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Geroscience, the new interdisciplinary field that aims to understand the relationship 
between aging and chronic age-related diseases (ARDs) and geriatric syndromes (GSs), 
is based on epidemiological evidence and experimental data that aging is the major risk 
factor for such pathologies and assumes that aging and ARDs/GSs share a common set 
of basic biological mechanisms. A consequence is that the primary target of medicine 
is to combat aging instead of any single ARD/GSs one by one, as favored by the frag-
mentation into hundreds of specialties and sub-specialties. If the same molecular and 
cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: 
which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs 
and GSs such as frailty can be conceptualized as accelerated aging will be discussed 
by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, 
cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down 
syndrome as an example of progeroid syndrome. According to this integrated view, 
aging and ARDs/GSs become part of a continuum where precise boundaries do not 
exist and the two extremes are represented by centenarians, who largely avoided or 
postponed most ARDs/GSs and are characterized by decelerated aging, and patients 
who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of 
accelerated aging, respectively. In between these two extremes, there is a continuum of 
intermediate trajectories representing a sort of gray area. Thus, clinically different, clas-
sical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding 
the same, limited set of basic mechanisms shared with the aging process. Whether 
an individual will follow a trajectory of accelerated or decelerated aging will depend on  
his/her genetic background interacting lifelong with environmental and lifestyle factors. 
If ARDs and GSs are manifestations of accelerated aging, it is urgent to identify markers 
capable of distinguishing between biological and chronological age to identify subjects 
at higher risk of developing ARDs and GSs. To this aim, we propose the use of DNA 
methylation, N-glycans profiling, and gut microbiota composition to complement the 
available disease-specific markers.
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iNTRODUCTiON: AGiNG AND 
PATHOLOGieS SHARe THe SAMe 
COMMON MeCHANiSMS

The longstanding question if old age is itself a disease has been 
addressed since ancient times, starting from the Roman play-
wright Terentius, who claimed “senectus ipsa est morbus” (old age 
itself is a disease), and Cicero who some decades later argued in 
De Senectute: “pugnandum, tamquam contra morbum sic contra 
senectutem” (we have to fight against aging, as we do against a 
disease). These quotations elegantly summarize a long-held view 
of aging and old age addressed by several scholars (see Appendix 
for further details). Notwithstanding, with the birth of modern 
medicine in the nineteenth century, this old tenet has been some-
how put apart, as the main interest at that time was to define pre-
cise medical entities (diseases and syndromes) and their causes 
(infections, genetics, degenerative processes, inflammation, 
etc.). This process ended up in considering aging and diseases as 
separate phenomena that could eventually interact but that are 
essentially different in nature. In this review, we will reappraise 
and challenge the old tenet that aging and age-related diseases 
(ARDs) and geriatric syndromes (GSs) are separate entities, and 
we will suggest instead that both should be considered as parts of 
a continuum. To support this hypothesis, we will highlight that 
aging and ARDs/GSs share the same basic molecular and cellular 
mechanisms.

Aging is the predominant risk factor for most diseases and 
conditions that limit healthspan. Accordingly, interventions in 
animal models that end up in an extension of lifespan prevent or 
delay many chronic diseases. Why? For many years the explana-
tion was that aging per  se is a physiological condition, which 
favors the onset of many diseases. However, their relationship is 
likely much more complex, and a major reason is because they 
share the basic mechanisms. Assuming that aging and ARDs/
GSs share the same mechanisms, which are commonalities 
and differences? In this review, we will argue that an integra-
ted hypothesis, fitting most epidemiological and experimental 
data, is to consider ARDs/GSs as an acceleration of the aging 
process. The conceptualization of accelerated aging started 
from the observation of rare genetic disorders (1), including 
Hutchinson–Gilford progeria (2), mandibuloacral dysplasia 
(3), Werner’s syndrome (4), and aneuploidies such as Down 
syndrome (DS) (5). Here, we extend the concept of acceleration 
of aging to those members of the general population undergoing 
ARDs and GSs, in comparison with a small minority of people, 
such as centenarians, who reach extreme age largely avoiding or 
postponing most ARDs/GSs. This consideration is reinforced by 
the observation that among centenarians there are few subjects 
who never suffered of any overt ARDs. These exceptional indi-
viduals can be taken as a proof of principle that “healthy” aging 
and diseases can occur separately, as phenotypes at the extreme 
of a continuum, which is fueled by a common set of molecular 
and cellular mechanisms.

Which are the basic mechanisms shared by aging and ARDs/
GSs? A group of international experts identified “seven pillars” 
which actually include adaptation to stress, loss of proteostasis, 
stem cell exhaustion, metabolism derangement, macromolecular 

damage, epigenetic modifications, and inflammation (6). Many 
chronic diseases and pathological conditions (listed in Table 1) 
are at least in part determined by (some of) these mechanisms, 
as it will be detailed in the next paragraphs, lending support to 
this hypothesis.

Following this idea, the very difference between aging and  
diseases would relay on the rate/speed and intensity of aging 
cellular and molecular processes, combined with specific organ/
systems genetic and lifestyle/habit predisposition. Thus, on the 
long run, all the functional domains undergo a physiological 
decline that eventually can lead to overt clinical diseases, favored 
by organ/system-specific genetic and environmental factors. This 
progressive path generates a continuum between the healthy 
juvenile status and the impaired unhealthy elderly one. Accord-
ingly, all major ARDs/GSs are characterized by a long subclinical 
incubation period, where the diagnostic signs of diseases are 
largely unobservable due to the high operational redundancy of 
biological systems. This redundancy, together with the progres-
sive capacity of cells and systems to adapt (“remodeling theory 
of aging”) (31, 32) is capable to buffer the progressive accumula-
tion of molecular damages, thus hampering the availability of 
objective early diagnostic signs/tools. As an extreme example in 
neurodegenerative diseases such as Parkinson’s disease (PD), it is 
possible to ascertain advanced anatomopathological alterations 
in the absence of any specific clinical symptoms in patients died 
of other diseases.

Accordingly, aging on one side and ARDs/GSs on the other 
have to be considered different trajectories of the same process 
but with a different rate depending on diverse genetic background 
and lifestyle (33–35). Some considerations can help the reasoning 
on this topic: (i) aging has not been selected during evolution, and 
no gerontogene has been identified so far, i.e., no gene has been 
apparently selected with the precise purpose to trigger/cause the 
aging phenomenon, thus leaving a large space for stochasticity 
(36); (ii) genetics and environment interact with each other to 
determine the eventual phenotype. These two considerations 
can explain (a large part of) the heterogeneity of phenotypes 
observed in aged persons. Actually, the primary aim of a gene 
(or group of genes) is always devoted to increase the survival 
or reproductive fitness of the organism, and aging could be an 
unpredicted byproduct of its basic function. Following this idea, 
some years ago Mikhail Blagosklonny and Michael Hall proposed 
that aging could be conceptualized as a sort of dysregulated 
continuation of the normal developmental process and related 
cellular “programs,” with particular emphasis on mTOR-driven 
growth (37, 38). According to this theory, overactivation of sig-
nal transduction pathways and exacerbation of normal cellular 
functions such as growth, leading to alteration of homeostasis, 
malfunction, and organ damage are likely the driving forces of the 
aging process including the onset of ARDs. This theory comple-
ments the “inflammaging” theory of aging (39). Inflammation is 
among the aforementioned “seven pillars,” and inflammaging is 
defined as the chronic, low-grade (subclinical) and sterile inflam-
mation that is observed in old persons. It is caused by increased 
stimulation of innate immune system by “non-self ” (persistent 
infections), “self ” (cell debris, nucleic acids, glycated proteins, 
etc.), and “quasi-self ” [gut microbiome (GM)] components of our 
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TABLe 1 | Age-related pathologies and molecular relationship with aging.

Age-related 
pathology

Mechanisms shared with aging process Markers References/
reviews

Alzheimer’s disease Inflammation
Oxidative stress
Mitochondrial dysfunction
Decreased proteasome activity
Cellular senescence
Gut microbiota alterations

IL-6, TNF-α, IL-1β, TGFβ, IL-12, IL-18, and INFγ

8-hydroxyguanosine, 8-hydroxy-2′-deoxyguanosine,  
oxidized proteins, and lipid peroxidation
20S core reduced activity
Presence of senescent cells
Activation of pro-inflammatory cytokines, increased  
intestinal permeability

(7)
(8)
(9)
(10)
(11)
(12)

Cancer Inflammation
Cellular senescence

IL-6; presence of senescent cells (13–16)

Chronic obstructive 
pulmonary disease

Telomere shortening
Oxidative stress
Cellular senescence
Inflammation, inflammasome; activation of NLRP3
Activation of PI3 kinase–mTOR signal
Dysregulated nutrients sensing; loss of proteostasis 
autophagy mitochondrial dysfunction
Stem cell exhaustion

p21CIP1/WAF1, p16INK4a, β galactosidase activity,  
and senescence-associated secretory phenotype
IL-1β, IL-6, IL-18, chemokines (CXCL8 and CCL2), metalloproteinases

Stress markers such as Parkin and phosphatase and tensin  
homolog-induced protein kinase 1

(17, 18)

Maculopathy Chronic retinal inflammation, dysregulation of autophagy, 
accumulation of oxidative stress-induced damage,  
protein aggregation, and lipofuscinogenesis

Heat shock proteins; Abs vs self-epitopes; and  
inflammasome activation

(19, 20)

Osteoarthritis Cell disruption; cellular senescence; mitochondrial 
dysfunction and oxidative stress; and reduced  
autophagy; inflammation

HGMB1; HGMB2; and IL-8 (21)

Osteopenia/
osteoporosis

Chronic inflammation TNF-α; IL-6; CRP; and inflammatory markers (22)

Parkinson’s disease Inflammation
Cellular senescence
Gut microbiota alterations

Presence of inflammatory cells (astrocytes) and senescent cells
Activation of pro-inflammatory cytokines, increased intestinal  
permeability, and alteration of the serotonin system

(23)
(24)
(25)

Periodontitis Inflammation Porphyromonas gingivalis express peptidylarginine deiminase  
generating citrullinated epitopes

Pro-inflammatory cytokines

(26)

Rheumatoid arthritis Cell death and chronic inflammation Abs vs modified self-epitopes; HGMB1
Matrix metalloproteinases

TNF-α; IL-1β; and IL-6

(27)

Sarcopenia Inflammation and oxidative stress Elevated levels of TNF-α, IL-6, IL-1, and CRP (28–30)
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body as a meta-organism, and by accumulation of senescent cells 
characterized by a pro-inflammatory secretory profile (40, 41). 
Thus, both the overactivation and inflammaging theories agree 
that programs selected for development and survival (inflamma-
tion) can turn detrimental when continue to be active unabated 
for a period time longer than that predicted by evolution. The 
same can apply for other programs of the abovementioned “seven 
pillars.”

AGe-ReLATeD PATHOLOGieS

In this paragraph, we will discuss the involvement of some 
molecular mechanisms known to cause aging in a number of 
ARDs/GSs, in particular frailty and sarcopenia, chronic obstruc-
tive pulmonary disease (COPD), cancer, and Alzheimer and 
Parkinson diseases. We will also discuss the manifestations of 
premature senescence of a genetic syndrome, such as DS, which 
are present also in normal aging but occur much earlier at the 
level of immune and nervous system in DS. Cardiovascular 

diseases and type 2 diabetes are also very important pathologies 
that affect millions of patients and do share molecular mecha-
nisms with aging, including inflammation and oxidative stress, 
but for reasons of space limitations, a detailed discussion of these 
pathologies will be skipped out.

Frailty Syndrome
Typical GSs include frailty, mild cognitive impairment, and 
metabolic syndrome. In particular, frailty is described as a mul-
tidimensional syndrome of the elderly characterized by a loss of 
physiological reserves, poor response to, and recovery from (even 
mild) stress. This condition leads to an increased vulnerability to 
a wide range of adverse health outcomes and is associated with 
increased morbidity and mortality. However, frailty is peculiar 
as it displays a wide spectrum of phenotypes depending on the 
criteria that are considered for its definition, as well as the age 
range of the subjects studied. To this regard, both clinicians and 
researchers are becoming more and more aware of the consider-
able ambiguity around the concept of frailty. Conflicting ideas 
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have proliferated on the definition of frailty, what criteria should 
be used for its recognition, and its molecular relationships with 
aging, disability, and chronic diseases (42).

In the 2001, Fried et al. elaborated five criteria to define frailty, 
i.e., unintentional weight loss, poor hand grip, slow speed gate, 
feelings of exhaustion and low physical activity. Persons (usually 
older than 65 years) meeting three or more out of these five cri-
teria are classified as frail and have an increased risk of incident 
falls, worsening mobility or ADL disability, hospitalization, 
and death in the following 3  years. Intermediate frailty status 
or pre-frail condition, as indicated by the presence of one or 
two criteria, showed intermediate risk of these outcomes (43). 
During the last decade, several frailty-rating scales have been 
developed to detect and screen the level of frailty, such as the 
Frailty Risk Index (44–46). An impressive amount of literature 
has been published suggesting that a complex network of clinical 
signs produce a large spectrum of frailty conditions and pheno-
types (47) with different risk index of mortality after 3–5 years of 
follow-up. Surprisingly, the condition of frailty may be reverted 
and subjects can return to a non-frail condition, for example, 
when specific pathologies are cured, or personalized interven-
tions in terms of physical exercise, with or without nutrition 
supplementation, are applied (48, 49).

This quite peculiar condition deserves some assumptions, 
such as that frail is an epiphenomenon and “etiology” may be 
quite different in the population, also depending on the possible 
overlapping with sarcopenia, i.e., the age-related loss of muscle 
mass and strength that will be discussed later. Actually, many 
signs of frailty are related to sarcopenia, and if both conditions are 
present in the same individual, they favor the state of vulnerabil-
ity, increasing the risk of negative health outcomes. Nevertheless, 
a low number of studies have assessed the coexistence of these 
two entities in the same cohort of older people.

Recently, the Toledo Study of Healthy Aging (a study of 65+ 
community-dwelling elderly) including 1,611 participants with 
frailty and sarcopenia assessments indicated that the prevalence 
of frailty (assessed by Fried’s criteria) among those with sarcope-
nia was from 8.2 up to 15.7%, depending on the different criteria 
for sarcopenia assessment. Moreover, among frail people, the 
prevalence of sarcopenia was from 40.27 up to 72.2%, according 
to the used criteria. Sarcopenia showed a low sensitivity but high 
specificity for the diagnosis of frailty thus suggesting that frailty 
and sarcopenia are distinct but interrelated conditions (50).

Furthermore, the molecular mechanisms underpinning frailty 
syndrome are still not completely clarified even if many data  
suggest a tight relationship with inflammatory status and immu-
nosenescence which are also shared in sarcopenia (30), as it will 
described below. Likely, both frailty and sarcopenia contribute 
to further development of morbidities. Importantly, the role of 
inflammaging to the frailty syndrome onset is still an open ques-
tion (51), and further studies are needed to clarify the causality 
between chronic low-grade inflammation and development of 
frailty, as well as the conditions/treatments that make possible 
the reversibility of the frailty status. It is important to note that 
Fried and Ferrucci (52) were the first to elaborate the concept 
of frailty as a syndrome of “accelerated aging” and to note that 
clinical frailty is associated with the presence of multiple 

chronic diseases. In turn, the risk to become frail increases with 
the number of such diseases present, thus reinforcing the idea 
of a continuum between health, diseases, and comorbidity.  
To this regard, a multidimensional approach allows a more robust 
interpretation of the various relationships among the pro- and 
anti-inflammatory markers and inflammaging (53), and likely 
an important contribution could be obtained by introducing 
also frailty risk and mortality indexes in a context of a complex 
dynamical network (54) to better disentangle those clustering 
factors that may accelerate aging.

Sarcopenia
One of the most pervasive and macroscopic phenomena occur-
ring with aging is the progressive decline of skeletal muscle 
mass, strength, and function, leading to a condition indicated 
as sarcopenia. Sarcopenia is associated with a reduced quality of 
life in older adults, and it is considered as a key risk factor for 
negative health outcomes associated with disability, frailty, loss of 
independence, morbidity, and mortality (55, 56). Several factors 
are involved in the pathophysiology of sarcopenia; however, its 
etiology is still unclear. The more recent evidence suggests that 
the onset and progression of sarcopenia depend on a combina-
tion of mechanisms that alter the normal physiology of skeletal 
muscle, some of them being considered also as key driver of the 
aging process. Among the mechanisms that participate to the 
pathogenesis of sarcopenia there are endocrine changes, loss 
of regenerative capacity, muscle fiber denervation, increased 
deposition of intermuscular and intramuscular fat, mitochondrial 
dysfunction, oxidative stress, and inflammation (57, 58). These 
two latter mechanisms in particular are involved also in the aging 
process. Loss of regenerative capacity of satellite cells (the stem 
cells of the muscle) is another feature shared with aging. However, 
this mechanism, although important in vivo, has been put under 
scrutiny and will not be further discussed here. In fact, satellite 
cells from old muscles display a proliferative capacity similar to 
those derived from young muscles, if cultured in an appropri-
ate medium enriched with plasma from young donors (59, 60), 
therefore casting some doubts on the fact that satellite cells from 
old muscle are actually defective or exhausted. On the contrary, 
these data suggest that stemness as well as other features of satel-
lite cells are strongly dependent on the environmental context 
(namely but not exclusively soluble factors) and are therefore cell 
independent.

Actually, emerging epidemiological and molecular studies 
indicate that immunosenescence and inflammaging strongly 
contribute to the pathophysiology of sarcopenia (30, 61). The 
age-related changes in the cells of the innate immune system 
indirectly contribute to sarcopenia by an increase of systemic 
inflammation. In physiological conditions, in response to dam-
age, neutrophils migrate in skeletal muscle, followed by M1 mac-
rophages that lead to muscle inflammation. This early phase is 
followed by infiltration of M2 macrophages that produce soluble 
factors that repair the muscle injury and promote regeneration 
(62). With aging, the activity of neutrophils decreases, espe-
cially in terms of migration capacity. It has been hypothesized 
that, once in the muscle, neutrophils with impaired migra-
tion capacity can contribute to increased inflammation (30).  
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The incomplete muscle recovery is associated with an increase 
of pro-inflammatory cytokines and a prolonged inflamma tory 
res ponse to muscle injury that causes muscle atrophy and  
weak ness (28).

Regarding systemic inflammation a possible involvement in 
sarcopenia has been proposed and depends upon the degree 
of intensity of inflammation. A comparative analysis of skeletal 
muscle alteration at different ages from four species, i.e., mice, 
rats, rhesus monkeys, and humans, revealed not only a con-
served age-dependent decrease in mitochondrial content, and a 
reduction in oxidative phosphorylation complexes in monkeys 
and humans but also a human-specific age-related increase of 
phosphorylated NF-κB (63). Actually, a moderate inflamma-
tion is beneficial and fundamental to activate a response to a 
stress, but when the inflammation becomes chronic and more 
elevated, the response to muscle injury turns detrimental.  
In other words, a mild level of systemic inflammation present 
in physiological aging may not affect the loss of muscle mass 
or strength, but only the metabolic quality of skeletal mus-
cle; conversely a more severe systemic inflammation (often 
accompanied by a local inflammation) present in a condition 
of accelerated aging, contributes to the loss of muscle mass 
and strength and the progression of sarcopenia (30). Although 
the molecular mechanisms associated with inflammaging and 
the loss of skeletal muscle mass are not yet totally understood, 
studies revealed that inflammaging contributes to the genesis 
of sarcopenia by affecting the balance between muscle anabolic 
and catabolic processes (64). In particular, elevated levels of 
TNF-α, IL-6, IL-1, and CRP favor muscle protein breakdown 
and inhibit protein synthesis through the activation of NF-κB 
and ubiquitin–proteasome pathway. This shift toward catabolic 
process then culminates in myofiber proteolysis, atrophy and 
loss in regenerative ability that leads to skeletal muscle func-
tional decline (29, 30). Emerging evidence indicates that the 
progression of sarcopenia is also amplified by a self-sustaining 
loop between immunosenescence, inflammaging, and oxidative 
stress (58, 61). There is in fact a close interconnection and/or 
overlapping between the molecular pathways of inflammation 
and those of oxidative stress in the generation of reactive oxygen 
species (ROS). These species have pathological consequences for 
the health of human body not only associated with the develop-
ment of sarcopenia but also a number of other ARDs, including 
typical age-related endocrine dysfunctions such as decreased 
pancreatic β-cell function and thyroid autoimmunity, among 
others (65). An uncontrolled accumulation of oxidative stress 
and inflammation may act as a bridge between normal aging 
and accelerated aging. In conditions of accelerated aging, mus-
cle weakness is often accompanied by other pathophysiological 
features, such as low bone density and increased fat mass, thus 
leading to osteoporosis and obesity. All these disorders have 
been recently indicated with the term “osteosarcopenic obesity” 
(66), and, as mentioned earlier, they can be listed among the 
determinants of frailty (30, 67).

Chronic Obstructive Pulmonary Disease
Aging is one of major risk factors for many chronic inflammatory 
diseases, e.g., diabetes, CVD, atherosclerosis, dementia, cancer, 

and others including COPD, and can impact differently on organs 
and tissues affecting their functions and structure (68).

Aging of the lung is characterized by reduction of function, 
pulmonary inflammation, increased gas trapping, loss of lung 
elastic recoil and enlargement of the distal air space. These 
pathological signs are slowly progressive and are also pathog-
nomonic of COPD. In fact, the overall increase in COPD is 
probably related to the aging of the population, as this disease 
predominantly affects the elderly, with the peak of prevalence 
at about 65 years (69, 70). COPD is an obstructive lung disease 
characterized by long-term breathing problems, poor airflow, 
and destruction of the lung parenchyma (emphysema) (71). 
The main cause of COPD in industrialized countries is smoking 
but is also present in underdeveloped countries as a result of 
exposure to household air pollution, poor nutrition, and damp 
housing conditions (72–74). The slowly progressive airway 
obstruction of COPD and in particular the emphysema could 
represent an acceleration of the normal decline of lung function 
with age (75, 76).

Recent and extensive studies (18, 77) have pointed out that in 
COPD are present many of the hallmark of aging, e.g., telomere 
shortening, activation of PI3 kinase–mTOR signaling, altered 
autophagy, mitochondrial dysfunction, stem cell exhaustion, 
as well as a low-grade inflammation and cellular and immune 
senescence.

Telomere attrition leading to cellular senescence (replicative 
senescence) or cell death, have been described in leukocytes from 
patients with COPD in comparison with control subjects in any 
age range (78). Moreover, parenchymal lung cells of emphyse-
matous patients display shorter telomeres associated with cell 
senescence and inflammation (79, 80). In a meta-analysis of 
14 studies, a significant negative association between telomere 
length and COPD has been observed (81). This telomere shorten-
ing in COPD could be due to an augmented oxidative stress from 
cigarette smoke that activates p21, leading to cellular senescence 
and increased release of pro-inflammatory cytokines (79). Cell 
senescence in COPD is evident by the enhanced expression of 
senescence markers such as p21CIP1/WAF1, p16INK4a, and 
senescence-associated β-galactosidase activity in lung cells (82). 
Lung macrophages from COPD patients can also express senes-
cence markers (18). Furthermore, in COPD there is an increa sed 
expression of components of the secretory profile of senes cent 
cells, defined as senescence-associated secretory phenotype 
(SASP), including pro-inflammatory cytokines (IL-1 and IL-6), 
chemokines (CXCL8 and CCL2), and matrix metalloproteinase 
(MMP) 9 (18). As mentioned, SASP, in association with immu-
nosenescence, is a key determinant of inflammaging that have a 
negative impact in the neighboring lung tissue and, as discussed, 
probably also in the whole organism (17).

The immunosenescence of both innate and adaptive immune 
cells and the consequent inflammaging might play a role in COPD 
development and progression. Recently, it has been demonstrated 
in aged mice exposed to chronic cigarette smoke, that activation  
of immune system and inflammaging contribute to the acceler-
ated pathogenesis of emphysema, the increased chronic lung 
tissue inflammation due to the increased production of inflam-
matory mediators and this promotes the onset of COPD (83).

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


6

Franceschi et al. ARDs As Accelerated Aging

Frontiers in Medicine | www.frontiersin.org March 2018 | Volume 5 | Article 61

The mTOR pathway has an important role in cellular senes-
cence and aging. In fact, an inhibition of this pathway extends 
the lifespan of many species (84). The activation of PI3 kinase–
mTOR signaling pathway has been demonstrated in epithelial 
cells from the lungs of patients with COPD. The activation of 
the IGF-1/AKT/mTOR pathway suppresses autophagy, but it 
also counteracts activation of FOXO transcription factors, which 
are central regulators of metabolism, cell-cycle progression 
and programmed cell death (85). A diminished expression of 
FOXO3 protein has been demonstrated in the lungs of smokers 
and patients with COPD suggesting that dysregulated nutrient 
sensing, together with loss of proteostasis, may contribute to the 
pathogenesis of COPD (85, 86). Two central mechanisms are 
involved in proteostasis to degrade and remove the misfolded 
or damaged proteins, i.e., autophagy–lysosome system and the 
ubiquitin–proteasome system. The impairment of these pathways 
characterizes numerous ARDs but also the aging process itself 
(87, 88). A large amount of data indicate that the mechanisms 
involved in homeostasis and proteostasis collapse with advanc-
ing age, favoring the accumulation of the unfolded, misfolded, 
or aggregated proteins (89). The decline of ubiquitin–proteasome 
system during aging may be due to various alterations including 
decreased expression of proteasome subunits and insufficient or 
inappropriate assembly; reduction of proteasome function due 
to decreased ATP availability from mitochondrial malfunction. 
An increase of inducible subunits has been demonstrated as 
consequence of the abovementioned alterations in many tissue 
and organs (e.g., the skeletal muscle). This induction could be 
a compensatory mechanism altering the balance between con-
stitutive proteasomes and immunoproteasomes and an effect of 
inflammaging (90).

A decline in proteasome activities has also been reported in 
human senescent fibroblasts (91). Conversely, the fibroblasts 
from centenarians, a group of individuals who have gone through 
the aging process successfully because they maintain their good 
mental and physical shape, show levels of proteasome activities, 
oxidized proteins, and RNA and protein expression of several 
proteasome subunits similar to the levels found in cultures 
obtained from young donor. Consequently, maintenance of 
proteasome function in centenarians has been suggested to be 
an important factor for their successful aging (92). Collapse of 
the mechanisms that lead to failure of proteostasis may have 
detrimental consequences for organisms. For example, failure 
of the proteasomal system has been linked to several patholo-
gies, including neurodegenerative diseases (e.g., Alzheimer’s; 
Parkinson’s; and Huntington’s), cardiovascular diseases (e.g., athe -
rosclerosis), immune system-associated diseases [e.g., rheumatoid  
arthritis (RA)], skin aging, cancer, and COPD, among others 
(93). In COPD, the oxidative stress induced by cigarette smoke 
can alter the proteins such as histone deacetylases contributing 
to their inefficient degradation by proteasome system or by 
autophagy (94, 95). Proteasome activity is decreased in patients 
with COPD and correlates inversely with the loss of lung function 
(96). Moreover, alveolar macrophages from cigarette smokers 
showed defective autophagy that could contribute to the accu-
mulation of damaged proteins, abnormal mitochondrial func-
tion, and defective clearance of bacteria (97). There is evidence 

of increased markers of autophagy in lung tissue from patients 
with emphysema, suggesting that autophagy may be contributory 
to the apoptosis and alveolar destruction in emphysema (96).  
As abovementioned autophagy is also impaired through the acti-
vation of phosphoinositide 3-kinase–mTOR signaling in COPD 
(98) and may contribute to defective phagocytosis of bacteria in 
COPD (99).

Mitochondrial dysfunction is also present in COPD. In 
particular, an increased mitochondrial ROS production and 
a reduced number of mitochondria are typical features of the 
disease (100). The airway epithelial cells from smokers display an 
altered mitochondrial structure and function (101), and actually 
markers of mitochondrial stress such as increased expression 
of Parkin, phosphatase, and tensin homolog–induced protein 
kinase 1 are present in epithelial cells from patients with COPD 
(102). These changes in epithelial cells are accompanied by an 
augment in pro-inflammatory cytokines secretion such as IL-1β, 
IL-6, and CXCL8 (101). Mitochondrial alterations and ROS pro-
duction can induce the NLRP3 inflammasome, which stimulates 
IL-1β and IL-18 secretion in chronic inflammatory diseases. The 
transcription factor peroxisome proliferator-activated receptor-γ 
coactivator (PGC)-1α is a critical regulator of mitochondrial bio-
genesis and the generation of mitochondrial ROS. It is increased 
in epithelial cells of mild COPD patients but progressively 
reduced with increasing COPD severity (103).

Finally, stem cell exhaustion, typical of aging process, is also 
present in COPD. The basal progenitor cells required for air way 
epithelial differentiation actually display a reduced regenerative 
capacity in COPD patients (104).

Cancer
Many types of cancer are essentially ARDs, as their frequency 
dramatically increases with age, and age represents the single 
most powerful risk factor for cancer to occur. This phenomenon 
is likely not linked to a decreased efficiency of DNA mutation 
checkpoint and repair. Conversely, a growing amount of evidence 
suggests that the increasing number of transforming mutations 
occurring in old subjects is fostered by a much more permissive 
environment that allows DNA damage to occur and, probably 
most important, allows transformed cells to progress into malig-
nancy and metastatization. The main feature of such a permissive 
environment is likely the presence of an elevated level of pro-
inflammatory stimuli, either related to the immune response to 
cancer or independent from it. Actually multiple lines of evidence 
indicate that immune inflammatory cells can actively promote 
tumor growth, as such cells are capable of fostering angiogenesis, 
cancer cell proliferation, and invasiveness (16). Therefore, a posi-
tive response aimed at counteracting cancer has the paradoxical 
effect of promoting tumor growth, invasion, and metastasis 
(105–108). Importantly, inflammation is in some cases evident at 
the earliest stages of neoplastic progression and is demonstrably 
capable of fostering the development of incipient neoplasias into 
full-blown cancers (107, 109), as inflammatory cells can release 
ROS that are actively mutagenic for nearby cancer cells, accelerat-
ing their genetic evolution toward heightened malignancy (106). 
Stressed or necrotic cells can be the source of molecules that 
can attract inflammatory cells leading to the abovementioned 
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promoting effects on the tumor, as seen, for example, in mela-
noma, where exposure to UV light leads to the release of HMGB1 
protein from keratinocytes, that in turn attracts and activates 
neutrophils and induces the production of angiogenetic factors 
(110). The same effects can be obtained even in the absence of 
an infiltration of inflammatory cells, granted that other cells can 
sustain the production of the same array of pro-inflammatory 
mediators. This is the case when senescent cells accumulate 
in a tissue. Cell senescence is an effective mechanism to halt 
neoplastic transformation, as cells with damaged DNA can enter 
cell senescence and stop proliferating. However, as mentioned, 
senescent cells are characterized by a pro-inflammatory secre-
tory phenotype (SASP) (111) that includes metalloproteinases 
and angiogenetic factors. Many of these factors can contribute 
to the acquiring of malignant and metastatic features of cancer 
cells (112). Therefore, the occurrence of an antineoplastic 
mechanism can paradoxically end up in fostering the neoplastic 
transformation of premalignant cells through SASP (13, 14). 
Actually, it is known that aging is characterized by accumulation 
of senescent cells, due to either inefficient clearance or increased 
number of cells undergoing this process, and, accordingly, SASP 
is considered a main driver of inflammaging. SASP, in turn, can 
ignite DNA damage response and synthesis of pro-inflammatory 
cytokines in surrounding cells in a self-amplifying loop, leading 
to the proposal that inflammaging can be a substantial driver 
of the increase in cancer incidence and progression observed in 
aged people (113).

The phenomenon of inflammaging (at the level of stem cell 
niche) can be therefore a risk factor for cancer development and, 
since inflammaging increases with age, this would account for 
association between cancer and old age. This can be exemplified 
by the case of myeloproliferative neoplasms (MPNs), which are 
acquired age-associated clonal disorders of the hematopoietic 
stem/progenitor cells (HSPCs). MPNs are characterized by a 
state of chronic inflammation due to the continuous release 
of inflammatory products from in  vivo activated leukocytes. 
This state of chronic inflammation (or inflammaging) affects 
both the malignant HSPCs and the non-malignant/malignant 
microenvironment, likely being the main contributor in MPNs 
initiation/clonal evolution (114, 115). This inflammatory micro-
environment is a key factor in MPNs pathogenesis, since strong 
evidences suggest that stromal cells are primed by the malignant 
hematopoietic clone, which, in turn, conditions the stroma to 
create a favorable microenvironment that nurtures and protects 
the malignant cells (116).

Among the classical component of inflammaging, IL-6 occu-
pies a prominent place. It has been demonstrated that IL-6 drives 
the progression toward the acquisition of a malignant phenotype 
of cancer cells (15) and that the blockade of IL-6 signaling has 
strong effects in vivo on tumor progression, interfering broadly 
with tumor-supportive stromal functions, including angiogenesis, 
fibroblast infiltration, and myeloid suppressor cell recruitment in 
both the tumor and premetastatic niche (117).

As a whole, it is widely accepted that inflammation and cancer 
are strictly connected and that inflammation is involved in can-
cer onset and progression. Inflammaging seems to be an almost 
universal feature of human aging, so it can be hypothesized 

that if a subject could live long enough, the effect of inflam-
maging on his/her probability to get cancer would become very 
important. Similarly, it can be reasoned that a person who got 
cancer at 60 years of age is comparable (as far as inflammaging is 
concerned) to a much older person, thus it could be speculated 
that cancer is to a certain extent a consequence of an accelerated 
aging process. To further support this hypothesis, it is known that 
many syndromes of premature, accelerated aging like Werner 
syndrome and ataxia telangiectasia are also characterized by 
increased frequency of malignancies (118, 119). On the other 
side, centenarians (who can be considered to be biologically 
younger than their chronological age) rarely die by cancer (120). 
Of course many factors concur in malignant transformation 
other than inflammation; however, this fascinating hypothesis 
certainly deserves further investigations.

Neurodegenerative Diseases
Alzheimer’s disease (AD) and PD are the most common neuro-
degenerative diseases in the world (121). These diseases are age-
associated and most often have a long prodromic phase preceding 
the clinical manifestation with a subsequent stage of progression 
leading to signs of dementia with similar symptoms such as 
memory impairment, orientation problems, and difficulties in 
performing service functions among others. AD and PD are 
referred to as “protein misfolding” diseases because deposits of 
improperly folded modified proteins are detected in specific areas 
of the brain (122–124). In the case of AD, these deposits contain 
β-amyloid proteins and hyperphosphorylated tau protein (tau-P), 
which, respectively, form extracellular plaques and intracellular 
fibrillar tangles (125). In the case of PD, the deposits—called 
Lewy bodies—are formed by the accumulation of α-synuclein 
protein in dopaminergic neurons mainly of the substantia nigra, 
as well as in other regions of the brain (126). In both AD and 
PD, neurodegeneration processes are generally accompanied by 
neuroinflammation (127).

Alzheimer’s Disease
The clear diagnosis of AD is made only postmortem, and no 
effective disease-modifying therapy exists at the moment 
(128). On living patients, AD is diagnosed by a combination 
of cognitive tests and neurobiological markers [brain imaging, 
decreased amyloid beta Abeta42 (Ab) level and/or increased 
total and hyperphosphorylated tau-P in cerebral spinal fluid] 
(129). These tissue changes precede the onset of clinical signs by 
several years, implying that AD neuropathological lesions may 
be found in a subset of cognitively normal elderly persons (130). 
This suggests that (i) although senile amyloid beta (Abeta) 
plaques play a role in the AD dementia, the scenario is more 
complex and other (major) drivers are also involved; (ii) there 
is a continuum between neurodegenerative AD dementia and 
the dementia-free brain aging. The limits of the current con-
ceptualization on AD pathogenesis and of the amyloid cascade 
hypothesis are well summarized by two Nature Neuroscience 
papers released in 2015 (131, 132). In fact, many other poten-
tially harmful phenomena take place in AD pathogenesis, 
some of them being shared with the aging process, such as oxi-
dative stress, mitochondrial dysfunction, neuroinflammation, 
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decrease in proteasome activity (10) and deregulation of basic 
mechanisms of cell functioning (autophagy and DNA damage 
response). In many cases, these phenomena are not immediately 
connected to Abeta deposition and neurofibrillary changes.  
In particular, neuroinflammation in AD involves not only 
resident cells (microglia, astrocytes, and neurons) but also cells 
and soluble factors of the peripheral immune system that can 
enter into the brain (133). To this regard, inflammaging can 
stimulate the development of neuroinflammation and neurode-
generation (134, 135). This effect is due to soluble mediators that 
can enter the blood–brain barrier, essentially cytokines, whose 
network can be deranged in AD (136), therefore the assessment 
of peripheral inflammatory markers should be considered 
in the monitoring of the efficacy of therapeutic approaches.  
A meta-analysis demonstrated that increased serum levels of 
IL-6, TNF-α, IL-1β, TGFβ, IL-12, IL-18, and IFNγ characterize 
AD (7). Interestingly, IL-6 is capable of entering the blood–brain 
barrier and has a role in memory consolidation (137). The pro- 
inflammatory cytokines IL-1β and TNF-α exert variable 
(inhibiting or supporting) synapse-specific effects on long-term 
potentiation maintenance (138). It was also shown that IL-1β 
and TNF-α in combination with IFNγ can exacerbate the 
pathology in AD due to alterations of the β-amyloid precursor 
protein (βAPP) metabolism resulting in triggering the produc-
tion of β-amyloid peptides (139, 140).

The balance of antioxidant and oxidant system activity is 
deranged in cells affected by AD. Elevated levels of oxidative 
stress markers are also present in mitochondria isolated from 
peripheral lymphocytes of AD patients (141). Mitochondrial 
DNA (mtDNA) inherited mutations have also been associated 
with AD onset (142). AD patients are characterized by signifi-
cant increases in blood cells of markers of oxidative stress for 
both RNA (8-hydroxyguanosine) (8) and DNA (8-hydroxy-
2′-deoxyguanosine), together with a considerable decrease 
in antioxidant defense (9, 143, 144). Moreover, high levels of 
oxidized proteins and of products of lipid peroxidation are 
also found. In particular, a significant increase in the degree 
of lipoprotein oxidation was observed in the peripheral blood 
of AD patients (145). Neutrophils are the main source of ROS 
production in the sites of inflammation. A possible participation 
of neutrophils in the development of AD has been demonstrated 
(146). Oxidative stress in neurons it is also able to produce a 
DNA damage response that in turn leads to apoptosis or cel-
lular senescence (11). A potential contributor to age-related 
inflammation in the brain can then be cellular senescence, likely 
occurring in replication-competent glial cells. Recent studies 
from several laboratories suggest that senescent cells are detect-
able in the mammalian brain, where they could contribute to 
neurodegenerative processes with their pro-inflammatory SASP 
and/or disrupting cell–cell contacts needed for the structural 
and functional neuron–glial interaction that maintains neuronal 
ionic and metabolic homeostasis (147, 148). Senescent markers 
were recently reported to be present in astrocytes of autopsied 
human brain tissue; both p16INK4a and the SASP factor MMP3 
increased significantly with age and were even higher in affected 
cortical brain tissues from AD patients compared with age-
matched non-demented controls (149).

Gut and brain are deeply interconnected through the gut–
brain axis (150). Inputs from the CNS can modify gut functions, 
while inputs from gut to CNS can modulate specific symptoms 
(151). Alterations of these bidirectional communications may 
contribute to neuroinflammation and the pathogenesis of CNS 
disorders (152). In particular, alterations of GM can activate pro-
inflammatory cytokines and increase intestinal permeability, 
leading to the development of insulin resistance, which has also 
been associated with AD (12). In addition, bacteria of GM are 
known to excrete immunogenic mixtures of amyloids, lipopoly-
saccharides, and other microbial exudates into their surround-
ing environment (153, 154). Bacterial amyloids might activate 
signaling pathways known to play a role in neurodegeneration 
and AD pathogenesis, while GM might enhance inflammatory 
responses to cerebral accumulation of Ab (155). It is also interest-
ing to mention that beside gut microbiota, the oral microbiota is 
involved in several pathologies including AD. Aging may favor 
the proliferation of anaerobes in the mouth eliciting a robust 
TNF-α response by the oral epithelium (156). In AD brains, a 
sevenfold higher presence of anaerobe oral bacteria compared 
with cognitively normal controls has been found (157). The 
causal link between bacteria and AD-like neurodegeneration has 
been further illustrated in a mouse model (158).

Parkinson’s Disease
Parkinson’s disease is caused by the selective loss of neurons of  
the substantia nigra due to improper accumulation of α-synuclein 
protein leading to motor alterations. Despite this apparently 
very specific cause, PD actually shares some feature with normal 
aging and could be considered a segmental accelerated aging 
that affects specific neurons in the brain and in many other 
anatomical sites. First of all, features of PD are found also in 
elderly without clinical sign of PD (159). A study on 2,500 old 
persons annually assessed for Parkinsonism showed that 744 
of these subjects deceased without diagnosed PD (mean age at 
death: 88.5 years): (i) about one-third of cases had mild or more 
severe nigral neuronal loss; (ii) about 17% had Lewy bodies; and  
(iii) 10% of the brains showed both nigral neuronal loss and Lewy 
bodies (160). Thus, also in this condition there is an apparent 
continuum between physiological aging and neurodegenerative 
age-related motor disorders.

Recent data indicate that aging and PD share basic charac-
teristics such as accumulation of senescent cells, inflammation, 
and propagation phenomena. It has been reported that senes cent 
and inflammatory cells (astrocytes) are present in the brain  
of PD patients (23) and a “transmission hypothesis” has been 
pro posed regarding the pathogenesis of “PD as a prion disease” 
(161) where intercellular transmission of pathological protein 
aggregates (α-synuclein) occurs, causing a prion-like spreading of 
neuronal damage and neuroinflammation (162, 163). Aggregated 
α-synuclein, released by neuronal degeneration, acts as an endog-
enous trigger inducing a strong inflammatory response in PD 
(164). Similar propagation phenomena have been described for 
beta-amyloid and Alzheimer’s diseases (165).

Increasing evidence suggests that PD should be included on 
the growing list of diseases associated with vitamin D insuffi-
ciency and that we should routinely monitor vitamin D levels in 
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patients with PD (166). One of the most advanced and appeal-
ing hypotheses is that environmental stressors may contribute 
to age-related neurodegeneration by favoring cell senescence 
of glia, thus creating a chronically inflamed milieu in the brain 
(167). From this point of view it is important to note that a 
bidirectional axis between the brain and the GM does exist, 
and, importantly, GM is involved in the production of various 
neurotransmitters (serotonin, dopamine, noradrenaline, and 
GABA), and in the modulation of various behavioral and CNS 
functions (168, 169). Recent studies showed that PD is associ-
ated with gut dysbiosis (24, 170), the fecal concentration of 
short-chain fatty acids is significantly reduced in PD patients 
compared with controls, and this reduction could impact on 
CNS alterations and contribute to gastrointestinal dysmobility 
in PD (171). In a mouse model of PD, it has been demonstrated 
that GM is key player in motor deficits and microglia activa-
tion (172).

On the basis of the profound even if still unclear relationship 
between aging and PD, these data on PD microbiome should be 
interpreted on the background of the changes that occur in the 
GM during healthy aging. It has been recently showed that the 
GM undergoes profound changes with age (173), which likely 
contribute to inflammaging (174) and can have profound effects 
on the brain, owing to the increased abundance with age of 
bacteria involved in the tryptophan metabolism pathway (175), 
in agreement with the reduction of tryptophan (a precursor 
of serotonin) found in the serum of centenarians (32, 176). 
Accumulating evidence shows that the age-related dysbiosis is 
involved in the neurological decline and promotes inflammag-
ing (177) that play a pivotal role in both the physiological and 
the pathological cognitive decline (25). The GM contributes to 
the regulation of the brain function modulating the metabolism 
of tryptophan, an essential amino acid derived from the diet 
that is able to cross the blood–brain barrier contributing to the 
synthesis of the serotonin in the central nervous system (25). 
The age-related changes are more evident in the amygdala, hip-
pocampus, and frontal cortex. The function of these brain areas 
is strongly dependent from the serotonergic neurotransmission 
and thus involving the changes in the tryptophan GM-dependent 
metabolism. Alterations in the serotonin system could represent 
the common denominator of the alterations of the sleep, mood, 
and sexual conduction often observed in elderly as well as of 
other modifications such as diabetes and cardiovascular diseases 
(25). Tryptophan is also metabolized via the kynurenine pathway 
(KP), which can lead to the production of nicotinamide adenosine 
dinucleotide (NAD+) (168), as well as quinolic and kynurenic 
acid. These latter compounds are neuroactive metabolites that 
act on N-methyl-d-aspartate (NMDA) and alpha 7 nicotinic 
acetylcholine receptors in CNS and ENS. In the CNS, kynurenic 
acid has been long viewed as neuroprotective, while quinolinic 
acid is primarily considered an excitotoxic NMDA receptor 
agonist (178).

Alterations of the KP have been assessed in PD (as well as 
other neurodegenerative diseases). PD patients have higher 
l-kynurenine/tryptophan ratios in serum and CSF as compared 
with controls, suggesting upregulated activity of enzymes involved 
in catabolizing tryptophan to kynurenine [i.e., indoleamine-2, 

3-di-oxygenase and tryptophan 2,3-dioxygenase]. Levels of 
3-hydroxykynurenine have also been found to be increased in the 
putamen, prefrontal cortex, and substantia nigra pars compacta 
in PD patients (179).

Despite the fact that periodontal diseases resulted associated 
with PD, few data are present on the role of oral microbiota in 
PD. A recent paper showed that oral microbiota of PD patients 
differs from those of control subjects as assessed through beta 
diversity and differential abundance analyses. Differences were 
also detected between sexes, with a higher abundance of taxa that 
include opportunistic oral pathogens in males (180).

Other Pathologies: RA, Osteoarthritis (OA), 
Osteopenia, and Macular Degeneration
It is well known that chronic inflammatory (or autoimmune) dis-
eases, such as RA, psoriasis, ankylosing spondylitis, OA, systemic 
lupus erythematosus, multiple sclerosis, inflammatory bowel 
diseases, and pemphigus vulgaris among others, share an inflam-
matory component highly depending on immune system activa-
tion, self-epitopes, environment-associated variables, and genetic 
makeup. In this review, we focus on osteoarticular pathologies 
and macular degeneration since an impressive amount of data 
is recently emerged. These data converge on the chronic inflam-
matory process, which drives the evolution of the disease as a 
continuum. Among osteoarticular pathologies, elderly onset RA 
usually develops in persons older than 60–65 years of age. Main 
actors involved in the RA development are activated T/B cells, 
macrophages, and fibroblasts producing pro-inflammatory 
cytokines that play a key role in synovitis and tissue destruction. 
In particular, TNF-α and IL-1β are two of the main cytokines that 
enhance synovial proliferation and stimulate secretion of MMPs, 
other inflammatory cytokines, and adhesion molecules (181). 
Recently, the role of HGMB1, released from dead cells, has been 
focused as a mediator of local and systemic inflammation being 
able to bind to RAGE, TLR2, and TLR4, to activate NF-κB and 
to induce the expression of the downstream cytokines including 
IL-6 (27, 182). Importantly, both TNF-α and IL-1β are included 
in the cytokine profile characterizing inflammaging (183), and 
HGMB1 is hypothesized to be one of molecules fueling this 
process (40) suggesting that inflammaging can be an additional 
cofactor involved in the pathogenesis of RA.

Furthermore, scientists have also pointed out the tight mole-
cular relationship between periodontitis and RA pathogenesis 
consisting in an increased numbers of citrullinated epitopes, 
likely produced by specific human bacteria (Porphyromonas 
gingivalis) able to express peptidylarginine deiminase, an 
enzyme that generates citrullinated epitopes that are recog-
nized by anti-citrullinated protein antibodies. Both diseases 
involve chronic inflammation fueled by pro-inflammatory 
cytokines, connective tissue breakdown and bone erosion as 
reviewed very recently (26). Thus, other mechanisms, such 
as the release of damage-associated molecular patterns from 
neutrophils may accelerate local and systemic inflammation as 
well as occur during aging (40), making evident the network 
structure of the involved molecules/markers and propagation 
mechanisms.
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Aging is also the major risk factor for OA, which begins 
with disruption of the superficial zone of cartilage without any 
involvement of immune system, leading to progressive cartilage 
erosion and bone remodeling, causing disability and decreasing 
the quality of life. HMGB2 expression is uniquely restricted to 
cells in the superficial zone of normal mature human articular 
cartilage, and importantly, joint aging in humans and mice leads 
to the loss of HMGB2 expression while HMGB1 expression 
results increased in human OA-affected cartilage compared with 
normal cartilage (184). The contribution of HMGB1 to local-
ized or systemic inflammation is mediated by innate immunity 
receptors, as described previously, leading to the increase of 
inflammatory status due to the production of chemokines and 
in particular IL-8 (185). Furthermore, many molecular and 
cellular mechanisms involved in inflammaging, such as cellular 
senescence; mitochondrial dysfunction and oxidative stress, 
dysfunction in energy metabolism associated with reduced 
autophagy and alterations in cell signaling were recently high-
lighted as processes contributing also to the development of OA 
(21). These processes promote a pro-inflammatory, catabolic 
state accompanied by increased susceptibility to cell death that 
together lead to increased joint tissue destruction and defective 
repair of damaged matrix.

Osteopenia is a condition not only highly associated with  
the aging process but also to different acute inflammatory 
diseases, leading to episodic bone reabsorption. Long-term 
solicitation of this process (22) might induce low bone mass 
and lately osteoporosis. Indeed, bone loss is typical in chronic 
inflammatory diseases (186–192) and other conditions or syn-
dromes such as sarcopenia, as recently described (30). Common 
mechanisms of bone reabsorption are also found during aging 
process, i.e., an increase of the levels of pro-osteoclastogenic 
inflammatory cytokines such as TNF-α and IL-6, a decrease of 
bone-anabolic factors such as gonadal hormones and adrenal 
androgens as previously reviewed (193). Increased C-reactive 
protein was linked to an augmented fracture rate due to 
osteoporosis (194, 195), and circulating levels of inflammatory 
markers predict change in bone mineral density and reabsorp-
tion in older adults (196).

Age-related macular degeneration (AMD) is a highly preva-
lent, multifactorial, polygenic, and complex retinal dege nerative 
disease. It is now widely accepted that inflammation, inflam-
masome activation (20), and immune system play important 
roles in AMD pathogenesis (197), but recently inflamma ging 
was proposed to give a crucial contribution in the onset of 
AMD (198–200). Furthermore, the interplay and cross talk 
between protein homeostasis, autophagy, the proteasome, 
and heat shock proteins (HSPs) in the pathogenesis of AMD 
has become increasingly investigated over the past few years  
and has been recently reviewed (201). The role of HSPs as 
gatekeepers of proteolytic pathways in the retinal pigment 
epithelium and the implications of the disruption of the HSP-
mediated chaperone functions affecting autophagy regulation, 
accu mu lation of oxidative stress-induced damage, protein aggre-
gation and lipofuscinogenesis have also been reviewed (202) 
as zwell as the inflammatory process and the insufficient tissue  
repair (203).

Genetic Syndromes Characterized by 
Accelerated Aging: A Focus on DS
One could reason that in genetic syndromes characterized by 
accelerated aging, the same molecular mechanisms involved in 
normal aging should be affected by similar, yet more precocious 
and intense, alterations. Actually, these syndromes, including 
mandibuloacral dysplasia (MADA and MADB) (204), Werner 
syndrome (4), and Hutchinson–Gilford progeria (2) are the 
subjects of intense research to understand whether the aging 
phenotype observed in the affected patients is superimposable 
to the normal one or rather it has peculiar features. In this sec-
tion, we will focus on DS, which is the most common genetic 
cause of intellectual disability, caused by a partial or complete 
trisomy of chromosome 21. Life expectancy of DS persons has 
dramatically increased in the last two generations, and in 1988, it 
was calculated that about 44.4 and 13.6% of live born DS persons 
would survive to 60 and 68 years, respectively (205). A decade 
after, the average death age was 55.8 years (206). Nowadays the 
median life expectancy is about 60 years (207), and it is expected 
to further increase in the near future (208). This unprecedented 
increase of life expectancy, together with the early occurrence of 
age-related disorders let emerge a brand new phenomenon: the 
aging of DS persons. Actually, clinical and experimental find-
ings lead support to the concept that DS has to be considered 
a premature aging syndrome, especially as far as the nervous 
system is concerned.

Dementia appears to be the most relevant health problem of 
adult DS persons, as it is the most important disorder related 
to mortality, together with mobility restrictions, visual impair-
ment, and epilepsy. In addition, level of intellectual disability and 
institutionalization are associated with mortality (209). At the 
age of 50, typical neuropathological hallmarks of AD appear in 
DS persons, including deposition of senile plaques containing 
amyloid β-peptide (Aβ), neurofibrillary tangles composed of 
hyperphosphorylated tau-P, and cholinergic and serotoninergic 
reduction (210). However, signs of cognitive decline appear 
much earlier and are detectable already at 35–40  years of age 
(5, 211). This is due at least in part to the fact that APP gene 
is located in chromosome 21; however, other mechanisms are 
likely involved including endosomal–lysosomal pathway and 
autophagy (212). Similarly, to what occurs in the aging process, 
autophagy (and mitophagy in particular) is decreased in cells 
from DS persons, due to impaired lysosomal acidification and 
protease activity (212, 213).

The other major system affected by premature senescence in 
DS subjects is the immune system. Actually adult DS persons 
display a series of changes that largely recapitulate the normal 
aging process of the immune system. In particular, diminished 
NK activity (214), erosion of telomeres in T lymphocytes (215), 
decreased response to mitogenic stimuli of blood leukocytes 
(216), increased risk of autoimmune disorders (217), and 
decreased number of T and B lymphocytes (218). However, 
these commonalities with normal immunosenescence have also 
been interpreted as an intrinsic immunodeficiency typical of DS 
rather than a precocious senescence of the immune system (218). 
Another striking commonality with normal immunosenescence 
is the pro-inflammatory profile of cytokine production observed 
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in PBMC from DS, including the increased production of IFN-γ,  
TNF-α, and IL-2 (219) and the increased plasmatic levels of 
IL-6, IL-10, TNF-α, and metalloproteases (220). This strongly 
resembles the phenomenon of inflammaging in old persons (39).

Down syndrome displays other typical age-associated altera-
tions such as increased oxidative burden due to mitochondrial 
dysfunction (221), and, recently, it has been demonstrated that 
this defect can be partially restored by a treatment with met-
formin, a drug able to reactivate mitochondrial biogenesis by 
acting on the transcriptional coactivator PGC-1a (222).

As a whole, these data suggest that DS is a segmental 
syndrome where at least two main systems devoted to body 
home ostasis, i.e., the nervous and the immune systems, are 
affected by a premature decline that largely recapitulates what 
occurs in normal aging. Further support to this idea came from 
studies on markers of biological age (see next paragraph). In 
particular, analyses conducted with two types of biomarkers 
reliably correlated with biological age, i.e., DNA methylation 
age and GlycoAgeTest (see below) showed that 1. Tissues from 
DS persons are characterized by levels of DNA methylation 
typical of persons that are on average 7  years older (223);  
2. The age-sensitive N-glycan species identified as GlycoAgeTest 
displayed accelerated dynamics in DS persons vs non-trisomic, 
age-matched sibs (224).

MARKeRS OF BiOLOGiCAL AGe

Within this frame, there is growing interest around biomarkers 
of biological age. Biological age is intended as a synthetic index 
constituted by a single marker or the combination of few biologi-
cal markers which, alone or integrated with functional markers, 
not only correlates with chronological age but is/are capable of 
identifying individuals “younger” or “older” than their chrono-
logical age in the same demographic cohorts.

With such biomarkers, it should be possible to obtain tra-
jectories of aging, where the “accelerated” ones would predict 
unhealthy aging and diseases, while the “decelerated” ones 
would be associated with healthy aging and longevity. The pos-
sibility to draw trajectories of aging is a fascinating, far-reaching 
perspective, especially in consideration of the abovementioned 
long incubation preclinical period that characterizes most of the 
major age-related chronic diseases, and is considered the critical 
time window for effective treatments. Biomarkers of biological 
age could greatly contribute to identify the subjects characterized 
by higher risk to develop overt clinical diseases who would have 
a major benefit from tailored preventive treatments. However, 
these biomarkers are apparently informative about the status of 
deep molecular mechanisms (the seven pillars) underpinning 
the age-related decline which predisposes to ARDs but do not 
tell us which specific disease people characterized by acceler-
ated biological age are predisposed to. Accordingly, a major 
biomedical aim is to identify the subjects at higher risk for each 
specific ARD at very early stage. At present, the combination of 
the new generation of effective biomarkers, capable of assess-
ing the deep biological age, with the classical and innovative 
biochemical and functional disease-specific ones represents 
the best strategy to identify disease-specific aging trajectories. 

Within this perspective, particular attention has to be devoted to 
the genetics of each individual which is the complex result of the 
interaction between nuclear and mitochondrial genetics (stable 
with the exception of somatic mutations) and micro biomes’s 
genetics (malleable and adaptative to the environment), focus-
ing on GM for its capability to be modified by basic habits such 
as nutrition. In particular, we predict that it will be useful to 
combine the abovementioned integrated biomarkers’ assess-
ment with established and new genetic risk factors for ARDs, 
taking into account some criticalities related to population 
genetics and demographic birth cohorts (225).

To date, there are no clinically validated markers of bio-
logical age; however, a number of promising candidates have 
been proposed in the last years. We will discuss three of them:  
(i) DNA methylation markers, (ii) N-glycan markers, and  
(iii) GM biomarkers.

DNA Methylation Markers
DNA methylation variability gained a central position in the rush 
for the setup of markers of biological age since several years. In a 
seminal paper of 2005, Fraga et al. (226) showed for the first time 
that in human the DNA methylation patterns change profoundly 
with age. With the advent of microarray technology capable to 
quantify the DNA methylation levels in hundreds thousands 
of CpG sites across the genome, the knowledge regarding vari-
ability and dynamics of such molecules increased dramatically. 
In particular, DNA methylation proved to be a powerful source 
of robust biomarkers capable to correlate with different clinical 
conditions (227, 228). One of the most striking results from these 
epigenetic studies on human models is the occurrence of direc-
tional (229–231) and stochastic (232) DNA methylation changes 
that highly correlate with chronological age. These observations 
paved the way to the generation of a number of “methylation 
clocks” that result from the combination of different CpG sites 
whose methylation level correlates with chronological age. 
Many of such clocks have been developed for forensic applica-
tions (233–235), thus highlighting the elevated accuracy of the 
chronological age estimation that can be obtained from DNA 
methylation data.

Of all the different clocks, three have been tested thoroughly as 
possible markers of biological age: the one developed by Horvath 
(230), the one by Hannum et al. (231), and the one by Weidner 
et al. (236). To date, Horvath’s DNA methylation clock provided 
the most interesting results as marker of biological age. This is 
probably due to the fact that is the only one that is applicable to 
all the tissues, whereas the other two clocks are validated only in 
blood. In many different studies, Horvath’s clock has proven to 
grasp features of accelerated aging in many different age-related 
clinical conditions such as cancer (237, 238), neurodegeneration 
(239–241), progeroid genetic syndromes other than DS, such 
as Werner syndrome (242), and all-cause mortality (243, 244). 
Moreover, this clock was able to show a signature of decelerated 
aging in human models of longevity, such as Italian centenarians 
and their offspring (245, 246).

Despite such promising results, a lot of work has yet to be 
done to include such evaluation of the biological age in the clini-
cal practice. In this perspective, it is necessary to devote a great 
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effort in the definition of epigenetic markers of biological age that 
rely on the analysis of a limited number of CpG sites to obtain 
an inexpensive clock suitable for large scale screenings. Indeed, 
both Horvath’s and Hannum’s clocks are based on the analysis of 
many CpG sites (353 and 75, respectively), with elevated costs 
that prevent their use in large scale for broad applications.

Glycomic Biomarkers
The relative quantification of the N-glycan species that constitute 
the sugar shell of circulating proteins is a wealthy source of reli-
able biomarkers. The characterization of circulating N-glycans 
from sera or plasma, hereafter referred as glycomics, has provided 
markers in several clinical fields such as hepatology (247–249), 
type 2 diabetes (250–254), RA (255–258), and cancer (259–262).

It is noteworthy to mention that in a 2011 study, Vanhooren 
et  al. showed that the glycomic parameters are correlated with 
age also in mice (263). In particular, studying a short-living mice 
model, i.e., mice defective in klotho gene expression (kl/kl),  
a long-living one, i.e., slow-aging Snell Dwarf mice (dw/dw) and 
ice fed at calorically restricted diet they showed that the N-glycan 
variance catch the accelerated aging of the short-living mice and 
the decelerated aging of the long-living ones, demonstrating 
that the N-glycan profiling is a promising markers of biological 
age also for the mice model, thus representing a powerful tool 
to bridge preclinical and clinical studies on aging. In the same 
study, the author showed that the mechanism at the basis of the 
age-related N-glycan changes is likely due to the impairment of 
the liver glycosylation machinery.

A study by Borelli et al. (224) provided the characterization 
of the glycomic profile of DS persons (DS). In the study the, 
author obtained the glycomic quantification of DS by means 
of DSA-FACE protocol and of the high-throughput protocol of 
matrix-assisted laser desorption ionization-time-of-flight-mass 
spectrometry. With the combination of these two protocols, the 
authors were able to provide for the first time the specific glycomic 
signature of DS and showed that the age-sensitive N-glycan spe-
cies show accelerated dynamics in DS vs non-trisomic siblings 
and mothers.

In a study on a Netherland model of familial longevity (264, 265),  
the authors reported that the glycomic profile showed features  
of decelerated biological age, correlated with metabolic health 
and cardiovascular events.

Finally, it has been suggested that the age-related glycomic 
changes could be a contributor to inflammaging by affecting 
IgG structure and function. In fact, IgGs devoid of terminal 
galactose residue in the di-antennary N-glycan at asparagine 297 
(also called IgG-G0) can exert pro-inflammatory effects through 
a more efficient activation of complement’s lectin pathway and 
phagocytosis, and their production is increased with age (266).

Gut Microbiota Biomarkers
The comparison of GM among young adults, elderly persons, 
and centenarians has highlighted that the mutualistic changes 
in the composition and diversity of the gut ecosystem do not 
follow a linear relation with age, remaining highly similar from 
young adults to 70-year-old persons while markedly changing 
in centenarians. Thus, GM seems to rest in a stable state from 

the 3rd to the 8th decade of life (174), while after 100 years of 
symbiotic association with the human host, it shows a profound, 
and possibly adaptive, remodeling. Centenarians stand out as a 
separate population, as their GM shows high diversity in terms of 
species composition (173). In centenarians, there is a shrinkage 
of dominant symbiotic bacterial taxa that is counterbalanced by 
an increase in longevity-adapted and possibly health-promoting 
subdominant species (e.g., Akkermansia, Bifidobacterium, and 
Christensenellaceae) (267). On the other hand, GM dysbiosis has 
been associated with several diseases suggesting that alteration 
of its composition may be involved in disease-related mecha-
nisms (268).

A recent paper addressed the potential interaction between 
biological age and GM. The authors identified both global and 
specific changes in the GM that were closely associated with 
biological age but not chronological age (269), suggesting that 
GM could be used as a potential biomarker of age.

Overall, epigenetic (DNA methylation), glycomic, and GM 
markers seem to be valuable markers of biological age and 
promising tools to draw informative aging trajectories. Many 
other molecular parameters obtained in particular from –omic 
analyses are at present under evaluation for their possible use as 
markers of biological age. To this regard, it is worth mention-
ing studies on metabolomics (32), lipidomics (270), circulating 
nucleic acids, in particular miRNA (271) and cell-free mtDNA 
(272), and metagenomics (176) that showed complex age-related 
reshapes in both healthy elderly and ARDs.

CONCLUSiON

The complex scenario emerging from the previous sections 
deserves and stimulates two different, even if complementary, 
types of conclusions. The former refers to the biomedical and 
molecular aspects, while the latter faces the philosophical, 
societal, and ethical implications and problems rose by the con-
ceptualization here presented.

Biomedicine and Biology
A debate exists on whether aging is a disease in itself. Some 
authors suggest that physiological aging (or senescence) is 
not really distinguishable from pathology (273), while others 
argue that aging is different from age-related diseases and other 
pathologies (274, 275). It is interesting to stress that the answer 
to this question has important theoretical and practical conse-
quences, taking into account that various strategies capable of 
setting back the aging clock are emerging (276–278). The most 
relevant consequence is that, if we agree that aging is equal to 
disease, all human beings have to be considered as patients to 
be treated, being an open question when this treatment should 
start. As we tried to summarize in this review, many mechanisms 
proposed to cause aging are the same as those known to underlie 
ARDs/GSs, lending support to the hypothesis that the aging 
phenotype and ARDs/GSs are not separate entities but rather the 
visible consequences of the same processes which likely proceed 
at different rates.

Within this conceptual framework, it can be somehow puzzling 
to pigeonhole the phenomenon of longevity, which is a peculiar 
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manifestation of aging. Longevity can indeed be considered the 
consequence of successful aging. So, why the same molecular 
mechanisms should lead to successful aging and longevity on 
one side and to unsuccessful aging and ARDs on the other?  
To further complicate the picture there is another important 
aspect, not discussed in this review, that should be, however, 
taken into account, i.e., the influence of gender on aging, longev-
ity and ARDs. It is known that females have a survival advantage 
in advanced age, paradoxically characterized by a worse quality of 
life (279). In fact, females have an increased prevalence of many 
ARDs, in particular degenerative diseases and consequently an 
augment of disability. Therefore, men and women follow different 
trajectories to reach extreme longevity, have a diverse quantita-
tive chance to attain longevity and the aging process is likely 
qualitatively different between genders (280). Several studies have 
also shown that sex hormones play a role in the host–microbiota 
interaction. Indeed, the term “microgenderome” defines the 
potential mediating and modulatory role of sex hormones on GM 
function and composition with implication for autoimmune and 
neuroimmune conditions (281).

The overall conceptual framework of the relationship between 
aging and ARDs/GSs, here presented, fits quite well into the 
concept of hormesis, which is considered an overarching con-
ceptualization of aging and longevity (159, 282, 283). It is known 
that a stressful stimulus can determine both detrimental and 
positive effects depending on its intensity. If the intensity of the 
stress is low, the response of biological system (cell, organ, or 
whole organism) can produce benefits that overcome the dam-
age caused by the stress (283–285). It is possible to apply this 
paradigm also to the aging process (Figure  1). If the intensity 
of the stresses (oxidative stress, inflammation, proteostatic stress, 
telomere attrition, etc.) does not exceed the threshold after which 
the detrimental effects of such stress are higher than the adaptive, 
protective effects of the organismal stress response, it is likely that 
a successful aging will follow. A corollary of this hypothesis is 

that low stress is better than no stress at all, as absence of stress 
likely does not trigger protective effects (286). Another corollary 
is that the more effective is the response to stress, the higher is 
the level of stress intensity that can be tolerated. If an individual 
succeeds in maintaining his/her responses as much as possible 
within the range of the “hormetic zone” (green line of Figure 1), 
his/her trajectory toward clinical symptoms and overt disease(s) 
will be delayed (Figure 2A, green line). On the contrary, strong 
detrimental effects will accelerate aging as well as the onset of 
chronic diseases (red line of Figure 2A). We recently argued that 
the adaptive hormetic paradigm could be applied to inflammag-
ing (287) as well as to lifestyle such as Mediterranean diet, which 
counteract the deleterious effects of inflammaging (283).

Which are the determinants that make the aging trajecto-
ries depicted in Figure 2 more or less steep? First of all, the 
environmental conditions (intensity and types of stressors, as 
mentioned), but also and likely most important, the capac-
ity of the body to respond and adapt to these stressors. This 
capacity is determined at least in part by the individual genetic 
background and by epigenetic changes mediating many 
phenomena of adaptation and remodeling. In any case, the 
processes underpinning the aging progression and the cor-
responding successful or unsuccessful adaptive mechanisms 
take time, and the eventual onset of clinically overt ARDs/GSs 
has a long period of incubation, preceded by years/decades 
of deep/hidden molecular and cellular alterations, which are 
difficult to pinpoint with present technology and knowledge. 
This situation is represented in the cartoon of Figure  2B, 
where the continuum among healthy status, GSs, and ARDs 
is represented as an iceberg. The tip of the iceberg is just the 
(clinically) visible part of a much longer process that goes from 
normality to pathology. Few persons like centenarians manage 
to remain “healthy,” in the sense that they avoided or largely 
postponed the onset of ARDs/GSs even at old or very old age 
(green arrow), others proceed to GSs (orange arrow), while the 
majority develop ARDs (red arrow). Within this perspective, 
even “healthy” centenarians do not escape the physiological 
decline, and the accumulation of molecular scars that accom-
panies aging, but the rate of such processes is slow enough to 
let them stay below the threshold over which clinically overt 
pathologies ensue. We predict that biomarkers based on CpG 
DNA methylation as well as N-glycan profiling and GM com-
position are currently the most appropriate and powerful to 
distinguish biological vs chronological age and to measure the 
deep alterations that anticipate clinical symptoms. However, 
further studies are needed to assess the aging rate at the level 
of the various organs and systems of the body, in the same 
individual as required by personalized and precision medicine. 
Finally, beside the molecular mechanisms shared between 
aging and ARDs/GSs discussed earlier, a deeper level involving 
even more basic mechanisms (entropy failure) is likely present 
and will be the topic of future investigations.

Philosophical, ethical, and Social 
implications
The second conclusion is that medicine should combat aging 
to combat many ARDs at a time and not one by one. In this 
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perspective, one could envisage following two possible strategies 
to attain this result:

 (A) Try to slow the aging rate through changes in life style, and 
possibly drugs or medical treatments that counteract the 
impairment of the abovementioned mechanisms (the seven 
pillars and maybe others). This strategy should help people 
to stay healthy and active as long as possible and pospone 
ARDs for decades, ideally until the apparently inevitable 
limit of human lifespan (288).

 (B) More radically, try to rejuvenate human tissues, organs, and 
whole body. In this case, also the abovementioned limits of 
human lifespan could be likely overtaken.

We are relatively ready to the first strategy that appears 
more feasible and acceptable from an ethical and social point 
of view, as it would be very similar to what is already happening 

nowadays, i.e., an increase in life expectancy and in the number 
of people who attain 90 or 100 years of age and more in good 
health. Even a very long life for most people will engender vari-
ous biomedical and societal problems, but this strategy has the 
advantage of being doable and allowing people to live longer 
and healthier, relieving burden from families and welfare states 
and, most of all, avoiding suffering, disability, and dependence.

We are instead not yet ready, in particular from a social and 
ethical point of view, for the second strategy, which opens uncanny 
scenarios of rejuvenating bodies and very long life for the bulk of 
the population, a topic addressed in utopian, dystopian, and science 
fiction novels. Taking into account, the fantastic, unprecedented 
rate of scientific discoveries in the field of aging and rejuvenation, it 
is timely and urgent to open a large debate, involving first of all the 
general public but also experts in different fields (economy, demog-
raphy, philosophy, religion bioethics, among others). Indeed, such 
sensitive topics as doable age-prolongation and rejuvenation have 
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been either neglected or conceptualized according to the scanty 
scientific knowledge available until recently, i.e., incomparably  
less than that available today and likely in the next future.
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APPeNDiX

The History of Old Age As a Disease
The first theories of aging that appeared in ancient Greece and 
recovered during the Middle Age identified old age as a conse-
quence of the gradual consumption of the innate heat with the 
inevitable loss of body moisture, according to Hippocrates’ sys-
tem of four humors (V BC). For Hippocrates (c. 460–c. 370 BC) 
every organism is born with a certain quantity of innate latent 
warmth (calor innatus), which progressively declines conducting 
to natural death (289).

Influenced by this theory, Aristotle’s (384–322 BC) on youth 
and old age sees old age itself as a morbus (disease) or a maras-
mus. To represent such an ineluctable process of degeneration, 
Aristotle used the image of a lamp in which the life fuel has run 
out, a metaphor that enjoyed a wide currency in medical literature 
over the centuries (290, 291).

Combining Hippocratic medicine with Aristotelian theory, 
Galen’s (AD 129–c. AD 199) De Sanitate Tuenda—where the 
term “gerocomy” first appeared—avoided to consider old age as 
a disease and rather described the health of elders as incomplete 
and correspondent to convalescents. More specifically, Galen saw 
senescence as a heterogeneous and postponable process since he 
observed that aging was an event impacting on population differ-
ently according to individual past history, lifestyle, and illnesses, 
and that by respecting a certain dietary regimen the arrival of 
aging might be retarded (292).

The old-age-as-a-disease idea was also present in ancient 
Rome. It can be detected in the comedy Phormio (161 BC) by 
the playwright Terence where the old Chremes affirms about his 
suffering that “the illness is old age itself,” in Seneca (c. 4 BC–AD 
65) who referred to old age as an incurable illness, and in Cicero’s 
(106 BC–7 December 43 BC) De Senectute where the author 
argues that “we have to fight against aging, as we do against a 
disease” (291).

The idea that senescence was itself an illness and the image of 
the aged body as a consuming lamp was two of the main themes 

around which research into aging revolved from classical to 
medieval speculations, from Renaissance to eighteenth century.

Like Galen, the great Arab physician Avicenna (980–1037) 
refused to consider aging and death like a pathological entities, 
for he looked them as a result of a natural decrease of the calor 
innatus due to the consumption of the humidum radicale. Indeed, 
he was skeptical about the possibilities of medicine of retarding 
the aging process and then considered prolongevity not an appro-
priate medical goal (293). In the last centuries of the Middle Ages, 
of the two main medical schools of Salerno and Montpellier, the 
latter concentrated on the importance of the equilibrium between 
the four humors and the innate heat to enjoy a delayed and unim-
paired senescence (294).

Interestingly, the unknown author of De retardatione acciden-
tium senectutis (often ascribed to Roger Bacon, 1219–1292) in 
the thirteenth century realized that aging process can be identi-
fied with some characteristics (i.e., gray hairs), and consequently 
suggested that if such phenomena (accidentia senectutis) were to 
occur in adolescence, they would be called illnesses (291).

By around 1500, the old-age-illness became a prominent liter-
ary cliché that can be found both in Erasmus of Rotterdam’s poem 
for the Basel physician Guilielmus Copus and in Martin Luther’s 
comments of Ecclesiastes where he declares: “old age is per se a 
disease” (291).

During the eighteenth century, the most influential concept for 
the medicalization of old age was that of “marasmus,” a concept 
related to wasting fever or exhaustion, which can be traced back 
to Galen (295). Referring to the deterioration of old people, the 
marasmus senilis was a generalized pathological state that was not 
the effect of a temporary illness and might occur without fever. Yet, 
this prevailing theoretical context did not impede to realize, as well 
illustrated by the German physician Burkhard Seiler (1779–1843) 
in his seminal work Anatomia corporis humani senilis specimen 
(1799), that most old people did not die because of the weaknesses 
of age or senility, but rather as a result of several illnesses with 
a cumulative mutual effect (291), a concept that will reappear  
in many major theories of aging in the twentieth century (289).
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