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Chronic lung diseases represent complex diseases with gradually increasing incidence, 
characterized by significant medical and financial burden for both patients and relatives. 
Their increasing incidence and complexity render a comprehensive, multidisciplinary, 
and personalized approach critically important. This approach includes the assessment 
of comorbid conditions including metabolic dysfunctions. Several lines of evidence show 
that metabolic comorbidities, including diabetes mellitus, dyslipidemia, osteoporosis, 
vitamin D deficiency, and thyroid dysfunction have a significant impact on symptoms, 
quality of life, management, economic burden, and disease mortality. Most recently, 
novel pathogenetic pathways and potential therapeutic targets have been identified 
through large-scale studies of metabolites, called metabolomics. This review article aims 
to summarize the current state of knowledge on the prevalence of metabolic comorbid-
ities in chronic lung diseases, highlight their impact on disease clinical course, delineate 
mechanistic links, and report future perspectives on the role of metabolites as disease 
modifiers and therapeutic targets.
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iNTRODUCTiON

Chronic lung diseases, including chronic obstructive pulmonary disease (COPD), asthma, and 
interstitial lung diseases (ILDs) constitute complex diseases with gradually increasing incidence, 
mortality, and major medical and financial burden (1). To this end, their management requires 
a comprehensive multidisciplinary and personalized approach, involving assessment of comorbid 
conditions (2). Most recently, evidence supports the role of endocrine system dysfunction in the 
pathogenesis of chronic lung diseases, and thus clinicians have integrated metabolic disorders in 
the Venn diagram of comorbidities of chronic lung diseases (3) (Figure 1). In particular, metabolic 
comorbidities exert a major impact on patients’ quality of life and mortality (1, 4). Diabetes mellitus, 
dyslipidemia, osteoporosis, and thyroid diseases (hypothyroidism and hyperthyroidism) are among 
the most commonly reported metabolic comorbidities in patients with chronic lung disease (5–8). 
Genes, age, and nutrition represent the three pillars of cellular metabolism and have been the topic 
of increasing scientific research in respiratory diseases (9, 10). This review article intends to sum-
marize the most frequent metabolic comorbidities in association with their impact on chronic lung 
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FiGURe 1 | Figure depicts the main metabolic comorbidities of chronic lung diseases. Chronic lung diseases represent paradigms of the interplay between injurious 
environmental stimuli and genetic predisposition. Spillover of reactive oxygen species and pro-inflammatory mediators (IL1, 6, TNFa, NF-κB, leptin, adiponectin, and 
resistin) into the circulation may lead to insulin resistance in patients with chronic obstructive lung diseases. Chronic exogenous administration of corticosteroids may 
further affect the glycemic status through decreased insulin production and increased insulin resistance. Abdominal obesity of children with asthma and circulating fatty 
acids, adipokine dysregulation, and the lipotoxic state could represent a potential causal-effect relationship between asthma and dyslipidemia. Thyroid metabolism 
appears to affect alveolar epithelial cell homeostasis in the context of lung fibrosis. Hypothyroidism is associated with worst clinical outcomes in patients with IPF and 
IPF lungs are hypothyroid and display increased levels of type 2 iodothyronine deiodinase (DIO2). Aerosolized thyroid hormone administration blunts experimental lung 
fibrosis in two murine models through a mechanism that involves improvement of mitochondrial function and requires intact peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha (PPARGC1A) and PTEN-induced putative kinase (PINK1) signaling pathways. The role of vitamin D in chronic lung inflammation is currently 
unknown. It is unclear whether this represents an epiphenomenon linked to other comorbidities or an underlying cause contributing to lung fibrogenesis. Clinical 
evidence suggests that patients with asthma and higher levels of exhaled nitric oxide or sputum eosinophilia were more likely to present with vitamin D deficiency.

TABLe 1 | Studies reporting prevalence of metabolic comorbidities in patients 
with chronic obstructive pulmonary disease (COPD).

Comorbidity Prevalence Prevalence 
in general 
population

Reference

Diabetes 
mellitus

10–18.7% 7–11.4% Dursunoglu et al. (1), 
Framingham Heart 
Study Walter et al. (12), 
Laghi et al. (13)

Dyslipidemia 48.3% 18–46% CONSISTE (14)

Osteoporosis 35.1% (9–69%) 5% Graat-Verboom et al. 
(15)

Thyroid 
diseases

21.2% 
(hypothyroidism)

7.1% 
(hypothyroidism)

Terzano et al.  
(16, 17)

32.2% 
(hyperthyroidism)

1.3–5% 
(hyperthyroidism)
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diseases, as well as to report future perspectives for their role in  
disease management.

MeTABOLiC DiSORDeRS AND COPD

There is a compelling interest that COPD is a lung disease not 
only restricted to airway inflammation and remodeling (Table 1). 
Extrapulmonary comorbidities including metabolic disorders 
have been well recognized; yet, not fully understood (11). Current 
pathogenetic theories assume an interplay between systemic 
diffusion of local inflammation and consequences of age-related 
comorbid conditions which impact the lungs (11).

Osteoporosis represents the most frequent metabolic comor-
bidity of COPD (18). Bone disease occurs in 35.1% (range: 9–69%) 
of patients with COPD (15). Epidemiological studies showed a 
twofold increased risk of osteoporosis in patients with COPD 
compared with controls (19). Risk factors for developing osteopo-
rosis in COPD are due to age, low body mass index, corticosteroid 
use, hypogonadism, or COPD-specific reasons (20). The latters 
include COPD functional stage, respiratory failure, severity of 

dyspnea, and COPD phenotype as determined by computed 
tomography scan (emphysematous versus non-emphysematous) 
(20). From a therapeutic point of view, it is unknown whether 
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TABLe 2 | Studies reporting prevalence of metabolic comorbidities in patients 
with asthma.

Comorbidity Prevalence Prevalence 
in general 
population

Reference

Dyslipidemia 18.38% 18% (age 
matched)

Heck et al. (39)

Diabetes mellitus 8.44% 7–11.4% Heck et al. (39)

Abdominal obesity 
(severe asthma)

31% (children) 33.4–43.3% Schatz et al. (41), 
Aranceta-Bartrina 
et al. (42)

58% 
(adolescents-adults)

Vitamin D deficiency 53.3% (children) 41.6% Chinellato et al. (43), 
Devereux et al. (44), 
Forrest et al. (45)

17% (adults)
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management of osteoporosis may exert a beneficial effect on dis-
ease outcome and thus prospective studies are sorely needed (21).

Metabolic syndrome is a complex disorder recognized clini-
cally by the findings of abdominal obesity, elevated triglycerides, 
atherogenic dyslipidaemia, elevated blood pressure, and high 
blood glucose and/or insulin resistance. The metabolic syndrome 
is frequently encountered in patients with COPD in the context of 
coexisting systemic inflammation (6, 21–23). Prevalence of dia-
betes in COPD ranges between 10 and 18.7% (12, 13, 24). A study 
enrolling 103,614 women showed that patients with COPD had 
a 1.8 relative risk of diabetes development (25). An association 
between diabetes and impaired lung function has also been shown 
(13, 26–28). A plethora of pathogenetic commonalities between 
COPD and diabetes have been proposed; yet, data are still scarce 
(25). Spill over of reactive oxygen species and pro-inflammatory 
mediators (IL1, 6, TNFa, NF-κB, leptin, adiponectin, and resistin) 
into the circulation may lead to insulin resistance, chronic hyper-
glycemia, and increased lung collagen synthesis and deposition 
mediated by higher levels of advanced glycation products (29). 
Chronic exogenous administration of corticosteroids may further 
affect the glycemic status through decreased insulin produc-
tion and increased insulin resistance due to increased muscle 
catabolism, lipolysis, and free fatty acids and thus enhance the 
vicious cycle of COPD, systemic inflammation, and dysglycemia  
(25, 30). Co-existing obesity may also contribute to insulin resist-
ance as well as systemic inflammation through release of several 
pro-inflammatory mediators into the circulation, and thus per-
petuate both local and systemic inflammation (29).

Abnormalities in lipoprotein metabolism have been associated 
with COPD (6); yet, relative mechanistic data are still scarce. A 
recent study reported dyslipidemia in 48.3% of patients with 
COPD and 31.7% of controls (14). The therapeutic criterion that 
statins are responsible for the reduction in death rate of patients 
with COPD by 36% highlights the interrelationship between 
COPD and dyslipidemia (31). Pleiotropic effects of statins such 
as anti-inflammatory and immunomodulatory properties should 
be further investigated in this setting (32).

The interest in the role of thyroid dysfunctions in patients with 
COPD has been recently revived (16, 17). Compelling evidence 
suggested that several characteristics of patients with COPD 
could potentially increase the risk of developing hypothyroidism 
or hyperthyroidism (33, 34). In particular, severity of airway 
obstruction, hypoxemia, and systemic inflammation might lead 
to subclinical hypothyroidism or overt hypothyroidism (35). 
Hypothyroidism has been associated with reduced respiratory 
muscle function, exercise capacity, and enhanced risk for sleep 
disordered breathing leading to inspiratory and expiratory weak-
ness in patients with COPD (36). This weakness might be attrib-
uted to decreased expression of myosin heavy chains, phrenic 
nerve neuropathy, or decreased neuromuscular transmission 
(37). Hyperthyroidism has been also associated with impaired 
respiratory muscle function and exercise capacity in patients 
with COPD (36). Importantly, the reported substantial decrease 
of oxygen levels accompanied by carbon dioxide retention 
necessitates the evaluation of whether restoration of physiologic 
thyroid signaling may exert therapeutic effects on patients with 
COPD (16).

MeTABOLiC DiSORDeRS AND ASTHMA

Asthma is among the most common chronic diseases worldwide 
(Table  2). The disease is poorly controlled despite available 
therapeutic regimens in a substantial minority of patients (38). 
Among factors impairing control of symptoms and treatment 
response are comorbid conditions including metabolic disorders 
(39, 40).

Recent evidence showed that the most common metabolic 
dysfunction was dyslipidemia, which occurred in 18.4% of 
asthmatic patients, while both types of diabetes mellitus—type 
1 and 2—occurred in 8.44% of patients with asthma (39). A link 
between metabolic syndrome and functional indices of patients 
with asthma has been established both in children and young 
adults (46–49). Asthmatic children were more likely to have 
elevated triglycerides and acanthosis nigricans, a marker of 
insulin resistance leading to diabetes (49). Metabolic syndrome-
induced lung impairment in asthma could be explained by the 
suppression in the complex effects of insulin and insulin receptors 
on the lung and the airways (50); however, the exact mechanism 
by which these receptors could affect the developing lung remains 
elusive (46). Circulating levels of fatty acids and the lipotoxic state 
inducing innate immune responses via multiple inflammatory 
mechanisms, such as pattern recognition receptor activation or 
intracellular signaling pathways might represent a link between 
asthma and dyslipidemia; yet, data are still scarce (47, 51). 
Abdominal obesity, another key feature of metabolic syndrome, 
has been associated with lung function impairment in asthma 
(47). The incidence of asthma almost doubled in obese subjects, 
while obesity represented a risk factor for severe asthma (41, 52). 
Experimental data showed that obese patients with asthma had 
a higher expression of inflammatory markers and adipokines 
in visceral fat, and thus adipokine dysregulation was suggested 
as a possible a mechanism leading to obesity-mediated airway 
changes in asthma (53, 54).

Osteoporosis has been linked with asthma as well, mainly due 
to chronic corticosteroid therapy (55–57); yet musculoskeletal 
complications of inhaled corticosteroids are highly debatable 
(55, 58). Lower bone mineral density in adult asthmatic patients 
using inhaled glucocorticoids compared to untreated controls 
has been described (57, 59, 60), even though this finding was not 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


TABLe 3 | Studies reporting prevalence of metabolic comorbidities in patients with ILDs.

Comorbidity Prevalence Prevalence in general population Reference

IPF Diabetes mellitus 10–39% 11.4% British study (81), Japanese study (82), American study (83)
Dyslipidemia 11–21.7% 18–46% Enomoto et al. (82), Kaddah et al. (84), Sherbini et al. (85)
Hypothyroidism 16.8% (13% men, 28% women) 7.1% Oldham et al. (86)

Sarcoidosis Thyroid diseases 13.1% 4% Nowinski et al. (87)
Diabetes mellitus 7.4% 7% Nowinski et al. (87)
Osteoporosis 5.7% 5% Nowinski et al. (87)
Hypercalcemia 10–15% 2% Saidenberg-Kermanac’h et al. (88), Press et al. (89)

ILDs, interstitial lung diseases; IPF, idiopathic pulmonary fibrosis.
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uniform (61, 62). A dose response relationship between use of 
oral glucocorticoids with risk of fracture in patients and asthma 
has been extensively validated (55, 63).

An epidemiologic and mechanistic interplay between vitamin 
D deficiency and asthma exacerbations has been reported (38, 64). 
Decreased levels of serum 25-hydroxyvitamin D were associated 
with increased prevalence and rates of hospitalization along with 
reduced lung function and increased airway hyperresponsiveness 
in asthmatic children (44, 65). Studies found that the prevalence 
of vitamin D deficiency was 53.3% among asthmatic children and 
17% among asthmatic adults, respectively (43, 44). Other studies 
showed no differences in the mean vitamin D levels between 
asthmatics and healthy controls, while vitamin-D deficiency 
was strongly associated with sputum eosinophilia, higher levels 
of exhaled nitric-oxide, and lung function impairment. These 
evidence indicate that low vitamin D levels may potentially con-
tribute to asthma exacerbation in those patients already suscep-
tible to disease development (66). Vitamin D deficiency has been 
mechanistically linked with exaggerated airway smooth muscle 
contractility, particularly in cases of steroid-refractory asthma 
and asthma exacerbations (67). A potential anti-inflammatory 
role of vitamin D, a steroid hormone, has also been suggested 
through suppression of the Th2 immunologic response (65).

To this end, supplementation therapeutic strategies have been 
applied in large cohorts of asthmatic patients with encouraging 
results (68–70). A recent Cochrane meta-analysis of seven trials 
including 435 children, and two studies including 658 adults 
stated that oral vitamin D supplement reduced the risk of severe 
asthma exacerbations requiring hospitalization from 6% in the 
control group to 3% in the treatment arm (71). Despite promis-
ing therapeutic efficacy there is much to be learned, given that 
the aforementioned data mainly arise from just three trials and 
it is currently unknown whether this therapeutic effect can be 
expanded to all asthmatic patients or in those with low baseline 
levels of vitamin D.

MeTABOLiC DiSORDeRS AND iLDs

Interstitial lung diseases constitute a group of diffuse parenchymal 
lung disorders, associated with substantial morbidity and mortal-
ity (72–76) (Table  3). Idiopathic pulmonary fibrosis (IPF) and 
sarcoidosis are among the most common ILDs (77, 78). The role 
of metabolic disorders in ILDs has been recently revived leading 
to studies investigating possible therapeutic targets for patients 
with ILDs (4, 79, 80).

Diabetes mellitus represent the most frequently encountered 
endocrine comorbidity in patients with IPF (4, 79, 90–93). The 
prevalence of diabetes in patients with IPF ranged from 10 to 
39% (81–83). A potential association between IPF and diabetes 
could be attributed to complications from chronic corticosteroid 
therapy (81, 82, 94). The impact of diabetes on disease mortality 
still remains elusive and controversial (82, 95, 96).

Thyroid disorders have been recently implicated as common 
comorbid conditions in patients with IPF (4, 80, 93, 97–99). Two 
recent studies demonstrated higher prevalence of hypothyroid-
ism among patients with IPF (16.8% of subjects with IPF and 
7.1% of control subjects). Interestingly, 13% of men and 28% of 
women were affected (86, 93). An interesting observation was that  
presence of hypothyroidism was associated with worse outcomes 
in patients with IPF (86). Interestingly, our study group identi-
fied that type 2 iodothyronine deiodinase (DIO2), the enzyme 
that converts T4 to active T3, was upregulated in the lungs of 
patients with IPF and particularly in alveolar epithelial cells, 
the metabolically active cells of the lung (100). DIO2 induction 
potentially reflected a compensatory response in order to boost 
local conversion of T4 to T3 to enhance the metabolic state of 
alveolar epithelial cells under stress conditions, considering that 
DIO2 knockout mice exhibited enhanced fibrotic responses to 
bleomycin. Intriguingly, experimental data showed that aero-
solized thyroid hormone administration exerted anti-fibrotic 
effects in two experimental models of lung fibrosis through a 
mechanism that involved improved mitochondrial function 
and mitophagy (100). Same results were observed with sobe-
tirome, a thyroid-mimetic agent that acts through activation 
of thyroid hormone signaling by selective binding to thyroid 
hormone receptor (100). Further studies exploring the effect of 
thyroid hormone administration in patients with IPF are greatly 
anticipated.

With regard to dyslipidemia, the reported prevalence 
in patients with IPF ranges between 11 and 21.7% (84, 85). 
Interestingly, Enomoto et al. recorded dyslipidemia in 19.2% of 
patients with IPF and 46% in the control group (82). The exact 
role of dyslipidemia, elevated levels of fatty acids, and oxidative 
stress via nicotinamide adenine dinucleotide phosphate oxidase 
activation in the pathogenesis of pulmonary fibrosis remains to 
be addressed (101).

Sarcoidosis is a multisystem inflammatory disease character-
ized by the presence of non-caseating granulomas in the affected 
organs (102–104). Lungs are affected in more than 90% of patients 
with sarcoidosis (104, 105). Data on the impact of metabolic 
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comorbidities in sarcoidosis is limited and have mainly focused 
on calcium metabolism (87). In particular, 13.1% of patients with 
sarcoidosis were also diagnosed with thyroid diseases, 7.4% with 
diabetes, and 5.7% with osteoporosis, respectively (87). Age and 
multiorgan involvement of sarcoidosis represented risk factors for 
metabolic comorbidities (106). Finally, a case-control study of 111 
patients with sarcoidosis suggested a potential association between 
autoimmune thyroid disorders and sarcoidosis (107, 108).

Hypercalcemia and hypercalcuria occur in a small, but sig-
nificant number of patients with sarcoidosis, but if present, they 
constitute indication for treatment (103, 109, 110). Although 
earlier studies reported that hypercalcemia was present in 
2–63% of patients with sarcoidosis, recent data show that the 
true prevalence is between 10 and 15% (88). Increased activity 
of the 1-alpha hydroxylase enzyme of tissue macrophages has 
been suggested to have a crucial role for the elevation of levels 
of 1,25-dihydroxyvitamin D3 (calcitriol), the hormonally active 
metabolite of vitamin D, which is responsible for hypercalcemia 
(111, 112). Bell et al. were the first to demonstrate elevated serum 
calcitriol levels in patients with sarcoid hypercalcemia (112). 
Since then, our understanding for the ideal therapeutic manage-
ment of hypercalcemia associated with sarcoidosis has been 
significantly increased (113). Glucocorticoids have been used as 
first-line therapy in the management of hypercalcemia associated 
with sarcoidosis; yet with major complications that should be 
treated cautiously. Steroid-sparing agents including azathioprine 
and methotrexate have widely used in advanced disease stages 
or steroid-refractory cases with controversial results (113, 114). 
Finally, the investigation of the role of biphosphonates and espe-
cially zoledronic acid in sarcoid hypercalcemia is currently under 
investigation (113, 115).

MeTABOLOMiCS iN CHRONiC LUNG 
DiSeASeS

For the past few years, the field of cellular bioenergetics and 
metabolism and their implication in the pathogenesis of chronic 
lung diseases has received much of attention. The term “metabo-
lomics” refers to the systematic investigation of metabolic 
pathways (metabolome) and biochemical compounds created in 
a living system, called metabolites at a specific timepoint (116). 
Currently, quantification of metabolites of a biological system is 
performed by two techniques: mass spectrometry and nuclear 
magnetic resonance spectroscopy (NMR) (116). Urine, plasma, 
and lung tissue represent excellent biological specimens to study 
metabolomics with urine being the most promising one, because 
of its ease of collection, low cell, and protein content and rich 
chemical composition (117). Exhaled breath condensate is an 
easily accessible biomarker tool to study metabolome of the 
airway lining fluid, yet it presents with major limitations, since it 
is affected by several confounding factors, such as age, sex, smok-
ing, temperature, humidity, and oral cavity contamination (117). 
Preliminary studies have shown that urine metabolomics profile 
could be used as reliable biomarker to diagnose heterogeneous 
syndromes with complex underlying pathogenesis, such as asthma 
(118) and COPD (117), and most importantly to differentiate 

asthma from COPD based on their metabolomic profile (119). 
Exhaled breath condensate leukotrienes have been used to dis-
tinguish asthmatic patients from controls (120). COPD patients 
exhibit abnormal muscular bioenergetics (121) and impaired 
microbiome-related metabolites (122) as indicated by increased 
plasma levels of branched-chain amino acids and urinary levels 
of hippurate and formate, respectively. Metabolomics profile 
has been also used to distinguish COPD patients with different 
phenotypes based on severity of functional impairment and the 
presence of emphysema and cachexia (123). Disrupted glycolysis, 
enhanced fatty acid accumulation, increased lactic acid, and 
lactate dehydrogenase production, as well as haem degradation 
have been identified as major events of impaired mitochondrial 
metabolism in both IPF and COPD patients (124–127). In 
addition, IPF lungs showed disrupted glutathione synthesizing 
pathway and consequently increased oxidant burden. Increased 
formation of proline, a key substrate for collagen biosynthesis, 
from ornithine through activation of ornithine aminotransferase 
has been also shown in IPF lungs (126). Interestingly, increased 
levels of ornithine aminotransferase have been negatively cor-
related with functional indices of disease severity including FVC 
(126). Intermediate metabolites of glycolysis including lactic acid 
have been shown to activate the TGF-β pathway inducing myofi-
broblast differentiation (127). Glycolytic reprogramming, a form 
of Warburg effect seen in cancer cells, has been recently impli-
cated in fibroblasts to myofibroblasts differentiation. Inhibition 
of glycolysis exerted therapeutic effects in experimental lung 
fibrosis, highlighting a novel therapeutic area by shifting the 
metabolic requirements of key cellular components toward oxida-
tive phosphorylation (128). The role of impaired mitochondrial 
metabolism in the pathogenesis of lung fibrosis has been recently 
demonstrated by a study showing that IPF lungs exhibit alveolar 
epithelial cells with damaged and dysfunctional mitochondria 
due to downregulated levels of PINK1, the master transcription 
factor of mitophagy (129). The cardinal role of mitochondrial 
metabolism in alveolar epithelial cell apoptosis in the context of 
lung fibrosis has been also highlighted by a recent publication 
from our study group showing therapeutic effects of aerosolized 
hormone administration in experimental lung fibrosis through 
enhancement of mitochondrial bioenergetics, as reported above 
(100). Interestingly, the concept of impaired mitophagy-mediated 
lung fibrosis has been recently suggested for lung macrophages 
and fibroblasts; yet, on a cell-specific manner (130–132). The 
above findings have also proven given human relevance, that 
products of fibroblasts’ mitochondrial metabolism including 
mitochondrial DNA (mtDNA) have been recently shown to serve 
as prognosticators of IPF mortality (133). The above preclinical 
studies highlight the importance of therapeutic restoration of the 
disrupted metabolome and the use of circulating metabolites as 
biomarkers of disease prognosis and treatment response.

FUTURe PeRSPeCTiveS AND 
CONCLUDiNG ReMARKS

There is increasing evidence that ameliorating the metabolic 
profile of a subgroup of patients with chronic lung diseases 
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