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Frailty is a clinical syndrome defined by the age-related depletion of the individual’s 
homeostatic reserves, determining an increased susceptibility to stressors and dispro-
portionate exposure to negative health changes. The physiological systems that are 
involved in the determination of frailty are mutually interrelated, so that when decline starts 
in a given system, implications may also regard the other systems. Indeed, it has been 
shown that the number of abnormal systems is more predictive of frailty than those of 
the abnormalities in any particular system. Delirium is a transient neurocognitive disorder, 
characterized by an acute onset and fluctuating course, inattention, cognitive dysfunc-
tion, and behavioral abnormalities, that complicates one out of five hospital admissions. 
Delirium is independently associated with the same negative outcomes of frailty and, like 
frailty, its pathogenesis is usually multifactorial, depending on complex inter-relationships 
between predisposing and precipitating factors. By definition, a somatic cause should 
be identified, or at least suspected, to diagnose delirium. Delirium and frailty potentially 
share multiple pathophysiologic mechanisms and pathways, meaning that they could 
be thought of as the two sides to the same coin. This review aims at summarizing the 
existing evidence, referring both to human and animal models, to postulate that delirium 
may represent the cognitive harbinger of a state of frailty in older persons experiencing 
an acute clinical event.
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iNTRODUCTiON

Although frailty and delirium are intuitively associated, a clear taxonomy of their biological and 
clinical relationship has not provided yet in geriatric medicine.

For many years, age has been considered as one of the most powerful predictors of mortality 
and adverse outcomes in older people. However, growing empirical evidence and several scientific 
publications have clearly shown that “chronological age” is not able per se to capture with sufficient 
accuracy the extreme heterogeneity of the health status in older persons (1, 2). In order to pro-
mote a measure more focused on the individual’s functions and biology, the concept of frailty has 
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received special attention over the past years. In fact, frailty has 
been indicated as a condition which may accurately capture the 
homeostatic reserves of the organism and, as such, improve the 
assessment of the risk profile. In other words, frailty might repre-
sent the new criterion for defining the individual as (biologically) 
old and replace the obsolete age concept (2). Interestingly, this 
change of paradigm might also support a more person-tailored 
approach in the design of clinical interventions.

According to a commonly accepted definition, frailty is 
defined as a medical syndrome characterized by a decrease of 
functional reserve capacities, diminished strength, and endur-
ance. The consequence of this increased vulnerability is that a 
frail person is more prone than a non-frail to develop negative 
health-related outcomes, including decline in functional and 
motor performance, prolonged length of hospital stay, insti-
tutionalization, rehospitalization, and mortality (2–4). Frailty 
might thus be considered as the complex biological background 
on which multiple protective and disruptive factors interact in 
the determination of the clinical manifestations and negative 
outcomes (2, 4). From a pathophysiological perspective, it is well 
accepted that the physiological systems which are involved in 
the determination of frailty, including brain, endocrine system, 
immune system, and skeletal muscle, are mutually interrelated, 
so that when decline starts in a given system, implications may 
also regard the others. To support this, it has shown that the 
number of abnormal systems is more predictive of frailty than 
are the abnormalities in any particular system (4). Recently, to 
explore the mechanistic relationship between aging, frailty, and 
mortality, Rutenberg et al. developed a computational model in 
which possible health attributes are represented by the nodes of 
a complex network, with the connection showing a scale-free 
distribution (1). Each node can be either damaged (i.e., a deficit) 
or undamaged. The most connected nodes are the mortality 
nodes; the next most connected nodes are frailty nodes that 
broadly correspond to clinically or biologically significant health 
characteristics. According to this model, individuals die when 
mortality nodes are highly damaged. Nodes are damaged ran-
domly reflecting environmental influences, intrinsic features, and 
their interactions (5). Through interactions, the rate of damage of 
an individual node increases as more of its connected neighbors 
are damaged. This model can explain why frail individuals are at 
higher risk of vulnerability and mortality than robust ones, and 
facilitates the initial understanding of the factors influencing the 
health trajectories of older individuals (1).

Delirium is a transient neurocognitive disorder, characterized 
by an acute onset and fluctuating course, inattention, cognitive 
dysfunction, and behavioral abnormalities, which develops 
in association with another underlying medical condition 
(6). Sometimes, though not invariably, delirium presents with 
behavioral disturbances, including sleep-wake cycle disruption, 
psychotic symptoms, and agitation (7). It has been shown that 
delirium complicates about one out of five hospital admissions 
(8, 9), representing a clear burden for the patient as well as for 
public health. Like frailty, delirium is independently associated 
with a number of negative outcomes, including increased length 
of hospital stay, elevated healthcare costs, accelerated cognitive 
impairment, delayed or limited recovery of functional decline, 

increased risk of institutionalization, and mortality (10–14). In 
addition, delirium may cause patient and caregiver’s emotional 
distress (15, 16). Although a single factor can cause it (e.g., infec-
tions), its pathogenesis is usually multifactorial (10), depending 
on complex inter-relationships between predisposing and precipi-
tating factors acting on the substratum of biological vulnerability 
(i.e., frailty). According to this view, delirium can thus be regarded 
as a clinical consequence of frailty in older persons experiencing 
stressful events. It is also important to mention that frailty and 
delirium are expected to rise in their prevalence in the next years, 
largely due to global aging of the populations worldwide.

In this review, we will summarize the existing evidence on 
the relationship between the two conditions (i.e., frailty and 
delirium), referring both to human and animal models.

COMMONALiTieS AND DiFFeReNCeS 
BeTweeN FRAiLTY AND DeLiRiUM

Frailty and delirium share several commonalities but also have 
specific differences (Table  1). Both should be considered as 
multifactorial health conditions, characterized by multiple risk 
factors and causation which are not necessarily specific to a 
given organ system failure. This notion is indirectly confirmed 
by a growing body of evidence, from cardiology (17, 18) to 
infectious disease medicine (19, 20), from oncology (21, 22) to 
anesthesiology (23, 24), that these two conditions have a crucial 
role in clinical and research areas. Both frailty and delirium share 
many commonalities. In particular, they are both predictive of 
several negative health-related outcomes, most of which might be 
prevented by applying adapted and personalized interventions. A 
common biological substratum between the two conditions can 
also be suggested, possibly involving inflammation, endocrine 
and vascular systems, and oxidative stress (25). However, since 
both frailty and delirium find their biological roots in the aging 
process, it might be hypothesized that the same mechanisms 
responsible for the aging of the individual may become the 
causes of the conditions of interest when abnormally enhanced/
stimulated by negative (endogenous or exogenous) stressors.

At the same time, frailty and delirium also differ in many 
aspects. Frailty is the long-term result of a decline in the homeo-
static individual’s capacity across multiple physiological systems 
and it is usually considered as the endpoint of the progressive 
activity of corrosion exerted by chronic diseases during the 
normal aging process. On the contrary, delirium is an acute 
condition that occurs in response to a stressor (generally a medi-
cal problem) that may have a relatively rapid resolution, though 
sometimes it can persist weeks or even months. Delirium can 
be thought as an acute brain failure, reflecting the interaction 
between a predisposing factor (i.e., brain vulnerability) and one 
or more precipitating factor (i.e., the noxious insults), in which 
the brain is not able to compensate. Frailty may thus represent the 
ideal pabulum for the development of delirium, and delirium, on 
its side, may represent the clinical manifestation of underlying 
frailty in a patient suffering from an acute decompensation.

The relationship between frailty and delirium is even more 
complicated than above depicted. From a clinical perspective, 
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“cognitive frailty” and “reversible cognitive frailty” to describe 
heterogeneous cognitive conditions characterized by the simul-
taneous presence of both physical frailty and cognitive impair-
ment (26). It is noteworthy that these concepts nest the idea of a 
reversible condition, the characteristic of dynamic mechanisms 
linking the physical and cognitive domains. The demonstration 
that cognitive impairment might reverse over time has been pro-
vided by a recent systematic review, showing that mild cognitive 
impairment (MCI) can return to normality with 8% reversion 
rate in clinical-based studies and 25% rate in population-based 
studies. The frequency of reversion from MCI to normality 
further increases to 26% when considering only studies of better 
quality (27).

Similar to what occurs for frailty, even delirium cannot be 
regarded only as an isolated mental disorder but there is evidence that 
it affects motor function as well. A study by Bellelli et al. compared 
four groups of 15 patients [with delirium alone, with dementia alone, 
with delirium superimposed on dementia (DSD), and with neither 
delirium nor dementia], finding that the mechanisms leading to the 
onset of delirium can also worsen motor performance (11). Other 
studies indirectly support such hypothesis, showing that delirium 
can complicate the functional recovery after adverse clinical events 
(13, 28). The reasons underlying this phenomenon are under study. 
It is possible that delirium causes motor fluctuations due to the 
disrupture of key central neurotransmitters (for example, related 
to attentive and executive functions) leading to an inability in plan-
ning and sustaining movement (11). According to Rockwood, it can 
also be hypothesized that the mobility impairment accompanying 
delirium is a reflection of the whole-system failure. Indeed, when 
complex systems collapse, their failure follows a cascade where 
highest order functions decline first. As such, the mobility impair-
ment occurring in the course of delirium may represent a sign of a 
complex system close to failure. The more critical the individual’s 
health status is before the delirium onset, the higher will then be 
the likelihood that delirium will lead to mobility impairment (29).

Under a broad viewpoint, frailty reflects the life-long accumu-
lation of deficits, thus defining the more or less state of vulner-
ability of the individual. Such (more or less overt) accentuated 
susceptibility to stressors represents the biological background 
where delirium might find its onset. In an optimal scenario, 
frailty should be detected in order to take adequate preventive 
countermeasures for avoiding the onset of its negative outcomes 
(including delirium). Nevertheless, delirium might become the 
condition making clinically evident for the first time a previously 
unknown/overlooked substratum of frailty.

Review OF STUDieS ON FRAiLTY AND 
DeLiRiUM iN HUMANS

To date, only few studies have specifically focused on the 
relationship between frailty and delirium in older people, and 
even less have assessed if frailty is a predictor of delirium. In a 
prospective observational study in 133 elective cardiac surgery 
patients, frailty was assessed using three different methods, 
i.e., a Modified Fried Criteria (MFC), the Short Physical 
Performance Battery (SPPB), and a 35-itemFrailty Index (FI). 

TABLe 1 | Commonalities and differences between delirium and frailty.

Criteria Delirium Frailty

Definition Neuropsychiatric 
syndrome characterized 
by acute and fluctuating 
deterioration in cognition, 
which develops in 
association with underlying 
medical conditions

Long-term clinical condition 
characterized by decrease of 
functional reserves, increasing 
vulnerability towards 
endogenous/exogenous 
stressors

Features Inattention, thought 
disorders, impaired 
arousal, and behavioral 
abnormalities

Reduced homeostatic 
reserves due to age-related 
accumulation of deficits. 
Major physical features are 
characterized by malnutrition, 
abnormal energy expenditure, 
mobility impairment, and 
weakness

Prevalence Delirium occurs in one in 
five hospitalized patients. 
Although less frequently, it 
can also occur in patients 
at home. Its prevalence 
is expected to rise in 
next years, due to the 
progressive ageing of 
population

About 10% of older 
community-dwellers have 
frailty, rising to between 
a quarter and a half of 
those aged over 85 years. 
The prevalence of frailty is 
expected to rise in next years, 
due to the progressive aging 
of the population

Time course Acute onset (hours or 
days) with fluctuation in 
severity and duration; 
most cases are transient, 
resolving after a few days, 
but some persist for 
weeks or months

Chronic; in most cases, it is 
a progressive and irreversible 
disorder if adequate 
interventions are not applied

Pathophysiology Inflamm-aging and 
immune-senescence 
are prerequisite for its 
onset. Hypothesized 
pathophysiologic 
mechanisms include 
inflammation, oxidative 
stress, neuroendocrine 
dysfunction, and circadian 
dysregulation

Inflamm-aging, immune-
senescence, and endocrine 
dysfunction represent the 
cornerstones for the frailty 
biology

Impact on cognitive 
domain

Delirium is a strong 
predictor of new-onset 
dementia and acceleration 
of existing cognitive 
decline

Frailty, even when considered 
as a mere physical condition, 
is capable of substantially 
affect cognitive function. 
A bidirectional relationship 
between frailty and cognitive 
impairment has been 
demonstrated

Impact on functional 
domain

Delirium may affect 
mobility, especially in 
patients with increased 
pre-delirium vulnerability. It 
can also affect long-term 
functional performances

After exposure to 
endogenous/exogenous 
stressors, frailty may 
negatively affect the 
capacity to recover and 
regain or maintain functional 
independence

frailty cannot be considered exclusively a pure disorder of func-
tion, though the criteria that are currently used for its definition 
may suggest. Indeed, there is empirical evidence that isolating 
physical from cognitive performance is really challenging in 
several cases. Some researchers have even proposed the terms of 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


4

Bellelli et al. Frailty and Delirium: A Review

Frontiers in Medicine | www.frontiersin.org November 2017 | Volume 4 | Article 188

The primary exposure variable was postoperative delirium, 
assessed using the Confusion Assessment Method (CAM) 
(30). A proportion of patients ranging from 35.3 to 66.2% 
were frail, according to the method used to define it, and 18% 
had postoperative delirium. After adjusting for covariates, the 
presence of frailty resulted in a threefold to eightfold increase 
in risk of postoperative delirium, independent of the severity 
of the cardiac disease. In another study (31), carried out in 89 
patients who underwent trans-catheter aortic valve implanta-
tion (TAVI), frailty was assessed by clinical judgment and as a 
summary score from baseline components, including the score 
assigned for Mini–Mental State Examination; Basic Activities 
of Daily Living; Instrumental Activities of Daily Living; Mini 
Nutritional Assessment, and impaired mobility. Delirium was 
assessed according to the Diagnostic and Statistical Manual 
of Mental Disorders, Fourth Edition (DSM-IV). Again, frailty 
predicted delirium onset and conferred additional value in the 
prediction of mortality after TAVI but only when frailty was 
assessed by subjective clinical judgment. On the contrary, such 
association was not found when frailty was assessed using the 
summary score. A third small study of older non-cardiac surgi-
cal patients evaluated whether a preoperative frailty score was 
an independent predictor of postoperative delirium. One-third 
of patients were frail and 25% developed postoperative delirium. 
In the multivariable logistic regression, frailty score (odds 
ratio  =  1.84; 95% confidence interval  =  1.07–3.1; P  =  0.028) 
was independently associated with the development of post-
operative delirium. More recently, in a prospective cohort of 
older patients admitted to a specialized delirium unit, Chew 
et al. assessed frailty with a 20-item index derived using items 
from a comprehensive geriatric assessment and delirium using 
the CAM (32). The authors also measured the residual sub-
syndromal delirium (RSSD) before discharge from the unit by 
using the Delirium Rating Scale-Revised-98 severity score. The 
functional status was measured the modified Barthel Index on 
admission and 12 months post-delirium. In a logistic regression 
model, independent predictors of RSSD were as follows: frailty 
(OR 4.1, 95% CI 2.1–8.2, P <  0.001), the severity of delirium 
symptoms on admission (OR 1.2, 95% CI 1.1–1.2), and a pre-
existing dementia (OR 4.2, 95% CI 2.0–8.6) (32). Interestingly, 
RSSD significantly mediated the effect of baseline frailty status 
on functional recovery at 12 months (32).

Other studies have assessed whether the coexistence of frailty 
and delirium is associated with an increased risk of death (33), 
or if delirium was associated with higher levels of frailty, in both 
studies finding that it was the case (34). However, other studies 
did not find a significant relationship between these two condi-
tions (35–37).

Differences in the methods used to assess frailty and delirium 
as well as the selected populations and the length of follow-up can 
explain the heterogeneity in the study results. Taken together, the 
data from these studies suggest that further research is urgently 
needed to understand the complex relationship between frailty 
and delirium.

A further point is whether delirium may predispose itself to 
frailty. Indeed, several studies have demonstrated that delirium 
may be a risk factor for not only for dementia or a worsening of a 

preexisting dementia (14, 38), but also for subsequent functional 
impairment (12, 13, 39). Patients with persistent delirium are also 
less likely to regain activity of daily living function in comparison 
with non-delirious patients (40, 41). Moreover, when delirium is 
superimposed on dementia (which may represent itself a marker 
of pre-existing frailty), the risk to die in the middle short term 
is overall increased (42). It can be therefore hypothesized that 
the persistent or residual effects of delirium may delay or even 
hamper cognitive and functional recovery, ultimately resulting 
in new or increasing frailty and long-term disability and institu-
tionalization (25). Future studies should better clarify this point.

COMMON BiOMARKeRS AND 
PATHOPHYSiOLOGiCAL MeCHANiSMS 
OF FRAiLTY AND DeLiRiUM

A premise is required before describing the pathophysiological 
mechanisms proposed for both frailty and delirium. With aging, 
a number of changes occur in several interrelated physiological 
systems, one of the most important being the immune system. The 
changes in the immune system that occurs with aging are termed 
“immunosenescence” and may be defined as an age-associated 
decline in immune function that includes increased susceptibility 
to infections, reduced vaccination responses, and increased risk 
of chronic inflammatory diseases. Immunosenescence occurs 
in parallel with inflamm-aging, i.e., the increased presence of a 
low-grade chronic systemic inflammatory state typical of older 
age (43, 44). Inflamm-aging is characterized by increased levels 
of proinflammatory cytokines [e.g., interleukin (IL)-1β, IL-6, 
tumor necrosis factor-α (TNF-α), C-reactive protein (CRP)] and 
reduced concentrations of anti-inflammatory cytokines (e.g., 
IL-10, IL-1RA) (43). A variety of tissues (e.g., adipose tissue, mus-
cle), organs (e.g., brain, liver), systems (e.g., immune system), and 
ecosystems (e.g., gut microbiota) of the body may contribute in a 
different manner to the onset and progression of inflamm-aging 
(45). Immunosenescence and inflamm-aging are particularly 
relevant for the pathophysiology of both delirium and frailty.

The exact pathophysiological mechanisms of delirium are not 
completely understood. A recent review by Maldonado suggests 
that at least five mechanisms are involved in delirium pathophysi-
ology, including neuronal aging, neuroinflammation, oxidative 
stress, neuroendocrine dysregulation, and circadian dysregula-
tion (46). In this review, we will focus exclusively on the three 
mechanisms which are thought to be more relevant for a common 
understanding of both delirium and frailty pathophysiology.

The neuroinflammatory hypothesis of delirium proposes that 
an acute peripheral inflammatory trigger (either infective, surgi-
cal, or traumatic) can provoke the activation of brain parenchymal 
cells, leading to an overexpression of proinflammatory cytokines 
and inflammatory mediators in the brain parenchyma, neuronal, 
and synaptic dysfunction and subsequent cognitive and behav-
ioral symptoms of delirium (47). Importantly, brain is able to 
constantly monitor the presence of peripheral inflammation and 
how, upon exposure to specific stimuli, individuals may react to 
illness with a “sickness behavior,” i.e., a constellation of non-spe-
cific physiologic and behavioral signs and symptoms, including 
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fever, malaise, fatigue, anorexia, lethargy, social withdrawal, and 
depressed mood (48, 49). According to the neuroinflammatory 
hypothesis, delirium may thus represent the CNS manifestation 
of a systemic disease, with an overproduction of cytokines that 
provoke a chain reaction in the neuronal cells of the brain (47). 
The immune signals and cytokines may enter the brain through 
two pathways (i.e., the neural pathway and the humoral pathway) 
where they determine the release of other proinflammatory 
cytokines by macrophage-like cells expressing toll-like receptors. 
In the neural pathway, the cytokines may activate primary afferent 
nerves, such as the vagus, and enter the brain through saturable 
transport system. In the humoral pathway, cytokines enter the 
brain at the level of the choroid plexus and the circumventricular 
organs. When enter the brain, cytokines may activate microglial 
cells. Microglial cells are the resident macrophages of the CNS 
and represent the 5–10% of all CNS cells. In the healthy brain, 
these are in a quiescent state, but, when they detect injured CNS 
cells or invading pathogens, they are able to adopt a specific 
phenotype with an amoeboid morphology. Phenotype modifica-
tions lead to further secretion of proinflammatory cytokines, and 
the expression of different cell surface receptors. With immune-
senescence, microglial cells are characterized by an exaggerated 
proinflammatory response, acquiring a phenotype of primed less 
ramification, and reducing their chemotactic, phagocytic, and 
regulatory functions. A primed microglial phenotype is present 
also in chronic neurodegenerative processes where microglia cells 
lost their supportive role in neuroplasticity, thus favoring cogni-
tive decline and synaptic dysfunction (50–53). Several studies, in 
patients of surgical and medical hospital wards, have shown that 
delirium is associated with significantly higher circulating levels 
of these inflammatory markers in comparison with non-delirium 
(54, 55). Importantly, cytokines can disrupt the neurotransmitter 
system balance, leading to reduced acetylcholine release (56) 
and decreased cholinesterase activity (57) and can activate the 
microglial cells, provoking an inflammatory response which 
can interfere with the connection and transmission functions of 
synapses (58, 59).

The oxidative stress hypothesis proposes that a number of 
physiologic and pathological events, such as tissue damage, 
hypoxia, illness, and infections, may lead to increased oxygen 
consumption, decreased oxygen availability, and reduced cer-
ebral oxidative metabolism, which in turn may provoke cerebral 
dysfunction and associated cognitive and behavioral symptoms 
of delirium (47). Abnormal oxidative stress has been found in 
patients undergoing cardiopulmonary bypass surgery and in 
intensive care unit patients (60, 61). In one of these studies, 
Seaman has also shown that poor oxygenation is associated 
with cerebral dysfunction. Among a cohort of 101 patients, the 
authors assessed three measures of oxygenation (hemoglobin, 
hematocrit, pulse oximetry) and two measures of oxidative stress 
(sepsis, pneumonia), finding that indicators of oxidative dysfunc-
tion were more common in those who developed more frequently 
delirium, and this was not linked to illness severity (60). Pericytes 
may also be a potential target of interest in this framework. The 
pericytes are specific cells located at the abluminal side of the 
brain and muscular capillaries, which have the potential to 
express the inducible nitric oxide synthase (iNOS) and generate 

reactive oxygen and nitrogen species (RONS) (62). These studies 
suggest that pericytes, under specific circumstances such as an 
increased inflammatory status, may not only increase the produc-
tion of iNOS and RONS but also by behaving as immune cells 
they are able to enhance the inflammatory response (63). Taken 
together, these data suggest that an increased oxidative stress 
at vascular level and in the brain parenchyma may predispose 
and underlie delirium development, with potential interaction 
between inflammation and oxidative stress.

The neuroendocrine hypothesis proposes that delirium reflects 
a reaction to acute stress. It is commonly accepted that stress can 
activate the hypothalamic–pituitary–adrenal axis: stressors acti-
vate the paraventricular nucleus of the hypothalamus resulting 
in the release of corticotrophin-releasing hormone, which acts 
on the pituitary gland, releasing adrenocorticotrophic hormone, 
which promotes glucorticoid release from the adrenal gland (47). 
Under normal circumstances, glucorticoids act to help the body in 
coping with the demands imposed by stress exposure, but there is 
evidence demonstrating that glucorticoids secreted during stress 
can have deleterious effects in the brain, inducing delirium and 
cognitive dysfunction (64, 65). Current evidence also suggests 
that the highly catabolic glucorticoids induce a general metabolic 
vulnerability in brain neurons and thus compromise their ability 
to survive various toxic insults (66), indirectly suggesting that 
the effect of increased glucorticoid secretion may be not always 
reversible.

The pathophysiology of frailty is complex too. With aging, the 
muscle undergoes several changes in its structure and composi-
tion, which are in part related to both immunosenescence and 
inflamm-aging. For example, proteomic studies in senescent 
mice have reported an increase of iron load and changes in redox 
homeostasis, associated with a severe loss of muscle function and 
loss of satellite cell recruitment (67). Importantly, these changes 
appear  to occur in parallel  with biochemical, morphological, 
and functional  changes including a decrease of myelinated 
and unmyelinated  fibers, ballooning, splitting, and enfolding 
of myelinated  fibers (68) and decreased axonal neurofilaments 
(69). Other studies have confirmed that metabolic and structural 
changes are common between muscle and nerve, suggesting that 
both tissues may share a common signaling associated with muscle 
and nerve decline (67, 70). Furthermore, a release of metabolites, 
amino acids, and a dysregulation of myokine signaling seem to be 
related to “inflamm-aging” (44) with increased cytokine release.

The imbalance in the cytokine network may influence frailty 
either directly by promoting protein degradation or indirectly 
by affecting important metabolic pathways (71). A recent meta-
analysis including 32 cross-sectional studies and 23,910 older 
subjects has shown that frailty and pre-frailty (i.e., a condition 
which is thought to be intermediate between the normal and 
the frailty status) are associated with significantly higher than 
normal serum inflammatory parameters, including CRP, IL-6, 
white blood cell, and fibrinogen levels (72). In other studies, 
frailty was associated also with lower serum levels of IL-12 and 
IL-23, two interleukins that are able to modulate the production 
of other interleukins (i.e., IL-17 and IL-22) in lymphocytes as well 
as the rapid recruitment of neutrophils in stressful conditions 
(73). Importantly, these changes in inflammatory patterns are 
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consistent in frail individuals across various geographical regions 
and are associated with a decreased muscle strength, resistance 
to physical exercise and walking distance as determined by the 
6-min walking test (74).

Cytokines dysregulation is also related to the lack of response 
to some hormones and anabolic factors (75), which typically 
underlie frailty development (75). These hormones include the 
dehydroepiandrosterone sulfate (DHEA-S), testosterone, cortisol, 
and insulin-like growth factor-1  (IGF-1). The DHEA, in particu-
lar, plays an important role in the maintenance of muscle mass 
(76) and both increased cortisol serum levels and an increased 
cortisol: DHEA-S ratios in the serum are associated with a decline 
in individual’s functional performance (77). Interestingly, the 
cortisol serum levels are elevated in frail individuals as compared 
with non-frail individuals, and are associated with both an 
increased muscle breakdown rate (78) and loss of bone density 
(79). The same role seems to be exerted by IGF-1 that is related 
to the maintenance of muscle mass structure and muscle strength 
by the way to inhibit apoptosis and to lower the oxidative stress 
in muscle (80).

In addition to the above-depicted mechanisms, it has recently 
been shown that body composition might play a dual role as 
source of inflammatory stimulus (through endocrine secretion 
of pro-inflammatory adipokines) (81) and target of the negative 
effects (i.e., induction of catabolic, apoptosis, autophagic muscular 
pathways) (82). This is of particular importance since sarcopenia 
(i.e., a loss of muscle mass and strength and/or reduced physi-
cal performance) is a key component of frailty, if not its central 
biological substrate (83). In this context, IL-6 was identified as 
being produced by immune cells as well as by muscle and adipose 
tissue, as also suggested by the fact that its expression acutely 
increases during muscle contraction. In addition, IL-6 induces 

insulin resistance which suppresses activity of various intrinsic 
and extrinsic modulators of muscle synthesis (84). Another pro-
sarcopenic effect of inflammation is related to the generation of 
cortisol within tissues. Cortisol is profoundly catabolic and can be 
synthesized from inactive cortisone by the actions of the enzyme 
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1). The 
activity of the (11β-HSD1) increases with age and is induced by 
cytokines, including TNF-α and IL-6. Interestingly, IL-6 has been 
indicated as a cytokine for gerontologists due to its contribution 
in the pathogenesis in multiple age-related conditions (83).

Review OF STUDieS ON FRAiLTY AND 
DeLiRiUM iN ANiMALS

Preclinical animal models may be of particular importance 
for the study of both frailty and delirium, given the absence of 
neuropathological studies in humans on these two conditions 
(Figure 1).

Animal models for delirium are substantially based on the 
neuroinflammatory hypothesis of delirium. A recent review by 
Hoogland et  al. discuss the studies with animal experiments 
related to the effects of systemic inflammation on the micro-
glial and inflammatory response in the brain (85). The authors 
identified 51 studies of which the majority was performed in 
mice (n = 30) or in rats (n = 19). Despite heterogeneity in the 
outcomes measures and in the methods used to assess microglial 
activation, these studies clearly showed that peripheral inflam-
matory stimuli can cause microglial activation. The authors also 
observed distinct differences in microglial activation between 
systemic stimulation with (supranatural doses) LPS and live or 
heat-killed bacteria (85). Another systematic review included not 
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only studies with inflammatory challenge but also studies based 
on the effect of surgery (86). The effect of acute administration 
of bacterial endotoxin was reported in 29 comparative studies on 
normal animals (24 LPS and 5 Escherichia coli bacterial), 3 stud-
ies on progeroid model (Ercc1 mutant mouse deficient in DNA 
repair and the SAMP8 mouse, characterized by overproduction of 
amyloid precursor protein and oxidative damage), and 14 studies 
on disease models related with delirium (ME7 prion disease mice, 
Tg2576, 3_Tg, and APPswe Tg Alzheimer’s mice, Parkinson dis-
ease, basal forebrain cholinergic lesions) (87–89). Furthermore, 
the effects of different surgery procedures, such as clamping of the 
upper mesenteric artery, hepatectomy, laparotomy, splenectomy, 
and appendectomy, reported in 13 comparative studies were also 
included (10 in mice; 3 in rats) (90). It was found that, in a com-
parison of adult with young animals, acute peripheral challenges 
in old animals induce a highest inflammatory response. In par-
ticular, studies found that ageing was associated  with (a) higher 
circulating (IL6, TNF-α, and IL10) and brain (IL1b, IL6, TNF-α) 
cytokines levels or transcripts, (b) increased activated microglia 
cells and astrocytes, and (c) sickness behavior and reduced cogni-
tive skills with reduced performance at different tests including 
those evaluating to anxiety, attention or cognition, or activity (fear 
conditioning, water maze, novel object recognition, attentional 
set-shifting, social exploratory, general activity, or locomotor 
test). Considering the effect of surgery, the majority of studies 
reported an increase of brain proinflammatory cytokines (IL-1b, 
TNF-a, IL-6). Activation of microglia or astrocytes, increase of 
neuronal apoptosis, and loss of neuronal dendritic spine were also 
reported in some studies, confirming a tight link between primed 
microglial cells and neuronal plasticity (91). It should also be 
considered that neurodegeneration (or the presence of progeroid 
genetic defects) may anticipate the exaggerated inflammatory 
response that it is associated with a more rapid cognitive decline 
and disease progression. Administration of low doses of LPS 
(100 µg/kg) in ME7 animals, for example, induced transient work-
ing memory deficits with increased and prolonged transcription 
of inflammatory mediators in the brain. Results of these studies 
indicate that preexisting synaptic loss and microglial priming are 
predisposing factors for acute cognitive impairments provoked by 
systemic inflammation. In the same animal model, the peripheral 
administration of a single proinflammatory cytokine, like TNF-
α in pre-symptomatic phase, is able to produce an exaggerated 
sickness behavior response but not neuronal death, synaptic loss, 
or hyperphosphorylation of tau. In a recent study, a fluctuating 
course of cognitive dysfunction was also reported in ME7 mice 
injected with 0.1 mg/kg LPS. LPS precipitated severe and fluctuat-
ing cognitive deficits in 16-week ME7 with a lower incidence or 
no deficits in 12-week ME7 and controls, respectively. Fluctuating 
impairments were associated with progressive thalamic synaptic 
loss and axonal pathology (14, 92).

Another relevant finding for delirium was obtained in a mouse 
model of lesioned basal forebrain cholinergic system, based on 
the administration of ribosomal toxin saporin linked to the p75 
neurotrophin receptor. In this model, cognitive deficits induced 
by systemic LPS are restored by donepezil. However, in this 
model no signs of increased brain inflammation were detected, 
suggesting that factor other than primed microglial cells may be 

involved in the development of cognitive dysfunction and that 
neuronal vulnerability may represent predisposing factor to 
peripheral inflammation associated cognitive impairment (87).

Various tools for the assessment of frailty have been developed 
in mice, based on the assessment tools used in humans (93). 
Parks et  al. proposed a preclinical frailty Index scale based on 
the assessment of deficits in activity skills, body composition, 
metabolic status, and vascular system (94). Whitehead and col-
leagues developed a mouse Clinical Frailty Index (mouse-CFI) 
assessment tool based on a 31 different impairments and deficits 
(95) and Liu et al. developed the Mouse Frailty Phenotype (MTP) 
scale, including grip strength, speed in walking, physical activ-
ity, and endurance (96). These tools have demonstrated to be 
consistent in frailty assessment in that (a) their scores increase 
in severity with aging in both male and female; (b) the increase 
in score severity which is observed with aging is similar to that 
observed in humans; and (c) the age-associated changes in myo-
cytes are more prominent in animals with elevated frailty scores 
than in others. In a recent study (97), the mouse-MTP scale and 
the mouse-CFI were compared in a group of mice aged 23–24 
months. Using the first tool, none of the mice was classified as 
frail. On the contrary, the second tool classified 16.6% of mice as 
frail. As indicated by the authors, similar difference in estimating 
the true incidence of frailty can be found when the frailty pheno-
type model and the frailty index tools are compared in humans: 
indeed, 6–16% of older adults (70–85 years old) are defined as frail 
with the phenotype-model tool and 22–32% with the FI (65 years 
and older) (98, 99). Despite the different sensitivity between the 
tools, however, both are able to detect frailty at preclinical level 
(93). Based on the known association between physical activity 
and frailty, Gomez-Cabrera et  al. proposed physical inactivity 
as a mouse model of frailty (100). They adapted to animals the 
frailty phenotype developed for human and defined a score (the 
Valentia score for frailty evaluation) to be used in mice. Scores 
were calculated on the basis of five different components, such 
as weight loss (change in body weight), weakness (grip strength), 
poor endurance and slowness (incremental treadmill test), and 
low activity level (motor coordination), and were expressed with 
frailty scores similar to these defined for human being. Sedentary 
and wheel runner animals were compared in longitudinal study 
until the age of 28  months. Results of the study indicate that 
sedentary animals become frail as they get older  whereas lifelong 
spontaneous exercise signicantly retards the onset of frailty.

Another animal model for frailty is the IL-10 (tm/tm) mouse 
developed by Walston (101). The lack of the anti-inflammatory 
cytokine interleukin-10 (IL-10) makes this animal more suscep-
tible to the activation of inflammatory pathway activation. With 
aging, this mouse shows higher than normal levels of circulating 
IL-6, reduced muscular strength, impaired skeletal muscle ATP 
kinetics and cardio-vascular functions, and increased expression 
of gene associated with the regulation mitochondrial function 
and apoptosis (102).

CONCLUSiON AND FUTURe DiReCTiONS

There is initial evidence that frailty and delirium might share 
common pathophysiological links and are strictly interrelated 
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from a clinical perspective. Altered inflammatory status is clearly 
involved in the pathophysiology of both frailty and delirium. 
Muscle and adipocytes may be a source of inflammatory stimulus 
(through endocrine secretion of pro-inflammatory adipokines) 
and also a target of the negative effects (i.e., induction of cata-
bolic, apoptosis, autophagic muscular pathways) (81, 82). The 
inflammatory markers produced at the muscle and adipocytes 
level, on one side, may enter the brain through neural and/or 
humoral pathways, priming microglia and other neuronal cells of 
the brain that react with overexpression of cytokines. The primed 
microglia are able, under these conditions, to promote neuronal 
dysfunction leading to cognitive and behavioral symptoms of 
delirium (85).

Another pathophysiological link may be at vascular level. 
Pericytes are spatially isolated contractile cells on capillaries and 
venules throughout the body, which are designated to control 
cerebral blood flow physiologically, and to limit blood flow 
after ischemia. In skeletal muscle, pericytes are located at the 
interstitium, where they can express typical markers associated 
with capillaries. Pericytes have also adipogenic and myogenic 
properties, contributing to muscle fat generation and lipotoxicity. 
It could be hypothesized that an exaggerated activation of these 
cells leads to increased inflammatory response and nitrosative 
stress in the muscle, thus contributing to sarcopenia, a key feature 
of frailty. At the brain level, pericytes may contribute to enhance 
the inflammatory response under specific circumstances, which 
may represent both a predisposing and a precipitating factor 
for delirium occurrence in frail subjects. Pericyte alterations 
may also be responsible for increased permeability of the blood 
brain barrier microvascular endothelium, which in turn may 
lead to an overexpression of inflammatory markers in the brain 
and overactivation of microglial cells (103). Indeed, it has been 
demonstrated an upregulation of proteins in the cerebrospinal 
fluid of delirious patients within clusters related to inflamma-
tion, protease inhibitors, chromogranins/secretogranins and 
apolipoproteins, triggered by infections, metabolic problems 

and adverse drug reactions (104). Increased oxidative stress and 
neuroendocrine abnormalities may also occur at both levels (i.e., 
at the body and brain levels), igniting a chain of reactions that 
include overexpression of cytokines and other inflammatory 
markers.

The review also suggests that the complex relationship 
between frailty and delirium should be thought as a dynamic and 
continuous cross-talk between the body and the brain. Future 
studies should therefore try to identify biomarkers specific for 
body cells and brain in frail individuals with delirium. An excel-
lent example of the cross-talk between muscle and brain should 
be represented by the Brain-derived neurotrophic factor (BDNF). 
BDNF is strongly expressed in the brain (105), where it regulates 
neuronal development, synaptic plasticity, and influence memory 
(106) but it is also expressed in skeletal muscle, where it contrib-
utes to fat oxidation and modulates myogenesis inducing satellite 
cell activation and skeletal muscle regeneration (107, 108).

From a clinical perspective, frailty may be considered a risk 
factor for delirium, although full evidence is still lacking, and 
delirious individuals may be regarded by default as frail individu-
als. Moreover, delirium may be viewed, in some cases (e.g., when 
it persists for long time) as a precipitating factor for worsening 
frailty. Specific attention will therefore be paid by clinicians both 
on frailty assessment, since it may allow to anticipate delirium 
occurrence and to the systematic screening of delirium since it 
may help identifying individuals at risk of subsequent worsen of 
frailty.

With regard to animal models, future research is needed to 
identify a panel of biomarkers that should be relevant both in 
humans with delirium and in mouse models of frailty, specifically 
challenged with triggers causing delirium, in order to explore new 
pathophysiological pathways.
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