”

Yes, Th2-high and 
Th2-low endotype

Yan et al. (31) Asthma (n = 100); healthy controls (n = 12) Microarray 5,500 gene expression profiles from 186 Kyoto Encyclopedia 
of Genes and Genomes pathways were used to assess 
the pathway-based distance between samples followed by 
unsupervised k-means clustering

Three “transcriptomic endotypes of 
asthma”

No

Kuo et al. (33) Moderate-to-severe asthma (n = 104); healthy 
controls (n = 16)

Microarray 508 differentially expressed genes between eosinophil (≥1.5%) 
and non-eosinophil (<1.5%) associated sputum inflammation 
were subjected to unbiased hierarchical clustering

Three “transcriptome-associated clusters”No

Sputum, nasal brushings, bronchial brushings, and biopsies

Hekking et al. (32) Adults with adult-onset (n = 253) and childhood-
onset severe asthma (n = 158)

Microarray 105 predefined genes associated with the presence of  
asthma, leukocytes, and induced lung injury were subjected  
to gene set variation analysis to form gene signatures associated 
with adult-onset severe asthma

Significantly different asthma, leukocyte, 
and induced lung injury gene signatures 
in adult-onset severe asthma patients 
(bronchial brushings n = 6; nasal 
brushings n = 5; sputum n = 3)

No
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in sputum cell differentials suggesting an imperfect association 
with Th2 pathophysiology. Taken together, conflicting evidence 
surrounds the association between transcriptomic endotypes and 
sputum quantitative cell count.

Proteomics
While gene expression studies have dominated the omics land-
scape, it is their translated products, the proteins, which mediate 
airway inflammation in asthma by regulating cell recruitment. 
Numerous studies, limited by sample size, have investigated the 
“proteomic profile” of asthma in bronchoalveolar lavage fluid 
(BALF) (40, 41), bronchial biopsy (42), and sputum supernatants 
(43, 44). One relatively large study by SARP investigators (34) 
focused on 18 cytokines detectable in BALF and discriminated 
mild-to-moderate and severe asthmatics into four groups 
based on cytokine expression. The groups were independent 
of corticosteroid use and phenotypically distinct with respect 
to BALF cellularity and lung function. In another study, Hastie 
et  al. (25) investigated the hypothesis that sputum inflamma-
tory granulocytes define phenotypic subgroups of asthma with 
different patterns of inflammatory proteins. Protein microarray 
data of induced sputum were stratified by sputum cell differential 
(eosinophilic: ≥2% eos and <40% neuts; neutrophilic: <2% eos 
and ≥40% neuts; mixed-granulocytic: ≥2% eos and ≥40% neuts; 
paucigranulocytic: <2% eos and <40% neuts) and revealed dif-
ferentially increased inflammatory proteins between the groups 
(25). Of note, 19 inflammatory mediators were significantly 
elevated in those asthmatics with neutrophilic bronchitis, a subset 
of which were correlated with neutrophil counts.

Metabolomics
Metabolomics, the exploration of biochemical molecules derived 
from metabolic processes, was recently reviewed for its applica-
tions in asthma (36). Studies to date strongly suggest that metabolic 
profiles measured in exhaled breath, urine, plasma, and serum 
may be applied as a point-of-care tool to discriminate asthma 
endotypes (36). Of most interest, “breathomics” (45) profiles 
volatile organic compounds in exhaled breath using an electronic 
nose and has demonstrated ability to discriminate asthmatics 
from healthy controls (46–48). Electronic nose “breathprints” are 
correlated with the percentage of sputum eosinophils (48, 49). 
One highly relevant study concluded that exhaled breath analysis 
outperformed the ability of both eNO and the percentage of spu-
tum eosinophils to predict corticosteroid response in asthmatics 
from whom corticosteroids had been withdrawn (48).

important Considerations and Future 
Studies
There are numerous limitations to clustering techniques applied 
in the studies discussed above; therefore, these results should be 
interpreted with caution. One such concern is cluster stability. 
Specifically, clusters identified at a specific point in time may 
not be reproducible at subsequent time points. Longitudinal 
stability assessment of the clusters that have been described 
is required to understand how they behave over time and in 
response to treatment and/or exacerbations. Similarly, different 
clusters may be identified across different asthma populations 

and therefore validation of cluster classification in independ-
ent cohorts of asthmatic patients is necessary to understand 
generalizability. These important considerations were evaluated 
for the first time by Loza et  al. (6) who defined four severe 
asthma phenotypes in two independent severe asthma cohorts 
(ADEPT and U-BIOPRED), performing both external valida-
tion and longitudinal stability assessments. Cluster number 
and composition may also be influenced by the clustering 
methodology applied. Finally, it is also important to consider 
statistical robustness as the majority of studies to date define 
clusters comprised of a small number of asthma patients and 
hence have limited statistical power.

None of the omics-signatures discussed above have been 
translated to clinical practice as prognostic or predictive tests. In 
fact, the clinical utility of these signatures is currently unknown 
as the majority of studies to date have been observational and 
hypothesis generating. The ultimate potential of a biomarker-
based clinical test is dependent on its analytical and clinical 
validity in addition to its clinical utility. A 30-point checklist of 
criteria, developed by McShane et  al., should be considered to 
gauge the potential clinical utility of the omics-based signatures 
discussed in this review (50). Important considerations include 
those related to the specimen and assays used, and the appropri-
ateness of the statistical methods used to develop and validate the 
signature (50). Studies are now required to address the paucity of 
evidence concerning (1) the longitudinal variability of omics data 
and endotypes and (2) the responsiveness of omics to therapies. 
Randomized clinical trials (RCTs) will be necessary to definitively 
confirm the clinical utility of novel omics-based signatures and 
design consideration for biomarker RCTs have been proposed 
(51). Specifically, intervention studies will be necessary to shed 
light on the capacity of these signatures to direct personalized 
therapy and to adjust doses of drugs during exacerbations in 
severe asthma. The qualitative nature of omics is an obvious 
limitation, therefore the development and application of quali-
tative metrics are certainly desirable. Similar to that described 
by Hinks et  al. (52), multi-dimensional clinicopathobiologic 
clustering should also be considered to maximally leverage the 
measurements available to tertiary care clinicians. It is clear 
however that omics-based endotypes have similar molecular, 
physiological, and clinical characteristics to the inflammatory 
endotypes of eosinophilic, neutrophilic, mixed-granulocytic, and 
paucigranulocytic asthma.

iNFLAMMATORY eNDOTYPe-GUiDeD 
THeRAPeUTiC STRATeGY

In this section, we focus our discussion on the segmentation of 
therapy in severe asthma [as defined by the European Respiratory 
Society/American Thoracic Society (4)] guided by inflammatory 
endotype. We support the notion that the specific nature of 
bronchitis reveals the underlying mechanism driving the bron-
chitis and therefore predicts therapy response. As summarized 
in Figure 1, our therapeutic strategy is dependent on the type of 
bronchitis (assessed using quantitative cytometry in induced spu-
tum) (53) and severity of airway hyper-responsiveness (assessed 
using methacholine inhalation challenge). We emphasize the 
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importance of identifying the particular component of airways 
disease that drives symptoms in each patient prior to therapy 
selection. Furthermore, the components of airways disease 
should be assessed and subsequently reassessed to optimize 
therapy such that symptom and inflammation control is achieved. 
Careful endotyping is probably not necessary to manage most 
patients with asthma. This strategy has not been shown to reduce 
exacerbations in patients with mild asthma (reference our own 
Jayaram et al., study). It is currently recommended only for 
patients with more severe asthma.

Management of the T2-High endotype
Although most commonly referred to as Th2-high, type 2 (T2)-
high has emerged as a more appropriate and inclusive term 
given the involvement of numerous cell types (including type 
2 innate lymphoid cells and natural killer cells) that are outside 
the originally described Th2 cell population (54). Eosinophilic 
bronchitis indicates a T2-driven mechanism and is usually steroid 
responsive. When bronchitis is eosinophilic in nature with a dif-
ferential cell count of more than 3% (or eosinophil-free granules 
are observed), inhaled corticosteroids should be initiated and 
the dose titrated to keep the sputum eosinophil count below 3%. 
In situations where high-dose inhaled corticosteroids do not 
control sputum eosinophilia, oral corticosteroids are required. In 
corticosteroid-treated patients, absent eosinophils may suggest 
that the current steroid dose is unwarranted and therefore should 
be reduced to avoid over-treatment. In RCTs in adults, moderate-
to-severe asthmatics managed by normalizing induced sputum 
eosinophils had significantly reduced exacerbations and hospital 
admissions when compared with those managed by national 
asthma guidelines (23, 55). When this strategy was applied 
clinically in 52 OCS-dependent asthmatics, maintained symptom 
control, reduced exacerbations, and preserved lung function was 
observed over 5  years (56). Novel biologic therapies should be 
considered for their steroid sparing effect, also for the minority of 
patients who are corticosteroid-insensitive (unresolved sputum 
eosinophilia despite high doses of oral corticosteroids) (57).

To date, all biologic therapies that have been approved and the 
majority of those in development aim to target T2 inflammation 
[recently reviewed (58)] and are therefore directed toward the 
T2-high eosinophilic asthma endotype. Detailed illustrations of 
asthma pathobiology and the mechanism of action of targeted 
therapies are provided in recent reviews (59, 60). Anti-IgE [omali-
zumab (61)] therapy was the first approved monoclonal antibody 
and is effective in patients with allergic asthma, confirmed by a 
positive skin prick test and serum IgE levels ≥30 IU/mL. Two anti-
IL-5 therapies are approved [mepolizumab (62) and reslizumab 
(63)] and one is in phase 3 development [benralizumab (64, 65)] 
for use in severe eosinophilic asthma. With the potential to block 
both IL-4 and IL-13, one anti-IL-4 receptor alpha therapy is cur-
rently in phase 3 development (dupilumab) following successful 
phase 2b trials (66, 67). The efficacy of strategies targeting IL-13 
alone [lebrikizumab (68) and tralokinumab (69)] is inconclusive 
as only modest clinical benefit has been shown. Drugs that target 
both IL-4 and IL-13 signaling (e.g., dupilumab) have reported 
more clinically relevant effects in phase 2 clinical programs. The 
reason for this difference is not immediately obvious. Perhaps one 
of the reasons may be related to the lack of accurate endotyping 
to identify patients in whom IL-13-mediated biology was not the 
dominant pathobiology of asthma. Selecting patients with sig-
nificant airway hyper-responsiveness and mucus secretion may 
have demonstrated greater clinical effect. Other novel therapies 
that are currently being investigated include anti-thymic stromal 
lymphopoietin (70), IL-33 blocking agents (71), and prostaglan-
din antagonists (CRTH2) (72). A general scheme to choose the 
appropriate monoclonal antibody based on simple clinical features  
(e.g., clinical history of allergy, severity of asthma based on the 
dose of corticosteroids, and readily available biomarkers such as 
blood and sputum eosinophils and fraction of eNO) is shown 
in Figure  2. This is based on our clinical experience, the lack 
of evidence supporting omalizumab in prednisone-dependent 
asthmatics (73), the lack of efficacy of mepolizumab 100  mg 
subcutaneous in patients with persistent sputum eosinophilia 
despite high-dose inhaled and oral corticosteroid use (74), and 
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the efficacy of benralizumab (75) and reslizumab (76) in severe 
prednisone-dependent patients. However, this approach needs 
to be prospectively validated in clinical trials.

Management of the T2-Low endotype
Neutrophilic bronchitis with a raised total cell count is suggestive 
of a non-T2-driven disease and is not usually steroid-responsive, 
but instead a predictor of response to antibiotics. Macrolides, 
including clarithromycin (77) and azithromycin (78), have 
demonstrated effectiveness in non-eosinophilic asthmatics. To 
identify the causative pathogen that may help to direct antibiotic 
therapy, molecular microbiology, and extended cultures, includ-
ing 16 s deep sequencing, should be considered in those patients 
with recurrent infective exacerbations. Logically, neutrophilic 
bronchitis may be a predictor of therapies targeted at pathways 
that lead to neutrophil recruitment such as TNF, IL-1, IL-6, 
IL-8, IL-23, and IL-17. Several small molecule anti-neutrophilic 
biologics have been developed, although there are currently no 
active phase 3 trials. Such molecules include CXCR2 antagonists 
(79, 80), 5-lipoxygenase-activating protein inhibitors (81), anti-
IL-17 (82), and anti-TNFα (83). It is evident that few therapeutic 
options exist for these patients; therefore, intense study of the 
underlying mechanisms contributing to the T2-low endotype is 
urgent. Similarly, despite the severity of their disease, currently 
there are no treatment options for patients with mixed-granu-
locytic asthma. In fact, no interventions have been evaluated 
for this specific inflammatory endotype although preliminary 
evidence suggests therapies targeting the IL-6 pathway may be 
beneficial (84).

Asthmatics with paucigranulocytic bronchitis may not warrant 
anti-inflammatory therapy as symptoms in these patients may 
be driven solely by smooth muscle dysfunction (airway hyper-
responsiveness). Therefore, these patients may benefit from 
smooth muscle-directed therapies such as additional broncho-
dilators and long-acting anti-muscarinic antagonists, mast-cell 
directed therapies, or in the most severe cases, bronchial ther-
moplasty. Our clinical experience suggests that bronchial ther-
moplasty is indicated when severe airway hyper-responsiveness 
(PC20 < 0.25) and frequent exacerbations persist despite absent 
or controlled airway inflammation (85); however, clinical trials 
are required to confirm this hypothesis. Bronchial thermoplasty 

after therapy has been optimized to control eosinophilic and/or 
neutrophilic inflammation has been previously described by Cox 
et al. (85) for those patients with persistent symptoms. Although 
the mechanism of action is uncertain, bronchial thermoplasty 
aims to attenuate airway smooth muscle mass through the deliv-
ery of localized thermal energy (86).

CONCLUDiNG ReMARKS

One of the major challenges of respiratory medicine is the man-
agement of patients with severe asthma. Identifying a specific 
endotype may have profound implications on advanced targeted 
therapy selection and intern clinical outcomes. It should be 
acknowledged that the mere presence of a particular gene, protein 
or a cell do not necessarily make them a therapeutic target or 
disease biomarker. Teasing out “association” from “causality” is 
of paramount importance. Koch’s postulates, described in 1890, 
remain a useful benchmark to establish whether there is causal 
relationship between a particular molecular or cellular observa-
tion and a disease presentation. Persistence of a particular cell 
type or cytokine and their temporal association with exacerbation 
and resolution provide strong evidence to support a causative 
role. A consensus as to how to best identify asthma endotypes and 
what therapy to use for a given endotype is now required. In the 
meantime, quantitative cell counts in sputum provide the most 
reliable method to identify T2 (most eosinophilic) and non-T2 
(most neutrophilic) inflammatory processes.
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