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introduction: Type 2 diabetes (T2D) has reached epidemic proportions in North 
America. Recent evidence suggests that prebiotics can modulate the gut microbiome, 
which then plays an important role in regulating lipid metabolism, blood glucose, and 
insulin sensitivity. As such, prebiotics are appealing potential therapeutic strategies for 
prediabetes and T2D. The key objectives of this study were to determine the tolerability 
as well as the glucose and insulin modulating ability of MSPrebiotic® digestion resistant 
starch (DRS) in healthy mid-age (MID) and elderly (ELD) adults.

Materials and methods: This was a prospective, blinded, placebo-controlled study. 
Prediabetes and diabetes were among the exclusion factors. ELD (>70 years) and MID 
(30–50 years) Canadian adults were recruited and, after 2 weeks of consuming placebo, 
they were randomized to consume 30 g of either MSPrebiotic® or placebo per day for 
12 weeks. In total, 42 ELD and 42 MID participants completed the study. Blood samples 
were collected over the 14-week study and analyzed for glucose, lipid profile, and CRP, 
lipid particles, TNF-α, IL-10, insulin, and insulin resistance (IR).

results: At baseline, the ELD population had a significantly higher percentage (p < 0.01) 
with elevated glucose and significantly higher TNF-α (p < 0.01) compared to MID adults. 
MSPrebiotic® DRS was well tolerated in both MID and ELD adults. There was a signifi-
cant difference over time in blood glucose (p = 0.0301) and insulin levels (p = 0.009), as 
well as IR (HOMA-IR; p = 0.009) in ELD adults who consumed MSPrebiotic® compared 
to placebo. No significant changes were found in MID adults.

Conclusion: Our results suggest that dietary supplementation with prebiotics such as 
MSPrebiotic® may be part of an effective strategy to reduce IR, a major risk factor for 
developing T2D, in the ELD.
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Clinical Trial registration: NCT01977183 listed on NIH website: ClinicalTrials.gov, 
The metadata generated in this study have been submitted to the NCBI Sequence Read 
Archive (http://www.ncbi.nlm.nih.gov/bioproject/381931).
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inTrODUCTiOn

A prebiotic substance has been recently defined as “a substrate 
that is selectively utilized by host microorganisms conferring a 
health benefit.” (1). In view of the emerging link between par-
ticular gut microbiota ecosystems and the development of obesity 
and type 2 diabetes (T2D), prebiotics, along with probiotics, have 
received much attention in recent years (2–23).

Most of the published data on prebiotics relate to the effects 
of inulin, fructooligosaccharides (FOS), galactooligosaccharides 
(GOS), xylooligosaccharides (XOS), and lactulose (3, 4, 12, 24–26). 
These ingredients have been well tested in vitro, in animal studies, 
and occasionally in human studies with relatively consistent data. 
The characterization of these commercially available prebiotics is 
now reasonably well established. In contrast, recent publications 
(13, 27, 28) indicate that there are very few studies involving vari-
ous categories of digestion resistant starch (DRS) in humans. The 
applicability of findings from animal studies, particularly those 
done in rodents, to human lipid metabolism has also been ques-
tioned (4, 13, 22). According to various authors (29–33), the pig 
is considered a better model than rodents, especially for studying 
age-related disorders in humans (31). Recent findings emanat-
ing from studies in swine suggest that DRS improves glycemic 
control and modifies blood lipoprotein profiles even at a relatively 
modest daily dose of 15 g (10.5 g of active ingredient) (33).

Reviews of recent evidence regarding the role of the gut 
microbiome in obesity, T2D, and metabolic disease in humans 
found several reports of gut dysbiosis (imbalance in the diversity 
or abundance of gut microbes) in patients with T2D compared to 
those without T2D (9, 13, 22). However, there were conflicting 
conclusions regarding the basis of the dysbiosis as data interpreta-
tion is confounded by different study methods, genetics, subject 
ethnic origins, diet, and geography (9). Furthermore, it is unclear 
whether the use of probiotics or prebiotics could modify this gut 
microbiome dysbiosis. There are substantial data to suggest that 
prebiotics can improve fasting blood glucose levels (6, 9, 13, 18, 
34–36). However, human clinical studies often combine probiotic 
and prebiotic consumption making it difficult to assess the impact 
of prebiotics alone, and none of these published studies included 
elderly (ELD) adults (70 years or older).

Although many regulatory bodies around the world recognize 
the value of adequate dietary fiber, there are no dietary recom-
mendations specifically for prebiotic consumption (7). Verbeke 
et al. (37) and Bindels et  al. (12) have highlighted the value of 
fermentation metabolites as markers for prebiotic health benefits. 
However, this is difficult when there are no defined “healthy” 
levels of such metabolites, and current testing methods do not 
take into consideration the rapid absorption of such metabolites 
(e.g., short chain fatty acids). Although many of the health effects 
of probiotics and prebiotics have been linked to modulation of 

the gut microbiome, a limited number of clinical trials have been 
conducted in humans investigating the tolerability or function 
of DRS as a prebiotic (4, 11, 13, 15, 17, 28, 35, 38). Our recent 
publication focused on the microbiome changes in both mid-
age (MID) and ELD adult groups after 3 months of consuming 
MSPrebiotic® DRS. Our results demonstrated that no changes 
were observed in MID or ELD groups consuming the placebo 
(38). However, the MID and ELD groups consuming MSPrebiotic® 
experienced significant increases in Bifidobacteria, and the ELD 
group consuming MSPrebiotic® experienced a reduction in the 
abundance of Proteobacteria. Both of these microbiome changes 
are thought to provide health benefits. However, there are still 
many gaps in our knowledge regarding the health benefits of DRS 
(13). It is particularly unclear if DRS is well tolerated in MID 
or ELD humans, and whether this type of prebiotic alone can 
influence inflammation, lipid metabolism, blood glucose levels, 
or insulin resistance (IR).

The primary objectives of this aspect of the clinical study were 
to extend the microbiome findings of Alfa et al. (38) to determine 
if consumption of 30 g of MSPrebiotic® DRS per day for 12 weeks 
was well tolerated compared to placebo and whether it could alter 
systemic health markers such as the lipid profile, inflammatory 
markers, glucose, insulin levels, or IR in MID or ELD groups.

MaTErialS anD METHODS

Power analysis and Sample Size
For the prospective study design and using the outcome measures 
described in the study protocol, the statistical power analysis 
indicated that a total sample of n  =  20 in each of four groups 
(i.e., 20 ELD on placebo and 20 ELD on MSP as well as 20 MID 
on placebo and 20 MID on MSP) would have power = 0.80 to 
detect a Cohen’s F effect size = 0.33. This effect size was chosen 
based on the hypothesis that there would be moderate differences 
(0.50 SD) between the placebo and treatment groups for the ELD 
participants and that there would be small differences (0.20 SD) 
between the placebo and treatment groups for the MID partici-
pants. Effect sizes were estimated from published studies for other 
types of prebiotics using similar outcome measures (gastrointes-
tinal tolerance, e.g., flatulence, bloating, and abdominal pain, in 
addition to serum glucose, lipid parameters, and inflammatory 
markers, such as C-reactive protein and TNF-α). A nominal 
α = 0.05 and two-tailed tests were used in the power calculations.

Clinical Study
This was a prospective, randomized, blinded, placebo-controlled 
study. Research and ethics approval was obtained from the 
University of Manitoba Research Ethics Board prior to implemen-
tation. This study protocol was reviewed and approved by Health 
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Canada (Submission #188517; “Notice of Authorization” dated 
June 5, 2013) and was also listed on the NIH ClinicalTrials.gov 
website (Identifier: NCT01977183). The clinical study was carried 
out in accordance with the ethical standards of the University of 
Manitoba and Health Canada. All modifications of the protocol 
were reported to Health Canada and the University of Manitoba 
Research Ethics Board for approval prior to implementation. The 
allocation sequence to placebo or study product was based on 
computer-generated random numbers. For the institutionalized 
ELD, the facility study nurse contacted residents (with permis-
sion from the facility physician) to determine if they would agree 
to the research study nurse contacting them about this clinical 
trial. For all other participants, a commercial recruitment agency 
provided a list of participants that they had permission from to 
contact for clinical trials. Participants who met enrollment criteria 
and gave informed consent in accordance with the Declaration of 
Helsinki were enrolled by the study coordinator or study nurse 
who also sequentially assigned participants to placebo or study 
product based on the list of computer-generated randomized 
numbers. Care providers, trial participants, laboratory testing 
personnel, and data analysts were blinded to which arm partici-
pants were assigned. All information collected (hard copy reports 
and electronic databases) for the purpose of the study was kept 
in a locked and secured area, and participant identifiers were 
treated in accordance with the Personal Health Information Act 
of Manitoba. All information sent for statistical analyses was 
“de-identified” and had only a study number but no participant 
identifiers. The University of Manitoba Office, Research Quality 
Management unit performed a voluntary audit of the study in 
a process that was independent from the investigators and the 
study sponsors.

All participants in this study were recruited in Winnipeg, 
MB, Canada. The ELD cohort was recruited from a long-term 
care (LTC) facility (11 completed the study), as well as from the 
community (31 completed the study), and consisted of adults 
>70  years old. The MID participants were recruited from the 
community and aged 30–50 years old (42 completed the study). 
The details of recruitment and dropout are shown in Figure 1. 
All participants (or authorized third party) provided written 
informed consent in compliance with the University of Manitoba 
informed consent guidelines. Participants were informed that 
they could request to withdraw from the clinical study at any time 
without any impact on their clinical care. To reduce confounding 
underlying factors unrelated to consumption of DRS, the exclu-
sion criteria included the following: pregnancy, Crohn’s disease or 
any other inflammatory bowel disease, individuals with systemic 
lupus erythematosus, on cancer chemotherapy, prediabetes or 
diabetes, thyroid disease, renal disease, hepatic disease, previ-
ous gastrointestinal surgery (intestinal resection, gastric bypass, 
colorectal surgery), individuals on probiotics (e.g., probiotic 
yogurt), individuals on antibiotics at the time of recruitment or 
on antibiotics within the previous 5 weeks, individuals experienc-
ing dysphagia, subjects using additional fiber supplements, and 
individuals on digestants, emetics, anti-emetics, medications for 
acid peptic disease, or taking antacids.

MSPrebiotic® (MSPrebiotics Inc., Carberry, MB, Canada) 
DRS was used in this study. MSPrebiotic® is to be consumed in 

unheated fluid or food products. This product is an unmodified 
natural DRS from potatoes, and the active ingredient is Solanum 
tuberosum extract, which is classified as a Natural Health Product 
on the Health Canada (39). It is composed of granules (15–100 µm 
in diameter) consisting of 80% amylopectin (branched glucose 
polymer with alpha-1,4 and alpha-1,6 linkages) and ~20% 
amylose (linear glucose polymer with mostly alpha-1,4 linkages). 
These DRS granules reach the colon relatively intact as they are 
not digested in the upper portions of the digestive tract. The DRS 
granules were analyzed using standardized validated methods by 
MSPrebiotic Inc. and demonstrated that MSPrebiotic® contained 
70% DRS.

Amioca TF (Ingredion™, Brampton, ON, Canada), a food-
grade corn starch that is readily digestible, was the placebo in 
this study. The same standardized validated methods were used 
by MSPrebiotic Inc. to show that Amioca TF does not contain any 
DRS. All participants consumed 30 g of placebo daily for 2 weeks 
and then they were randomly assigned to either MSPrebiotic® 
or placebo (30 g/day) for the remaining 12 weeks of the study. 
Participants were instructed to consume the study products at 
any time of the day providing it was taken 2  h before or after 
any other medication. In the LTC facility, MSPrebiotic® or pla-
cebo was administered following the standard administration 
of medication protocol (2 h before or after receiving any other 
medication) using documented observed consumption as well 
as documentation in the daily health-log forms. The general 
population participants also documented product consumption 
by completing the daily health-log forms. In addition, the amount 
of returned product was documented by the study coordinator at 
monthly visits.

Both study products were provided to participants in identical 
sealed foil pouches labeled only with the information identifying 
that the product was part of a clinical trial. There was nothing 
regarding the packaging or labeling that would allow participants 
to know which product they were getting.

Participants completed a daily health-log to track excessive 
flatulence, changes in bowel movements, abdominal pain, and 
bloating. These parameters were used to assess tolerance of con-
suming MSPrebiotic® versus placebo. The daily health log was also 
used to document consumption of the study product as well as 
the use of stool softeners and antibiotics. There were no changes 
to the normal daily diet consumed by participants other than 
the requirement that they did not consume probiotic-containing 
products.

Blood samples (fasting) were collected at enrollment (week 
0), after 2 weeks of consuming placebo (participants were ran-
domized to receive either MSPrebiotic® or placebo at this time), 
and then at weeks 6, 10, and 14 (total of five samples collected). 
Blood samples were submitted to the laboratory for analysis on 
the day of collection. Additional blood samples collected at the 
same five time points were centrifuged, the serum was dispensed 
into aliquots, and stored at −70°C until sent for additional testing.

analysis Performed
Blood Analysis
Blood samples (fasting) at the five collection times indicated 
previously were analyzed by Diagnostic Services Manitoba, 
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A CONSORT 2010 Flow Diagram for ELD cohort

Assessed for eligibility (n= 145)

Excluded  (n= 88)
• Not meeting inclusion criteria (n= 53)
• Declined to participate (n= 32)
• Other reasons (n= 3)

Analysed  (n= 22)
• Excluded from analysis (give reasons) (n=3)
Microbiome data excluded due to antibiotic 
consumption within previous 5 weeks:
- 1 in Week 14
- 1 at baseline & week 14
Microbiome data excluded due to unreliable 
documentation by participant; 1 – baseline & wk 14 

Lost to follow-up (give reasons) (n=1); patient 
died of underlying factors not related to study
Discontinued intervention (give reasons) (n=5)
Non-Compliant (1)
Participant/family requested withdrawal (4)

Allocated to intervention (n= 28)
• Received allocated intervention (n= 28)
• Did not receive allocated intervention (give 

reasons) (n= 0)

Lost to follow-up (give reasons) (n= 1); patient 
died of underlying factors not related to study
Discontinued intervention (give reasons) (n= 7)
Non-compliant (3)
participant/family requested withdrawal (4)

Allocated to placebo (n= 29)
• Received allocated intervention (n= 28)
• Did not receive allocated intervention (give 

reasons) (n= 1): ill so did not start product

Analysed  (n= 20)
• Excluded from analysis (give reasons) (n=3)
Microbiome data excluded due to antibiotic 
consumption within previous 5 weeks:
- 3 in Week 14

Allocation

Analysis

Follow-Up

Randomized (n= 57)

Enrollment
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FiGUrE 1 | Continued

Winnipeg, MB, Canada, for C-reactive protein, glucose, and 
lipid profile using the standardized methods validated by the 
testing laboratory. In addition, aliquots of frozen serum (fasting 
serum) were sent to LipoScience Inc. (Raleigh, NC, USA) for 
lipid particle size analysis using NMR (40, 41), as well as tests 
to determine lipid profile, glucose level, insulin level, and IR. 
Samples were collected, transported, and analyzed as per the 
company instructions and protocols (www.labcorp.com). The 
frozen serum aliquots were also tested in-house for human TNF-
α and IL-10 using commercial assay kits (Invitrogen, Frederick, 
MD, USA) as per the manufacturer’s instructions. Each frozen 
aliquot was thawed once for analysis and any unused portion of 
the aliquot was discarded.

Statistical Analysis
Baseline characteristics were compared between the MID and 
ELD cohorts using a Chi square test or Fisher’s exact test for 
categorical variables, and a Student’s t-test or Mann–Whitney 
test where appropriate. The difference in the change (baseline to 
14 weeks) experienced in the control and MSPrebiotic® groups 
were compared for several systematic markers, lipid measures, 
glucose, and IR via a non-parametric Mann–Whitney test. 
In addition, a repeated measures analysis of variance was also 
performed as a supplementary analysis on variables that were 
measured at more than two time points to obtain a group, time, 
and group/time effect. Data collected in the weekly health log 
were assessed via mixed-effects models containing random 
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B CONSORT 2010 Flow Diagram MID cohort

Assessed for eligibility (n=53)

Excluded  (n= 2)
• Not meeting inclusion criteria (n= 2)
• Declined to participate (n= 0)
• Other reasons (n= 0)

Analysed  (n= 21)
• Excluded from analysis (give reasons) (n=0)

Lost to follow-up (give reasons) (n=0)
Discontinued intervention (give reasons) (n=3)
Participants requested withdrawal 

Allocated to intervention (n=24)
• Received allocated intervention (n=24)
• Did not receive allocated intervention (give 

reasons) (n= 0)

Lost to follow-up (give reasons) (n=0)
Discontinued intervention (give reasons) (n=6)
Participants requested withdrawal

Allocated to placebo (n= 27)
• Received allocated placebo (n=27)
• Did not receive allocated intervention (give 

reasons) (n= 0)

Analysed  (n= 21)
• Excluded from analysis (give reasons) (n= 0)

Allocation

Analysis

Follow-Up

Randomized (n= 51)

Enrollment

FiGUrE 1 | Flow chart of enrollment for the study. The elderly (ELD) enrollment is shown in (a) and the mid-age (MID) enrollment is shown in (B). (a) Consort 2010 
flow diagram for ELD cohort. (B) Consort 2010 flow diagram MID cohort.
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slopes and intercepts. All p-values calculated were two-tailed, and 
a p-value less than 0.05 was considered statistically significant. All 
statistical analyses were performed using SAS version 9.3.

rESUlTS

Enrollment for the clinical study was started in September 2013 
and completed in May 2015. Figure 1 outlines the recruitment, 
enrollment, and attrition of participants in the ELD and MID 
groups. In the ELD group, there were 31 participants from the 
community and 11 participants who were residents of LTC that 
completed the clinical trial. The data for non-institutionalized 
ELD participants and institutionalized ELD participants showed 
similar trends for all the parameters we evaluated, so the data 
from both ELD groups were combined for all subsequent analyses. 

All the MID participants enrolled were from the community 
(42 completed the clinical trial). The baseline (at the time of 
enrollment) levels of blood glucose, cholesterol parameters, and 
inflammatory markers of the ELD and MID groups are shown 
in Table 1. TNF-α levels were significantly higher (p < 0.01) in 
ELD versus MID at the time of enrollment, while C-reactive 
protein was elevated in ELD participants, but not significantly 
(p  =  0.052). Furthermore, the percentage of participants with 
elevated blood glucose levels was significantly higher (p = 0.03) 
in the ELD group (10/42) compared to the MID group (2/42) at 
baseline despite all participants meeting enrollment criteria that 
excluded diabetics and prediabetics.

The compliance with consuming the study product was: 
MID-placebo; 93.5% (range: 25.0–100.0%; median: 93.5%), 
MID-MSPrebiotic®; 91.7% (range: 0.0–100.0%; median: 99.0%), 
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TaBlE 1 | Baseline Parameters for mid-age (MID) and elderly (ELD) groups.

Variable Baseline MiD* Baseline ElD* p-
Value*

Median (quartile 
1–quartile 3)

Median (quartile 
1–quartile 3)

Number of participants 42 42
Number females/males 24/18 25/17 0.82
Age 42 (37–47)  

[range: 32–50]
75 (73–82)  

[range: 70–96]
<0.01

Weight (kg) 78.4 (70.5–88.1) 76.7 (64.4–85.7) 0.17
Glucosea (normal range; 
3–6 mmol/L)

5.3 (4.9–5.6) 5.6 (5.0–5.9) 0.06

Cholesterol 
(desirable < 5.2 mmol/L)

5.0 (4.6–5.5) 5.1 (4.5–6.5) 0.40

Triglycerides 
(desirable < 1.7 mmol/L)

1.1 (0.9–1.7) 1.3 (0.9–1.8) 0.48

HDL cholesterol 
(desirable > 1.1 mmol/L)

1.5 (1.2–1.8) 1.4 (1.2–1.7) 0.83

LDL cholesterol 
(desirable < 3.4 mmol/L)

2.9 (2.5–3.4) 2.9 (2.4–3.9) 0.69

Total Chol/HDL 
(desirable < 4.5 mmol/L)

3.6 (2.7–4.4) 3.5 (2.9–4.5) 0.99

LDL/HDL (desirable < 3.5) 2.1 (1.5–2.7) 2.2 (1.5–2.5) 0.98
C-Reactive protein 
(desirable < 8 mg/L)

3.0 (1.9–4.8) 4.0 (2.7–6.6) 0.04

TNF-α (desirable < 2.1 pg/mL) 0.7 (0.0–1.3) 1.8 (1.0–2.5) <0.01
IL-10 (desirable < 1 pg/mL) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.86

*There was no significant differences in the data from institutionalized versus non-
institutionalized ELD participants at baseline so the data have been pooled. Placebo 
was consumed by all participants for 2 weeks and then participants were randomized 
to continue on placebo or to consume 30 g/day MSPrebiotic® for the next 12 weeks. 
All continuous values are expressed as median (quartile 1–quartile 3), compared using 
Mann–Whitney test. All categorical values are expressed as N/total, compared using 
Chi-square test or Fisher’s exact test.
aAlthough there was no statistically significant difference in the median glucose level, 
there was a significant difference (p = 0.03) in the number of ELD at baseline who had 
elevated (i.e., above 6 mmol/L) glucose (10/42) compared to MID at baseline (2/42).
Bold values represent p < 0.05.
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ELD-placebo; 95.4% (range: 66.3–100.0%; median: 99.0%) and 
ELD-MSPrebiotic®; 97.2% (range: 80.6–100.0%; median: 99.0%). 
MSPrebiotic® was well tolerated in both groups, as shown in 
Figure 2. Levels of abdominal pain, bloating, and flatulence were 
all low (2 or less on a scale of 1 = none to 5 = excessive) for both 
groups taking either placebo or MSPrebiotic®, and there were no 
significant differences over the study period. The mean number of 
bowel movements for the MID and ELD group on placebo versus 
MSPrebiotic® did not change over the duration of the study, and 
at all times the mean number of bowel movements was less than 
two per day for both groups.

Supplementation with MSPrebiotic® or placebo had no effect 
on systemic cholesterol transport or IL-10 for ELD or MID groups 
(Table 2). Lipid profile and particle size profile were also largely 
unaffected after consumption of MSPrebiotic® versus placebo for 
ELD and MID (Tables 3 and 4, respectively). Only in the MID 
group consuming MSPrebiotic® was there a significant increase 
in large VLDL and chylomicron particles (Table 4).

Despite all participants being screened against exclusion cri-
teria for diabetes or prediabetes, the ELD group had significantly 
more individuals with elevated blood glucose levels at baseline 
(Table  1). Blood glucose levels of ELD participants assigned 
to take MSPrebiotic® were not significantly different from ELD 

participants assigned to take placebo at baseline (p  =  0.515). 
Blood glucose levels significantly differed over time (p = 0.0301) 
in ELD participants taking MSPrebiotic® for 12 weeks compared 
to those consuming the placebo (Table 2). The change over the 
14-week study is shown in Figure  3. Retesting of the samples 
at a second independent laboratory confirmed these results 
(Tables 3 and 4). Furthermore, the group/time interaction in the 
ELD population taking MSPrebiotic® versus placebo (Figure 3) 
showed there was a significant reduction (p = 0.045) in glucose 
levels as early as week 10 (i.e., after 2 weeks of placebo and 8 weeks 
of MSPrebiotic®).

Blood insulin levels also significantly differed over time in 
ELD participants consuming MSPrebiotic® compared to the 
placebo group (Table 3). IR was calculated using three methods: 
LP-IR (calculated by LipoScience), HOMA-IR (40, 41), and 
QUICKI-IR (40) (Tables 3 and 4). The LP-IR IR was not signifi-
cantly different between MSPrebiotic® and placebo groups over 
time in either ELD or MID categories (Tables 3 and 4). However, 
HOMA-IR and QUICKI-IR values showed significant improve-
ment over time in IR for participants on MSPrebiotic® compared 
to placebo (p = 0.009 and 0.004, respectively).

DiSCUSSiOn

There is a strong link between gut microbiota dysbiosis, where pro-
inflammatory Proteobacteria abundance increases, and the endo-
toxin from these bacteria stimulates TLR4 to cause an increase in 
inflammatory markers (e.g., TNF-α) and an increase in IR, which 
over a prolonged period can lead to hyperglycemia and ultimately 
T2D (5). We previously demonstrated that MSPrebiotic® promotes 
the growth of Bifidobacteria and corrects the Proteobacteria 
dysbiosis in the ELD (38), meeting recent prebiotic classification 
criteria (1). Here, we extend our analysis of our 2017 clinical trial 
by demonstrating that MSPrebiotic® is well-tolerated in MID and 
ELD adults (Figure 2), and by further characterizing the physi-
ological consequences of the “bifidogenic effect.” Importantly, we 
found that MSPrebiotic® significantly reduced blood glucose and 
insulin levels by 7 and 41%, respectively, in otherwise healthy 
ELD individuals (Table 3). Taken together, the results from our 
clinical study suggest that MSPrebiotic® may be an effective tool 
in promoting the growth of Bifidobacteria and improving blood 
glucose management, especially in the ELD.

Previous studies have examined the blood glucose-lowering 
and insulin-sensitizing potential of DRS prebiotics (11, 13, 15, 
21, 34). These studies examined the role of DRS as a carbohydrate 
replacement in food rather than as a supplement, where at least 
some of the effects on blood glucose level can be attributed to 
differences in the amount of digestible starch. While connections 
between DRS consumption and improved insulin sensitivity 
have been reported, they do not necessarily translate to lower 
blood glucose levels (15, 18, 19). In healthy people, this should 
not be surprising, given that the body will adapt by generating 
glucose via gluconeogenesis to prevent hypoglycemia in those 
with proper glycemic control (11). Such is likely the case in the 
MID population, where we observed no effect of MSPrebiotic® 
on blood glucose, insulin levels, or IR (Table 4). However, in the 
ELD population, where the baseline level of glucose was elevated 
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TaBlE 2 | Impact of consuming MSPrebiotic® versus placeboa on systemic markers in mid-age (MID) and elderly (ELD) adults.

MiD (14 weeks) ElD (14 weeks)

Median (quartile 1–quartile 3) Median (quartile 1–quartile 3)

Variable Control group 
(N = 21)

MSPrebiotic® group 
(N = 21)

p-Value* Control group 
(N = 20)

MSPrebiotic® group 
(N = 22)

p-Value*

Glucose (normal range; 3–6 mmol/L) 5.1 (4.7–5.5) 5.1 (4.9–5.6) 0.5538 5.5 (5.0–5.9) 5.1 (4.8–5.5) 0.0301
Cholesterol (desirable < 5.2 mmol/L) 5.0 (4.4–5.1) 5.1 (4.7–5.8) 0.3382 5.2 (4.3–6.2) 5.3 (3.9–6.4) 0.4418
Triglycerides (desirable < 1.7 mmol/L) 1.2 (0.8–1.5) 1.4 (1.0–2.5) 0.2266 1.3 (1.1–2.1) 1.3 (0.9–1.8) 1.0000
HDL cholesterol (desirable > 1.1 mmol/L) 1.4 (1.2–1.8) 1.1 (1.0–1.4) 0.6298 1.5 (1.3–1.9) 1.4 (1.2–1.8) 0.9899
LDL cholesterol (desirable < 3.4 mmol/L) 2.7 (2.6–3.1) 3.2 (2.4–3.5) 0.5129 2.8 (2.3–4.3) 3.2 (2.2–3.9) 0.6960
Total Chol/HDL (desirable < 4.5 mmol/L) 3.3 (2.6–4.4) 4.4 (3.2–5.2) 0.4488 4.0 (2.4–5.2) 3.4 (2.8–4.3) 0.9397
LDL/HDL (desirable < 3.5) 2.0 (1.4–3.0) 2.6 (1.7–3.1) 0.5563 2.5 (1.2–3.2) 2.0 (1.5–2.6) 0.9094
CRP (desirable ≤ 8 mg/L) 3.1 (1.9–4.9) 3.9 (2.0–7.3) 0.2609 2.6 (1.8–4.2) 4.1 (2.7–6.1) 0.9792
TNF-α (desirable ≤ 2.1 pg/mL) 0.9 (0.0–1.5) 0.0 (0.0–1.7) 0.6897 1.6 (1.0–2.7) 1.7 (0.9–2.3) 0.6503
IL-10 (desirable ≤ 1 pg/mL) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 1.0000 0.0 (0.0–0.0) 0.0 (0.0–0.0) 1.0000

aPlacebo was consumed by all participants for 2 weeks, and then participants were randomized to continue on placebo or to consume 30 g/day MSPrebiotic® for the next 12 weeks. 
All continuous values are expressed as median (quartile 1–quartile 3). Summary statistics reflect measurements obtained at 14-week time point.
*p-Values reflect the difference in the change (baseline–14 weeks) experienced in the control and MSPrebiotic® groups. p-Values were calculated using a Mann–Whitney test.
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FiGUrE 2 | Tolerability of consuming MSPrebiotic® versus Placebo over time in elderly (ELD) and mid-age (MID) adults. All ELD (a–D) and MID (E–H) participants 
consumed 30 g placebo/day for 2 weeks and then were randomized to continue placebo or consume 30 g MSPrebiotic®/day for the remaining 12 weeks of the 
study. For abdominal pain, bloating and flatulence the scale was from 1 (none) to 5 (extreme). The red square symbols represent the placebo group, and the blue 
diamond symbols represent the MSPrebiotic® group. There was no statistically significant difference between groups for any of these parameters. (a) Abdominal 
pain ELD. (B) Bloating ELD. (C) Flatulence ELD. (D) Bowel movements per day ELD. (E) Abdominal pain MID. (F) Bloating MID. (G) Flatulence MID. (H) Bowel 
movements per day MID.
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TaBlE 4 | Lipid particle and insulin resistance (IR) profiles in mid-age after consumption of MSPrebiotic or placeboa.

Baseline 14 weeks p-Value*, control 
versus MSPrebiotic®

Median (quartile 1–quartile 3) Median (quartile 1–quartile 3)

Control group MSPrebiotic® group Control group MSPrebiotic® group

VLDL and chylomicron particles (total) 43.6 (23.2–61.6) 38.7 (23.4–69.5) 46.6 (21.1–68.1) 54.5 (28.4–98.6) 0.3585
Large VLDL and chylomicron particles 2.7 (1.5–4.7) 3.1 (2–5.9) 3 (2–5.4) 4 (3–6.3) 0.0200
Medium VLDL particles 16.6 (9.7–34.7) 23.1 (10–40.3) 17.8 (9.7–33.1) 19.6 (15.5–49.7) 0.5050
Small VLDL particles 18.7 (11.1–27.6) 13.2 (9.6–27.2) 18.2 (10.2–28.8) 19.2 (9.4–30.8) 0.8111
LDL particles (total) 1,059 (823–1,274) 1,137 (1,069–1,371) 986 (832–1,178) 1,189 (926–1,422) 0.5886
IDL particles 101 (74–137) 80 (46–148) 86 (65–143) 88 (60–117) 0.9099
Large LDL particles 484 (332–521) 433 (363–564) 423 (379–491) 488 (335–604) 0.7153
Small LDL particles (total) 505 (156–699) 584 (399–907) 439 (171–735) 595 (438–875) 0.4281
HDL particles (total) 34.3 (31–36.2) 36.4 (30.9–38.5) 34 (30.9–39) 34.3 (28.6–37.2) 0.1073
Large HDL particles 5.3 (2.7–9.3) 4.5 (2.5–7.4) 4.7 (2.9–8.2) 3.8 (2.3–6.1) 0.5628
Medium HDL particles 9.1 (6.3–11.3) 13.8 (9.3–16.8) 9.2 (6.7–13.8) 14.4 (9–18.5) 0.1552
Small HDL particles 18.5 (15.6–20.5) 16.4 (12.8–17.7) 18.2 (15.3–20.9) 14.3 (12.8–18.2) 0.9298
VLDL size 50.6 (45.1–53.1) 51.3 (45.9–56.7) 50.2 (45.7–54) 50.3 (46.8–54.8) 0.9676
LDL size 21.4 (21.1–22.1) 21 (20.7–21.8) 21.7 (20.8–22.3) 21.2 (20.5–21.8) 0.6502
HDL size 9.3 (8.8–9.8) 9.1 (8.7–9.6) 9.3 (8.8–9.6) 9.1 (8.7–9.6) 0.4634
Triglyceride (total) 92 (76–125) 97 (81–158) 97 (75–135) 111 (88–225) 0.1217
VLDL and chylomicron triglyceride (total) 63.7 (38.3–85) 59.8 (38.9–124.8) 63.1 (46–101.4) 78 (51.5–181.4) 0.0761
HDL cholesterol (total) 50 (47–61) 49 (41–62) 47 (41–62) 47 (41–56) 0.5039
Insulin μIU/mL (range; 2.6–24.9) 12.9 (9.2–17) 14.1 (9.3–31) 11.8 (8.5–15) 16.5 (9.2–27.1) 0.3431
Glucose mmol/L (normal range; 3–6 mmol/L) 5.2 (4.8–5.6) 5.4 (5.1–5.6) 5.0 (4.8–5.3) 5.2 (5.0–5.6) 0.5702
LP-IR (range: 0–100) 42 (27–58) 60 (35–65) 45 (27–61) 57 (29–69) 0.9098
HOMA-IR 55.3 (38–70.3) 56.1 (42.6–141.9) 47.8 (34.5–75.4) 69.4 (38.4–112.4) 0.2727
QUICKI-IR 0.32 (0.31–0.34) 0.32 (0.29–0.34) 0.33 (0.31–0.35) 0.31 (0.29–0.34) 0.4088

aPlacebo was consumed by all participants for 2 weeks and then participants were randomized to continue on placebo or to consume 30 g/day MSPrebiotic® for the next 12 weeks. 
All continuous values are expressed as median (quartile 1–quartile 3).
*p-Values reflect the difference in the change (baseline–14 weeks) experienced in the control and MSPrebiotic® groups. p-Values were calculated using a Mann–Whitney test.
Bold values represent p values < 0.05.

TaBlE 3 | Lipid particle and insulin resistance (IR) profiles in elderly after consumption of MSPrebiotic or placeboa.

Baseline 14 weeks p-Value*, control 
versus MSPrebiotic®

Median (quartile 1–quartile 3) Median (quartile 1–quartile 3)

Control group MSPrebiotic® 
group

Control group MSPrebiotic®  
group

VLDL and chylomicron particles (total) 49.4 (19–85.5) 43.8 (34.4–84) 36 (22.9–78.8) 44 (20.7–91.9) 0.9198
Large VLDL and chylomicron particles 2.3 (2–3.7) 2.5 (1.3–3.5) 3 (1.2–6.6) 1.7 (0.8–3.4) 0.4964
Medium VLDL particles 21.8 (7.5–47.1) 20.3 (12.2–33.1) 17.9 (11.4–46.6) 19.3 (13.2–52.6) 0.5289
Small VLDL particles 17.2 (7.7–28.6) 21.6 (11.2–36.2) 16.9 (4.9–31.2) 20.7 (4.2–38.2) 0.9198
LDL particles (total) 1200.5 (1,050–1,493) 964 (884–1,299) 1,233 (978.5–1592.5) 1094.5 (953–1,374) 0.8012
IDL particles 68.5 (44.5–94.5) 47 (29–114) 83 (58.5–131.5) 74 (41–119) 0.8305
Large LDL particles 596 (348.5–878.5) 581 (416–775) 466 (257–730) 516.5 (406–849) 0.2267
Small LDL particles (total) 581.5 (113.5–804.5) 393.5 (201–508) 666 (312.5–988) 419.5 (264–691) 0.6323
HDL particles (total) 34.1 (26.4–39.9) 31 (27.8–37.3) 33.2 (27.6–37.9) 31.6 (27–36) 0.3137
Large HDL particles 6.2 (3.2–8.4) 5.5 (4.5–8.3) 5.1 (3.1–9.4) 5.5 (3.6–8.5) 0.4276
Medium HDL particles 7.1 (3.5–11.2) 6.6 (4.4–10.3) 8.1 (3.8–12.5) 7.9 (5.1–11.1) 0.8511
Small HDL particles 19.5 (14–21.4) 18.7 (14.8–21.7) 19.7 (14.3–23.2) 17.5 (14.4–20.1) 0.1043
VLDL size 47.8 (44.1–52.4) 46.3 (42.9–50.7) 47.7 (43.4–54.3) 47.4 (42.9–51.4) 0.6473
LDL size 21.6 (20.7–22.3) 21.8 (21.5–22.3) 21.3 (20.4–21.9) 21.8 (21–22) 0.6564
HDL size 9.5 (8.9–10.1) 9.5 (9.2–9.8) 9.4 (8.7–9.7) 9.5 (9.1–9.7) 0.2441
Triglyceride (total) 103 (80–162) 99 (82–145) 92 (85–174) 97.5 (76–165) 0.4129
VLDL and chylomicron triglyceride (total) 70.9 (36.5–115.7) 61.1 (49–94) 54.5 (41.9–141.6) 59.6 (40.7–134.9) 0.7150
HDL cholesterol (total) 47.5 (44–67.5) 49.5 (40–57) 49 (42.5–65) 46 (40–60) 0.5869
Insulin μIU/mL (range: 2.6–24.9) 8.1 (4.8–12.7) 9 (5.5–15.5) 7.4 (5.8–13) 8.1 (5.8–10.7) 0.0091
Glucose mmol/L (normal range: 3–6 mmol/L) 5.8 (5.4–6.2) 5.8 (5.3–6.1) 5.8 (5.3–6.2) 5.5 (5.2–5.8) 0.0321
LP-IR (range: 0–100) 37 (32–54) 38.5 (26–48) 42 (30.5–65) 31 (23–44) 0.2839
HOMA-IR 38.5 (20.5–61) 40.5 (23.6–67.5) 32.3 (25.2–63.2) 35.1 (25.7–46.1) 0.0095
QUICKI-IR 0.34 (0.32–0.38) 0.34 (0.31–0.37) 0.35 (0.32–0.36) 0.35 (0.33–0.36) 0.0035

aPlacebo was consumed by all participants for 2 weeks and then participants were randomized to continue on placebo or to consume 30 g/day MSPrebiotic® for the next 12 weeks. 
All continuous values are expressed as median (quartile 1–quartile 3).
*p-Values reflect the difference in the change (baseline–14 weeks) experienced in the control and MSPrebiotic® groups. p-Values were calculated using a Mann–Whitney test.
Bold values represent p values < 0.05.
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FiGUrE 3 | Impact of MSPrebiotic® versus placebo on mean blood glucose levels in the elderly (ELD) group. Placebo (30 g/day) was consumed by all participants 
for 2 weeks and then participants were randomized to continue on placebo (30 g/day) or to consume 30 g/day MSPrebiotic® for the next 12 weeks. Serum samples 
over the course of the study for the ELD group were analyzed on the day of collection for mean glucose levels. The black bars represent the placebo group and the 
white bars represent the MSPrebiotic® group. There was a significant group/time interaction for placebo versus MSPrebiotic® for the samples taken in week 0 
compared to week 10 (8 weeks of consuming MSPrebiotic®) or week 14 (12 weeks of consuming MSPrebiotic®), p = 0.045 and p = 0.0124, respectively.
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toward the high end of the normal range (Table 1), consumption 
of MSPrebiotic® lowered the blood glucose levels within 8 weeks 
of supplementation (Figure 3). Gower et al. (18) reported that 
there was no impact of maize-derived DRS2 consumption on 
IR in women with adequate glucose homeostasis, whereas there 
was a significant reduction in IR in women with elevated IR. 
Our data are therefore consistent with those of Gower et al. (18), 
extending these findings to both men and women who are MID 
or ELD. In combination with other published data (2, 10, 13, 22, 
33), our data suggest that various types of DRS prebiotics, just 
like other types of oligosaccharide prebiotics (i.e., FOS, GOS, 
XOS, etc.), have differing abilities to modulate lipids, glucose, 
and IR. Furthermore, the ability of prebiotics to modulate these 
parameters appears to be dependent on the extent of elevated 
blood glucose and IR (13, 18). For example, DRS can improve 
IR in humans who are prediabetic (18), but not after T2D has 
been established (13). Although the mean reduction of glucose 
in the ELD on MSPrebiotic® was small (7%), this is likely due to 
the limited room for blood glucose improvement in this group. 
For this reason, our findings support the value of future clinical 
studies on MSPrebiotic® in prediabetics.

Our data showed that MSPrebiotic® significantly reduced blood 
glucose and insulin levels in the ELD population and reduced IR 
as measured by HOMA-IR and QUICKI-IR (Table 3). However, 
LP-IR, which includes lipid particle analysis to determine IR in 
prediabetics with abnormal lipid profiles (40), was not signifi-
cantly affected, suggesting that lower blood glucose levels were 
due to improved use of endogenous insulin rather than improved 
lipid metabolism. Given that the ELD and MID populations had 
neither prediabetes nor abnormal lipid profiles, it is not surpris-
ing that the HOMA-IR and QUICKI-IR (measures of IR based 

solely on fasting blood glucose and insulin) showed significant 
improvements in IR for those consuming MSPrebiotic® compared 
to placebo but LP-IR was not different. The microbiome changes 
and increases in butyrate (38), combined with lower blood glu-
cose, insulin, and IR, were all benefits achieved without the use 
of probiotic supplementation. As suggested by others (5, 9, 13, 20, 
22, 26, 28), our data support the concept that it is possible for the 
gut microbiome to be modulated via the consumption of specific 
types of prebiotics, leading to better glycemic control especially 
in ELD adults. Further studies are needed to clarify if the glucose 
and IR changes that were achieved by MSPrebiotic® consumption 
by the ELD and MID as described in this study are linked to or 
are independent from the bifidogenic effect also achieved by 
MSPrebiotic® in this same group of participants (38).

A recent animal study evaluated the effect of MSPrebiotic®  
supplementation on blood glucose, insulin, and IR in a swine 
model fed a Western diet (33). Of note, the swine were fed one half 
of the daily amount (15 g) of MSPrebiotic® that was consumed by 
our participants (30 g). While insulin levels were not significantly 
affected, blood glucose levels and IR were both reduced in swine 
consuming MSPrebiotic®. Furthermore, the authors also found 
a 141% increase in glucagon-like peptide-1 (GLP-1) in swine 
supplemented with MSPrebiotic®. GLP-1 is an incretin secreted 
by enteroendocrine cells (L-cells) in the colon in response to 
bacteria metabolites, which improves insulin utilization (8, 13), 
and increased GLP-1 could explain improved insulin sensitivity 
in response to fermentation of MSPrebiotic® in swine.

While determining the mechanisms by which blood glucose 
and IR decreased in the ELD group consuming MSPrebiotic® is 
beyond the scope of our investigation, it is appealing to speculate 
that increased GLP-1 in the MSPrebiotic® ELD group contributes 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


10

Alfa et al. MSPrebiotic: Glucose Impact in ELD

Frontiers in Medicine | www.frontiersin.org January 2018 | Volume 4 | Article 260

to the improved glycemic response, which is consistent with 
recent publications (13, 23, 33). Alternatively, fermentation of 
MSPrebiotic® may have improved IR by stimulating production 
of short-chain fatty acids such as butyrate that have been shown 
to improve glucose homeostasis through intestinal gluconeogen-
esis (16). Such an explanation would also be consistent with our 
previous microbiome publication demonstrating that consump-
tion of MSPrebiotic® led to a significant increase in the relative 
abundance of butyrate in ELD individuals (38). Other currently 
unknown mechanisms may also be at work (5, 8). Future studies 
examining the mechanisms by which MSPrebiotic® improves 
glycemic response in animals and humans are warranted.

Rideout et  al. (33) also examined markers of cholesterol 
metabolism in their Western diet swine model, where they 
found that supplementation with MSPrebiotic® led to significant 
increases in total HDL particles, driven largely by an increase in 
the small HDL subclass of particles. Other cholesterol param-
eters were unchanged. The effect of DRS on cholesterol has been 
examined elsewhere, for example, in prediabetic obese individu-
als, where DRS improved these parameters (17). The consump-
tion of wheat-based chemically modified resistant starch was 
correlated with a significant reduction in total cholesterol, HDL, 
and non-HDL (including LDL), but had no significant effect on 
triglycerides (2). Other published data (2, 10, 13) suggest that 
different types of DRS have differing abilities to modulate lipids, 
glucose, and IR. MSPrebiotic® had no significant impact on total 
cholesterol, HDL, or LDL, in either MID or ELD participants. 
However, there was a significant increase in the number of large 
VLDL/chylomicron particles in the MID group. To our knowl-
edge, this is the first time that the consumption of DRS has been 
associated with such an effect, and the clinical significance of this 
is unclear.

Our data extend the published literature with respect to the 
impact of prebiotic consumption on the understudied ELD 
demographic (42, 43), which represents a large proportion of the 
Canadian population. Others have reported that ELD adults have 
an increased prevalence of non-specific inflammatory markers 
compared to younger adults, and this is thought to be due to 
increased permeability of the gut mucosa (5, 11, 14, 36, 42). Our 
data support this concept, as there were more ELD participants 
with elevated baseline CRP (trend toward statistical significance; 
p  =  0.08) and TNF-α (p  <  0.01) compared to the MID par-
ticipants. This is likely linked to the microbiome dysbiosis in our 
ELD group, who at baseline had significantly increased levels of 
pro-inflammatory Proteobacteria (Escherichia coli/Shigella) (38). 
Of interest, the elevated inflammatory levels in the ELD group 
were not reduced by the end of the study in either the placebo or 
MSPrebiotic® groups. This suggests that the colonocyte apoptosis 
or reduced mucus production (36, 44) leading to increased bowel 
permeability (thought to be the basis of increased inflammatory 
response) could be irreversible or take longer than the 3-month 
period evaluated in our study. It may be that earlier addition of 
prebiotics to the diet (i.e., before 70 years old) is needed to prevent 
the bowel damage, permeability, and the associated increase in 
non-specific inflammatory markers.

A limitation of our study was the relatively small sample size 
(N = 21 or 22 for each group). However, we offset this limitation 

by collecting samples at multiple time points over 14 weeks for 
each participant (i.e., not just a one-time sampling). Despite a 
small sample size, we were able to demonstrate significant changes  
in glucose, insulin, and IR, supporting the adequacy of our power 
calculations. Furthermore, we would recommend future studies 
that have less extensive exclusion criteria than the current study 
undertaken in the ELD population to determine the impact of 
DRS in a wider cross-section of this demographic. This type of 
clinical study is needed to more extensively assess the clinical 
impact of MSPrebiotic® in the ELD population.

In conclusion, our data demonstrated that MSPrebiotic® is 
a prebiotic as defined by Gibson et al. (1) that is well-tolerated 
in Canadian adults and that this DRS effectively lowers blood 
glucose and insulin levels and reduces IR in ELD adults. Future 
studies in subjects with prediabetes and T2D are warranted 
given that dietary supplementation is an understudied avenue 
for the amelioration of risk factors linked to the development 
and progression of these conditions. While MSPrebiotic® had 
a minimal impact on cholesterol metabolism, further stud-
ies in dyslipidemic individuals are required to fully evaluate 
the effect(s) of this DRS on these measures. Consumption of 
MSPrebiotic® for 3  months was not sufficient to reduce the 
elevated CRP and TNF-α levels in the ELD group, suggesting 
that earlier intervention (i.e., before age 70) may be necessary 
to prevent the development of gut barrier damage or that these 
inflammatory markers are due to other underlying factors such 
as vascular comorbidities (45).
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