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In recent years, an extensive body of literature focused on the gut–brain axis and the 
possible role played by the gut microbiota in modulating brain morphology and function 
from birth to old age. Gut microbiota has been proposed as a relevant player during the 
early phases of neurodevelopment, with possible long-standing effects in later life. The 
reduction in gut microbiota diversity has also become one of the hallmarks of aging, and 
disturbances in its composition are associated with several (age-related) neurological 
conditions, including depression, Alzheimer’s disease, and Parkinson’s disease. Several 
pathways have been evoked for gut microbiota–brain communication, including neural 
connections (vagus nerve), circulating mediators derived by host-bacteria cometabolism, 
as well as the influence exerted by gut microbiota on host gut function, metabolism, and 
immune system. Although the most provoking data emerged from animal studies and 
despite the huge debate around the possible epiphenomenal nature of those findings, 
the gut microbiota–brain axis still remains a fascinating target to be exploited to attenuate 
some of the most burdensome consequences of aging.

Keywords: gut microbiota, neurological disorders, inflamm-aging, gut–brain crosstalk, gut metabolism, brain 
development, Alzheimer, Parkinson

GUT MiCROBiOTA AND CeNTRAL NeRvOUS SYSTeM (CNS)  
iN HeALTH AND DiSeASe: i “GUT” A FeeLiNG

Over the past decades, few aspects of human physiology have attracted the interest of researchers 
all over the world as the interaction between gut microbiota and human host (1). According to 
the current literature, the human holobiont (or superorganism) contains at least the same number 
of microorganisms (bacteria, archaea, fungi, and viruses) as its own cells (2). More than a billion 
years of mammalian–microbial coevolution have shaped a life-long interdependency (3). Growing 
evidence suggests that gut microbiota may be “at the intersection of everything,” being implicated 
in virtually all physiological or pathological situations (1). Gut microbiota has been implicated 
in the maturation and modulation of the host immune response (4), interactions (positive and 
negative) with pathogens (5), regulation of bone density (6), vitamin biosynthesis (7), intestinal 
5–10% of daily host energy requirements derives from gut microbiota metabolic activities (8).

Not surprisingly, gut microbiota composition and activities have been associated with a plethora 
of conditions, ranging from obesity to cardiovascular disease, chronic inflammatory diseases, and 
cancer (9–11).

Recently, a great emphasis has been placed on the role of intestinal microbiota in regulating 
the gut–brain axis (12–15). Gut microbiota and brain may influence one another through several 
pathways (Figure 1). Gut microbes–brain bidirectional communication is mediated by the vagus 
nerve that conveys information from the gastrointestinal tract to the CNS and back from CNS to 
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FiGURe 1 | A gut–brain axis supports the interactions between gut microbiota and the CNS through direct and indirect pathways involving vagal nerve activation, 
cytokine production, and release of neuropeptide/neurotransmitters and SCFAs. These mediators can pass the BBB and control the maturation and activation of 
brain immune cells (microglia). Following its activation, microglia modulates immune surveillance, synaptic pruning, and clearance of debris. On the other side, the 
HPA axis can suppress microglia activation, as well as influence cytokine release and trafficking of monocytes from the periphery to the brain. Abbreviations: BBB, 
blood–brain barrier; BDNF, brain-derived neurotrophic factor; GABA, gamma-aminobutyric acid; HPA axis, hypothalamic–pituitary–adrenal axis; LPS, 
lipopolysaccharide; MAMPs, microbe-associated molecular patterns; SCFAs, short-chain fatty acids; CNS, central nervous system.
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the intestine to modulate intestinal motility, release of neuro-
transmitters and intestinal immune tone (16, 17). The sympa-
thetic branch of the autonomic nervous system is also involved 
in intestinal homeostasis and gut immune regulation (18). Gut 
microbiota may also synthesize (or modulate the synthesis of) a 
number of neurotransmitters, including dopamine (DA), sero-
tonin (5-HT), noradrenaline (NA), and gamma-aminobutyric 
acid (19–22). The hypothalamic–pituitary–adrenal axis (HPA 
axis) is another bidirectional route of communication through 
which host and gut microbes may interact to orchestrate the 
core response to both physical and psychological stress chal-
lenges (23–25). Bacterial metabolic activities may influence host 
metabolism and lead to the production of metabolites with neu-
roactive properties, including short-chain fatty acids (SCFAs) 
and dietary amino acid catabolites (26, 27). Finally, bacterial 

mediators in the forms of microbe-associated molecular pat-
terns may drive neuroinflammation (28).

Through all these pathways, gut microbiota exerts a wide-
spread influence on key neurological and behavioral processes 
and may be involved in critical phases of neurodevelopment 
and neurodegenerative disorders (12–14, 29). In this scenario, 
microbial activities on gut–brain axis seem to be especially 
relevant at the two extremities of human life course (13, 15). 
Early-life gut microbiota may play a role in shaping neuronal 
networks influencing cognitive, emotional, and social domains 
(13). Aging is associated with a reduction in microbial com-
plexity, while alterations in intestinal microbiota composition, 
structure, and function have been retrieved in older indi-
viduals with Alzheimer’s disease (AD) and Parkinson’s disease  
(PD) (30, 31).
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In this narrative review, recent evidence on life-long gut 
microbiota–brain axis is summarized, with a particular focus on 
aging and age-related neurodegenerative diseases. All accessible 
relevant studies written in English were included.

GUT MiCROBiOTA AND 
NeURODeveLOPMeNT: eARLY ORiGiNS 
OF LATe NeUROLOGiCAL DiSeASeS?

The notion of “developmental origins of health and disease” 
poses that prenatal and perinatal life stages are critical periods in 
which environmental stimuli exert direct and indirect effects on 
the fetus that might be reflected in later health and disease con-
ditions (32). In this context, early host–microbiota interactions 
seem to be among the most relevant factors in “programming” 
adult phenotypes (33). It has been postulated that a succession 
of microbiota components occurs through major steps at birth 
(depending on the timing and mode of delivery), then during 
breastfeeding and first interactions with the environment, and 
finally during and after weaning. Maternal–host factors (genetic 
background of mother–infant dyad) and perinatal exposure 
to antibiotics are among the most relevant factors in shaping 
the newborn’s microbiota (33, 34). Interaction with colonizing 
microbiota may prime immune and metabolic functions and 
have a long-lasting influence on the risk of developing several 
conditions in later life, including gastrointestinal, allergic, auto-
immune, and metabolic diseases (34).

Neurodevelopment is one of the most complex and fasci-
nating aspects of human physiology that may be affected by 
early contact with gut microbiota (12–14, 35). Human brain 
development starts during the third gestational week and lasts 
through adolescence and into early adulthood in humans under 
the control of both genetic and environmental factors (36). The 
development of cognitive, emotional, and social brain circuits 
occur in parallel under the fine modulation by several molecular 
regulatory networks (37, 38). Critical windows in brain devel-
opment have been described, during which neural circuits are 
particularly sensitive and even vulnerable to external factors, 
including gut microbiota composition (39, 40). Interestingly, 
early post-natal brain development overlap with gut microbiota 
establishment (33, 39, 40).

Animal models, in particular germ-free (GF) mice, have been 
crucial for the study of gut microbiota–brain axis in early phases 
of neurodevelopment (41). Seminal studies suggest that both 
the composition and the metabolic activity of gut microbiota at 
specific time points may influence HPA axis development (42) 
and have long-lasting impact on behavioral and neuroendocrine 
responses to stress (42–45). Gut microbiota may program the 
activity of multiple neurotransmitter systems in different brain 
regions inducing a long-term modulation of motor control and 
anxiety-like behavior in adult life (13, 35, 46). GF mice had 
a higher turnover rate of NA, DA, and serotonin 5-HT in the 
striatum compared with specific pathogen-free (SPF) mice (46). 
The serotonergic system seems to be particularly susceptible to 
early-life microbiota dynamics (47–50). Male GF animals showed 
a marked elevation in 5-HT and 5-hydroxyindoleacetic acid, its 

main metabolite, in the hippocampus compared with convention-
ally colonized control animals (48). Interestingly, post-weaning 
restoration of a normal flora failed to reverse the alterations in 
brain neurochemistry elicited by the lack of early life exposure 
to gut microbiota (48). Also, plasma 5-HT levels are affected by 
gut microbiota activity. In a metabolomics study, the colonization 
of GF mice induced a significant increase in plasma 5-HT (51), 
and bacterial metabolites were shown to stimulate 5-HT synthesis 
and secretion by enterochromaffin cells (20, 21). Intriguingly, the 
maternal separation in mice, an established model of early-life 
stress, induced profound changes in the gut microbiota that 
resulted in an anxiety-like phenotype (52).

The gut microbiota may also play a role in synapse maturation 
and synaptogenesis. In particular, GF animals when compared 
with SPF animals, showed higher striatal expression of syn-
aptophysin and PSD 95, two markers of synaptogenesis and 
excitatory synapse maturation, respectively (46). Brain-derived 
neurotrophic factor (BDNF) is a key regulator of synaptic plas-
ticity and neurogenesis in the brain and plays a crucial role in 
learning, memory, and mood regulation throughout life (53). 
In GF mice, Bdnf expression is significantly lower in the hip-
pocampus, amygdala, and cingulate cortex compared with SPF 
mice (46). However, some inconsistency were reported about 
Bdnf expression in the hippocampus (42, 46, 48, 49).

Intriguingly, most of the reported neurodevelopmental 
alterations in GF mice occur differently in the two sexes (42, 46, 
48, 49). Gut microbiota influence on neurogenesis is relevant 
for the normal gross morphology and ultrastructure of the 
amygdala and hippocampus (54, 55). While GF mice exhibit 
increased adult hippocampal neurogenesis in the dorsal hip-
pocampus, subsequent post-weaning microbial colonization 
failed to reverse these changes, suggesting the existence of a 
critical developmental window in early life during which gut 
microbiota may program adult hippocampal neurogenesis (55). 
Gut microbiota may also be instrumental for the development 
of the blood–brain barrier (BBB). GF mice, starting from intra-
uterine life, displayed a life-long increased BBB permeability 
compared with mice with a normal gut flora that can partially 
be reverted by the exposure to pathogen-free gut microbiota 
during adult life (56).

Microglia, the macrophages that constitute the first-line 
immune defense of the CNS, play a central role in brain devel-
opment, plasticity, and cognition and have been associated 
with the initiation or progression of several developmental and 
neurodegenerative diseases, including AD and PD (57, 58).  
Very recently, it was shown that microglia exhibited a time- 
and sex-specific susceptibility to gut microbiota depletion 
in mice (59). In particular, males seem to have their critical 
window during early in utero development, while females are 
more affected during adulthood. Microbiota alterations may 
have both acute and long-term effects on microglial functions. 
Remarkably, human fetal microglia showed significant similari-
ties in the expression of key microglial genes when compared 
with murine counterparts (59). Finally, GF mice exhibited an 
increased myelination of neurons in the prefrontal cortex that 
could be reversed by colonization with a conventional micro-
biota following weaning (60).
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Interventions on the early gut microbiota community (through 
the use of antibiotics, drastic changes in diet and/or pre/probiotic 
administration) may have profound effects on the gut–brain axis 
throughout life. For instance, antibiotic use during the first years 
of life was associated with neurocognitive outcomes later in life 
(e.g., depression, behavioral difficulties) (61).

In summary, several lines of evidence, although obtained 
mostly from animal models, suggest a relevant role played by the 
gut microbiota during the early phases of neurodevelopment, 
with possible long-standing effects later in life. The translatability 
of animal model findings to humans is obviously a priority but, 
also when ascertained, a comprehensive discussion should be 
started before implementing intervention strategies that could 
harm the mother–infant dyad in the first critical 1,000 days of 
life (62, 63).

THe ADULT “STeADY-STATe” 
MiCROBiOTA AND CNS: COMMiTTiNG  
TO A STABLe ReLATiONSHiP

From birth till adulthood, bacterial diversity and functional 
capacity expand progressively, although at different rates across 
life stages (i.e., faster during infancy and slightly slower in early 
childhood) (64, 65).

In adulthood, gut microbial population fluctuates around a 
steady state (in terms of composition, diversity, and function) 
and remains quite resilient unless gross perturbations occur  
(e.g., major health conditions) (66). “Healthy” adult gut micro-
biota are consistently dominated by 2 main phyla (Bacteroidetes 
and Firmicutes), but more than 1,000 different bacterial species 
have been characterized and represent the vast human microbial 
collection (67–69). Each individual is characterized by a specific 
combination and proportion of different microbial species and 
subspecies (strains) that constitutes a unique microbial finger-
print (69). Despite this taxonomic inter-individual variability, 
adult gut microbiota display a relatively consistent functional 
capacity in healthy persons (70, 71). Importantly, microbial 
diversity and functional redundancy are positively associated 
with health, while decreased microbial richness and diversity 
and loss of functional redundancy characterize the microbiota 
in multiple disease conditions (66, 69, 72). Adult gut microbiota 
is influenced by several factors, including host genetics (73), 
nutrition and dietary habits (74, 75), xenobiotics (e.g., antibiot-
ics) and other drugs (76–78), exercise (75, 79, 80), and circadian 
rhythm (81, 82).

Gut microbiota and brain dynamically interact also during 
adulthood. In adult mice, short-term oral administration of 
broad-spectrum antibiotics induced a decrease in anxiety and 
upregulated hippocampal expression of Bdnf (83). These changes 
were associated with a transient perturbation of microbiota but 
occurred independent of inflammatory status, vagal or sympa-
thetic integrity, or alterations in gastrointestinal neurotransmitter 
levels (83). Adult neuroplasticity is sensitive to several environ-
mental stimuli, including stress and gut microbiota alterations 
(84). Adult mice treated with antibiotics showed decreased hip-
pocampal neurogenesis and memory retention (85). This effect 

was not completely rescued by the restoration of a normal flora 
by fecal transplant, unless supported by exercise or a probiotic 
cocktail administration (85).

Recent evidence suggests that complex microbiota-derived 
stimuli are requested for microglia maintenance also during 
adulthood (26, 59, 86). In particular, SCFAs, derived from bac-
terial fermentation processes, seem to regulate adult microglia 
homeostasis (26). Moreover, short-term antibiotic treatment 
in adult mice induce a rapid and sexually dimorphic (higher 
in females) change in microglial gene expression, reinforcing 
the concept that microbiota perturbations may have a relevant 
impact of microglia also during adulthood (59).

THe SeCOND BRAiN AGiNG: 
LiNKiNG GUT MiCROBiOTA TO 
NeURODeGeNeRATiON

Aging is a process characterized by progressive functional decline 
of all physiological systems. In the gastrointestinal tract, aging 
involves the degeneration of enteric nervous system (ENS), 
alterations in gastrointestinal motility, perturbations in small 
intestinal permeability and mucosal defense system, which may 
promote the development of gastrointestinal diseases, affect the 
local and systemic inflammatory status, and deeply influence both 
the composition and function of resident microbiota (87–89).

Aging is also associated with broad changes in brain and 
whole body physiology that may influence gut microbiota–brain 
axis. In particular, the HPA axis is deeply perturbed, through a 
self-reinforcing cycle mediated by the hyperactivation of the 
HPA axis that leads to increased basal glucocorticoid release 
and the impaired HPA negative feedback due to reduced central 
glucocorticoid receptor expression (90, 91). HPA axis dysfunc-
tions have been associated with decline in hippocampal volume 
and cognitive performance, and increased risk of late-life 
depression and anxiety (92, 93). Also circadian rhythm disrup-
tion, which is typical of aging, may be involved in this process, 
due to the potential effect on both cortisol level fluctuations and 
gut microbial activities (94, 95).

The aging brain is also deficient in the synthesis of neurotrophic 
factors, including BDNF (96) as well as several neurotransmit-
ters, including 5-HT and DA, all of which lead to neuronal and 
cognitive dysfunction (97, 98). BBB breakdown is an early event 
in the aging human brain that begins in the hippocampus and 
may contribute to cognitive impairment (99).

Aging is also characterized by the progressive decline in 
immune function (immunosenescence) associated with a chronic, 
low-grade inflammation (inflamm-aging) (100, 101). Both pro-
cesses may have many effects on the CNS, such as microglial 
activation, BBB breakdown, and increase in oxidative damage 
that may contribute to neurodegenerative and neuropsychiatric 
diseases (100). Remarkably, recent data suggest that, in old mice, 
gut microbiota contribute to inflamm-aging, and that this inflam-
matory phenotype may be transferred to young GF mice (102).

Major taxonomic shifts and a consistent decrease in microbial 
richness and diversity have been reported in people 65 years of 
age and older and these changes were associated with worsening 
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of health status and frailty (89, 103). Similar findings were also 
obtained in mice (104).

The characterization of gut microbiota of centenarians 
revealed the presence of significant compositional differences 
across life stages till extreme ages (105). In particular, core micro-
biota (mostly composed by the members of Ruminococcaceae, 
Lachnospiraceae, and Bacteroidaceae families) seem to accom-
pany human life, decreasing in abundance along with aging 
(105). In longevity and extreme longevity, an enrichment in 
some subdominant health-associated groups (e.g., Akkermansia, 
Bifidobacterium, and Christensenellaceae) occurs, even with the 
support of some opportunistic and allochthonous bacteria (105).

Recently, the effects of aging on the microbiota gut–brain 
axis were assessed in male mice (106). Aged mice showed 
significant shifts in gut microbiota that were associated with 
deficits in spatial memory and increases in anxiety-like behav-
iors compared with young adult mice (106). These changes 
were positively correlated with the abundance of bacteria from 
the Porphyromonadaceae family. Aged mice also exhibited 
increased gut permeability that was associated with elevations 
in peripheral pro-inflammatory cytokines (106).

These preliminary findings suggest that age-related changes 
in gut microbiota may impact behavioral and cognitive functions 
and support the relevance of the alteration in gut permeability 
and peripheral inflammation in mediating these effects.

As outlined earlier, the possible link between early gut micro-
biota–brain interactions and late onset neurological conditions, 
including AD and PD, is an intriguing area of research (15).

Alzheimer’s Disease
In AD, the most common form of age-related dementia, deposi-
tion of protein aggregates composed of amyloid-β (Aβ) peptide 
and tau in brain tissues impairs cognitive function (107). Both 
host- and environmental factors that regulate these processes 
have been described, including a potential role for gut microbiota 
(108) (Figure 2).

In AD, reduced microbial richness and diversity were 
observed, with low abundance of Firmicutes and Bifidobacterium 
and increased Bacteroidetes that characterized the microbiome 
of AD patients (108). Correlations were found between the levels 
of Bacteroides, Turicibacter, and SMB53 and the concentration 
of glial activation biomarkers in cerebrospinal fluid of AD (108).

An increase in the abundance of the pro-inflammatory 
Escherichia/Shigella taxon, and a corresponding reduction in the 
anti-inflammatory E. rectale was associated with higher levels of 
inflammatory mediators in patients with cognitive impairment 
and brain amyloidosis (109). Also in a mouse model overex-
pressing amyloid precursor protein and presenilin 1 (APPPS1), 
a distinct microbial signature was observed with an increase 
in Rikenellaceae and decreased Allobaculum and Akkermansia 
compared with age-matched wild-type controls (110).

Interestingly, reduced levels of Akkermansia characterize gut 
microbiota of mice with obesity and type 2 diabetes (111), two 
potentially modifiable risk factors for AD (107). Importantly, 
both young and old GF APPPS1 transgenic mice displayed a 
drastic reduction of cerebral Aβ pathology when compared with 
control mice, along with a reduced microgliosis (110). Further to 

this, colonization of GF-APPPS1 transgenic mice with microbiota 
from conventionally raised APPPS1 transgenic mice increased 
cerebral Aβ pathology, while colonization with microbiota from 
wild-type mice was less effective in increasing cerebral Aβ levels 
(110). Notably, GF-APPPS1 displayed increased levels of the 
Aβ-degrading enzymes insulin degrading enzyme and neprilysin 
degrading enzyme, suggesting a mechanism through which gut 
microbiota influence cerebral Aβ amyloidosis (110).

In the same mouse model of AD, life-long antibiotic treat-
ment induced a considerable perturbation in gut microbial 
composition (including an expansion of Akkermansia) that was 
associated with marked changes in the circulating cytokine/
chemokine network, a striking reduction in amyloid plaque 
deposition, and a concomitant increase in soluble Aβ (112). This 
was accompanied by alterations in neuroinflammatory milieu 
that lead to reduced plaque-localized gliosis and altered micro-
glial morphology (112). Remarkably, early post-natal antibiotic 
treatment alone resulted in long-term alterations in gut microbial 
genera that were associated with changes in the inflammatory 
environment of serum and cerebrospinal fluid and attenuated 
Aβ amyloidosis in a manner similar to that observed in mice 
subjected to life-long antibiotic selection pressure (113). These 
findings corroborate the hypothesis of the presence of critical 
developmental periods in which the commensal microbiota 
manipulation may have long-lasting effects on host immunity 
and potential implications for neurodegenerative diseases.

In another model of AD, the 5xFAD transgenic mouse, elevated 
levels of APP were found not only in the brain but also in the 
different gut districts and this was associated with a distinct fecal 
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microbiota profile relative to wild-type animals, with an increase 
in pro-inflammatory species (e.g., Clostridium leptum) (114).

Alterations in gut microbiota composition together with 
the increase in intestinal permeability with age may lead to the 
translocation of microbes or microbial components [i.e., lipopol-
ysaccharide (LPS)] from the gut to induce systemic and CNS 
inflammation (115). Interestingly, in vitro and in vivo studies have 
demonstrated a possible association between LPS and AD pathol-
ogy. Coincubation of Aβ peptide with LPS potentiated amyloid 
fibril formation (116), and systemic administration of LPS in 
wild-type and transgenic AD mice induced neuroinflammation, 
amyloid deposition, and tau pathology (117–119). Moreover, in 
postmortem brain parenchyma and blood vessels from patients 
with AD, levels of LPS and Gram-negative E. coli fragments 
were greater compared with control brains and colocalized with 
amyloid plaques (120).

While the study of the microbiota gut–brain axis in AD is 
still in its infancy, promising preclinical data suggest that the 
modulation of gut microbiota through dietary ingredients or 
probiotics may provide a means to counteract the development 
or progression of neurodegenerative disease. For instance, in a 
triple-transgenic mouse model of AD (3xTg-AD), a formulation 
of lactic acid bacteria and bifidobacteria changed the composi-
tion of gut microbiota, stimulated the production of beneficial 
metabolites (e.g., increased SCFAs), reduced the levels of pro-
inflammatory cytokines, increased gut hormones concentration 
and positively modulate quality control processes and proteoly-
sis, reducing Aβ load and improving cognitive function (121). 
Moreover, the administration of the probiotic mixture VSL#3 
to aged rats induced a robust perturbation in gut microbiota 
composition, that was accompanied by gene expression changes 
in the brain cortex, attenuated age-related deficits in long-term 
potentiation, decreased microglial activation, and increased 
BDNF and synapsin levels (122). In addition, 3-hydroxybenzoic 
acid and 3-(3-hydroxyphenyl)propionic acid, the phenolic 
products of microbial conversion of grape seed polyphenol 
extracts (and other dietary polyphenols), may potently interfere 
with the assembly of Aβ peptides into neurotoxic Aβ aggregates 
in vitro (123).

Despite these interesting preliminary findings, more work is 
needed to determine whether gut microbiota modulation may be 
employed for the prevention and/or treatment of AD pathogenic 
processes.

Parkinson’s Disease
Parkinson’s disease is the second most common neurodegenera-
tive disorder, affecting 2–3% of the population ≥65 years of age 
(124, 125). Degeneration of the dopaminergic nigro-striatal 
pathway and widespread intracellular α-synuclein accumulation 
are the neuropathological hallmarks of PD that are associated 
with bradykinesia and other cardinal motor and non-motor 
features (126).

Gastrointestinal dysfunction, in particular in the form of 
constipation, is among the most frequent prodromal non-
motor symptoms of PD that may precede motor symptoms 
by decades (126). At later disease stages, oral issues includ-
ing drooling and swallowing problems and delays in gastric 

emptying further exacerbate gastrointestinal dysfunction (127). 
Aggregates of α-synuclein have been retrieved in the mucosal 
and submucosal nerve fibers and ganglia of the ENSs of PD 
patients at early disease stages (128, 129). In addition, some 
observations from experimental models support the intrigu-
ing hypothesis that intestinal α-synuclein may spread to the 
brain via postganglionic enteric neurons and the vagus nerve 
(130). Interestingly, the risk of developing PD was significantly 
decreased in patients who underwent a full truncal vagotomy 
compared with those who underwent selective vagotomy and 
in the general population (131).

Not surprisingly, gastrointestinal disturbances in people 
with PD are accompanied by alterations in fecal and mucosal 
microbial populations (31, 132–134). In particular, a reduced 
abundance of Prevotellaceae, mucin producers that regulate 
intestinal permeability, was commonly reported in PD patients 
(31, 132, 135, 136), while Enterobacteriaceae were positively asso-
ciated with the severity of postural instability and gait difficulty 
(31). Clostridium coccoides group was high in early PD patients, 
while Lactobacillus gasseri subgroup was high in advanced PD 
patients (132). A pro-inflammatory dysbiosis, characterized by 
low counts of “anti-inflammatory” butyrate-producing bacteria 
from the genera Blautia, Coprococcus, and Roseburia and higher 
“pro-inflammatory” Proteobacteria of the genus Ralstonia was 
also reported in individual with PD (133). Individuals affected 
by PD also showed lower levels of SCFA concentrations, derived 
from host–microbiota cometabolism, that may have neuroactive 
and immunomodulating properties (135). Other evidence of 
microbiota dysregulation in PD includes small intestine bacterial 
overgrowth and high rates of Helicobacter pylori infection (137, 
138). It is worth noting that this infection has also been involved 
in the pathogenesis of AD (139). Finally, the total abundance of 
intestinal bacterial was found to decrease during PD progression, 
with a low count of Bifidobacterium associated with worsening of 
PD symptoms (134).

Collectively, these findings suggest that perturbations in 
gut microbiota structure and function may be associated 
with the development and progression of PD through several 
potential mechanisms, including inflammation and bacterial 
translocation (Figure 2). However, findings in humans remain 
largely descriptive. Again, animal models provided some use-
ful insights into the physiopathological mechanisms linking 
gut dysbiosis to PD. Under GF conditions, or when bacteria 
were depleted in post-natal life following antibiotic treatment, 
transgenic mice overexpressing α-synuclein showed reduced 
microglia activation, α-synuclein inclusions, gastrointestinal 
symptoms, and motor deficits compared with animals with 
a complex microbiota (140). Moreover, administration of a 
mixture of microbially derived SCFAs (acetate, propionate, 
and butyrate) restored all major features of PD in GF mice, 
suggesting that microbial metabolic mediators may promote 
microglia activation and α-synuclein aggregation and con-
tribute to motor dysfunction in PD (140). Remarkably, mice 
transplanted with PD microbiota compared with mice who 
received microbiota from healthy human controls displayed 
enhanced motor dysfunction, suggesting that dysbiosis may 
be the environmental factor that combined with a genetic 
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FiGURe 3 | Gut microbial richness and diversity across life stages impact neurodevelopment and the central nervous homeostasis (yellow: low richness/diversity; 
red: high richness/diversity). Abbreviation: BBB, blood–brain barrier.

predisposition (α-synuclein overexpression) influences disease 
outcomes in mice (140).

As already outlined for AD, in neurodegenerative diseases, 
including PD, the passage of bacterial products from the intes-
tine to the circulation and into brain, or “molecular mimicry” 
processes induced by bacterial amyloids may trigger a persistent 
neuroinflammation (28, 141, 142) that in turn contributes to 
neuronal dysfunction and death (143). In this scenario, it has 
recently been proposed that Aβ production and aggregation may 
originally act as an antimicrobial defense and then infectious or 
sterile inflammatory stimuli may drive amyloidosis (144).

While it is currently recommended the use of fermented milk 
containing probiotics and prebiotic fiber in PD patients with 
constipation (145), the possible beneficial effects of the manipula-
tion of gut microbiota (through diet, live bacteria, or microbiota 
transplantation) on the initiation or progression of the neurode-
generative process have not yet been explored. Further studies 
are also needed to assess the possible interactions among these 
interventions and levodopa uptake and availability.

CONCLUDiNG ReMARKS

At the beginning of the twentieth century, the Nobel Prize win-
ner Elie Metchnikoff theorized in his tracts, The Nature of Man: 
Studies in Optimistic Philosophy (1903) and The Prolongation 
of Life: Optimistic Studies (1907), that health status could be 
improved and senility delayed by replacing the native gut 
microbes with lactic acid bacteria such as those present in 
yogurt (146). In the past few decades, this idea was resumed and 
updated under the influence of methodological and technologi-
cal advances in science (147). A more ecological perspective was 

then embraced and the concepts of complexity, (dis)harmony, 
(Nash)equilibrium, and personalization/precision were intro-
duced to capture the dynamic aspects of gut microbiota–host 
relationship (66, 147–149).

While the study of microbiota gut–brain axis is still in 
infancy, a number of potential mechanisms (and, hence, plau-
sible targets) have begun to be unveiled. Early-life interactions 
between host and colonizing gut microbes seem to influence the 
way in which the nervous system starts obtaining information 
about the external and internal environment in critical phases 
of neurodevelopment. BBB establishment and function, central 
inflammatory processes and neurogenesis may be differentially 
affected by the gut microbial assemblies and their metabolic 
products (Figure 3). Evidence is also accumulating for a role of 
life-long microbiota–host interactions in age-related disorders 
such as AD and PD.

Taken together, these data open up the possibility of devel-
oping interventions targeting the gut microbiota (in particular 
at the extreme ages of life) to improve brain health. Preclinical 
studies have suggested the efficacy of the modulation of the gut 
microbiota in ameliorating conditions such as depression and 
neurodegenerative diseases (150). A new term, “psychobiotics” 
(and related “psychobiotic properties”), was coined to define live 
bacteria (probiotics) and nutritional support for such bacteria 
(prebiotics), but also virtually any exogenous factor, such as diet, 
exercise, and drugs, acting on brain through bacterially mediated 
effects (19).

Despite the “optimistic nature” of this 100-year-old idea, 
future research should tackle several challenging questions before 
truly effective interventions in humans may be implemented. For 
instance, most of the published studies have only associated the gut 
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