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The current picture of Clostridium difficile infection (CDI) is alarming with a mortality 
rate ranging between 3% and 15% and a CDI recurrence rate ranging from 12% to 
40%. Despite the great efforts made over the past 10 years to face the CDI burden, 
there are still gray areas in our knowledge on CDI management. The traditional anti-CDI 
antimicrobials are not always adequate in addressing the current needs in CDI man-
agement. The aim of our review is to give an update on novel antimicrobials for the 
treatment of CDI, considering the currently available evidences on their efficacy, safety, 
molecular mechanism of action, and their probability to be successfully introduced into 
the clinical practice in the near future. We identified, through a PubMed search, 16 novel 
antimicrobial molecules under study for CDI treatment: cadazolid, surotomycin, ridini-
lazole, LFF571, ramoplanin, CRS3123, fusidic acid, nitazoxanide, rifampin, rifaximin, 
tigecycline, auranofin, NVB302, thuricin CD, lacticin 3147, and acyldepsipeptide antimi-
crobials. In comparison with the traditional anti-CDI antimicrobial treatment, some of the 
novel antimicrobials reviewed in this study offer several advantages, i.e., the favorable 
pharmacokinetic and pharmacodynamic profile, the narrow-spectrum activity against 
CD that implicates a low impact on the gut microbiota composition, the inhibitory activity 
on CD sporulation and toxins production. Among these novel antimicrobials, the most 
active compounds in reducing spore production are cadazolid, ridinilazole, CRS3123, 
ramoplanin and, potentially, the acyldepsipeptide antimicrobials. These antimicrobials 
may potentially reduce CD environment spread and persistence, thus reducing CDI 
healthcare-associated acquisition. However, some of them, i.e., surotomycin, fusidic 
acid, etc., will not be available due to lack of superiority versus standard of treatment. 
The most CD narrow-spectrum novel antimicrobials that allow to preserve microbiota 
integrity are cadazolid, ridinilazole, auranofin, and thuricin CD. In conclusion, the novel 
antimicrobial molecules under development for CDI have promising key features and 
advancements in comparison to the traditional anti-CDI antimicrobials. In the near future, 
some of these new molecules might be effective alternatives to fight CDI.

Keywords: Clostridium difficile infection, novel antimicrobials, Clostridium difficile recurrence, prevention, 
management

iNTRODUCTiON

The Gram-positive, anaerobic, spore-forming bacillus Clostridium difficile (CD) represents the 
most common cause of nosocomial diarrhea worldwide (1–5). According to literature data, a 
total of 15%–25% of all cases of antibiotic-associated diarrhea result from C. difficile infection 
(CDI) (1–5).
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The current picture is alarming with a CDI mortality rate rang-
ing between 3 and 15% and a CDI recurrence rate ranging from 
12 to 40% (6–8). Importantly, after the first recurrence, a risk up 
to 64% of subsequent recurrences has been reported (6–10).

Despite the great efforts made over the past 10 years to face 
the CDI burden, there are still gray areas in our knowledge on 
CDI management. Major issues affecting the management of 
CDI include the high rate of CDI underdiagnosis and the delay 
in diagnosing it, the unacceptably high rate of CDI recurrence, 
and the difficulties faced in reducing the spread of CD among 
hospitalized patients (11–15).

Recurrences currently represent one of the major challenges in 
the management of CDI, resulting in higher hospitalization costs 
and in increased morbidity and mortality rate (16). Of relevance, 
semi-structured interviews with patients who had experienced 
CDI showed that this disease affects numerous aspects of patients’ 
lives and causes patients’ emotional distress (17).

The therapeutical management of CDI is mainly based on 
discontinuation of unnecessary antibiotics and administration of 
anti-CD antimicrobials (18).

The currently recommended first-line antimicrobial therapy 
is represented by oral metronidazole or oral vancomycin for the 
first episode of mild CDI, and oral vancomycin for severe CDI or 
subsequent CDI recurrences (13, 18, 19). Oral fidaxomicin is also 
a treatment of choice for recurrent CDI, especially in those with a 
high risk of relapse (13, 18, 19).

Metronidazole and vancomycin achieve an end-of-treatment 
cure rate of approximately 86–95% (19, 20); however, they are not 
as much effective in assuring sustained and bacteriological cure, 
defined as the prevention of recurrent CDI and the prevention of 
CD spread, respectively (20–22).

Recently new innovative approaches, based on non-antimi-
crobial compounds, i.e., monoclonal anti-toxin antibodies, fecal 
microbiota transplantation, live bacterial vaccines and CD vac-
cines, have been developed or are under development. However, 
further studies are needed to confirm the efficacy and safety of 
these approaches.

Moreover a number of new agents active against CD have 
been developed and their use for CDI treatment is under study, 
and hopefully in the near future, these new antimicrobials will 
represent effective options to fight CDI.

Finally, old antimicrobial agents approved for the treatment of 
other infection showed activity against CD, and their utility for 
CDI is now being studied.

The aim of our review is to give an update on the novel anti-
microbials for the treatment of CDI, considering the currently 
available evidences on their efficacy, safety, molecular mechanism 
of action, and their probability to be successfully introduced into 
the clinical practice in the near future.

MATeRiALS AND MeTHODS

Search Strategy and Selection Criteria
Through a PubMed search with the search terms “novel antimi-
crobials AND clostridium difficile” and “antimicrobial treatment 
AND clostridium difficile,” we identified 16 novel antimicrobials 

for the treatment of CDI: cadazolid, surotomycin, ridinilazole, 
LFF571, ramoplanin, CRS3123, fusidic acid, nitazoxanide, 
rifampin, rifaximin, tigecycline, auranofin; NVB302, thuricin 
CD, lacticin 3147, and acyldepsipeptide antimicrobials.

Published articles from January 2000 to November 2017 
reporting the use of these 16 antimicrobials for the treatment of 
CDI in human patients were identified through computerized lit-
erature searches using MEDLINE (National Library of Medicine 
Bethesda MD) and by reviewing the references of retrieved 
articles.

Indexed search terms included: “cadazolid AND clostridium 
difficile” OR “ACT-179811 AND clostridium difficile” OR 
“Surotomycin AND clostridium difficile” OR “CB-183315 AND 
clostridium difficile”; “Ridinilazole AND clostridium difficile” 
OR “SMT19969 AND clostridium difficile” OR “LFF571 AND 
clostridium difficile” OR “Ramoplanin AND clostridium difficile” 
OR “CRS3123 AND clostridium difficile” OR “REP3123 AND 
clostridium difficile” OR “fusidic acid AND clostridium difficile” 
OR “nitazoxanide AND clostridium difficile” OR “rifampin AND 
clostridium difficile” OR “NVB302 AND clostridium difficile” 
OR “thuricin CD AND clostridium difficile” OR “lacticin 3147 
AND clostridium difficile” OR “auranofin AND clostridium 
difficile” OR “acyldepsipeptide AND clostridium difficile” OR 
“tigecycline AND clostridium difficile” OR “rifaximin AND 
clostridium difficile”.

No attempt was made to obtain information about unpub-
lished studies. English language restriction was applied.

ReSULTS

Our literature search identified 453 studies, an additional 4 
articles were identified by reviewing the references of retrieved 
articles.

Regarding cadazolid, we identified 20 studies, 3 of them were 
clinical trials: a phase II clinical trial with the main objective 
to evaluate the susceptibilities of CD isolates to cadazolid and 
vancomycin (23); a multicenter, randomized, double-blind, phase 
II trial comparing the clinical cure rate of cadazolid versus van-
comycin at 48–24 h after the end of treatment (24); and a single-
center, open-label, single oral dose phase I study to investigate 
systemic cadazolid exposure (25).

Regarding surotomycin, our literature search identified 30 
studies, 6 of them were clinical trials: a double-blind, multicentre, 
phase III trials comparing clinical response, sustained clinical 
response, and safety of surotomycin and vancomycin (26, 27); 
a randomized, double-blind, dose-ranging, parallel group, phase 
II trial to evaluate the effects of surotomycin and vancomycin on 
CD and microbiota (28); a randomized, double-blind, placebo-
controlled, phase I trial to characterize the safety, tolerability, and 
plasma pharmacokinetic profile of single and multiple ascending 
oral doses of surotomycin in healthy volunteers (29); a rand-
omized, controlled, double-blind, non-inferiority, multicentre, 
phase II trial to evaluate the clinical response at end of treatment 
(30); and a double-blind, randomized, placebo controlled, multi-
ple-dose phase I trial to evaluate the impacts of ascending doses 
of surotomycin on major organism groups in the gut microbiota 
of healthy volunteers (31).

https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://www.frontiersin.org/Medicine/archive


3

Petrosillo et al. CD Antimicrobial Treatment

Frontiers in Medicine | www.frontiersin.org April 2018 | Volume 5 | Article 96

Regarding ridinilazole, our literature search identified 10 
studies, 2 of them were clinical trials: a randomized, double-
blind, active-controlled, non-inferiority, phase II trial compar-
ing the sustained clinical response (defined as clinical cure 
at the end of treatment and no recurrence within 30 days) of 
ridinilazole and vancomycin (32) and a double-blind, rand-
omized, placebo-controlled, phase I trial to assess safety and 
tolerability of single and multiple oral doses of ridinilazole in 
healthy volunteers (33).

For LFF571, our literature search identified 16 studies, 3 of 
them were clinical trials: 2 multicenter, randomized, evaluator-
blind, active-controlled, parallel-group, phase II trials to compare 
safety, efficacy and pharmacokinetics of LFF571 to those of van-
comycin CDI (34, 35) and a randomized, double-blind, placebo-
controlled, single- and multiple-ascending oral dose, phase I trial 
to determine the safety, tolerability, and pharmacokinetics of 
LFF571 in healthy subjects (36).

The literature search on CRS3123 and ramoplanin identified 
10 and 28 studies, respectively.

For CRS3123, one clinical trial was identified, a double-blind, 
placebo-controlled, dose escalation, study to evaluate the safety 
and systemic exposure of CRS3123 after a single oral dose (37).

No clinical trials were identified for ramoplanin.
For fusidic acid, our literature search identified 40 studies, 2 of 

them were clinical trials: a randomized controlled, double-blind, 
phase III trial to compare the efficacy of fusidic acid and metro-
nidazole for the treatment of patients with a first CDI episode 
(38) and a randomized controlled, double-blind, phase III trial 
to evaluate culture positivity for CD, development of resistance 
and association with treatment failure or recurrence of CDI after 
fusidic acid or metronidazole treatment (39).

For nitazoxanide and rifampin, 54 and 44 studies were identi-
fied, respectively.

For nitazoxanide, three trials were identified: a double-blind, 
randomized, controlled phase III trial to compare nitazoxanide 
with vancomycin for treatment of CDI (40); a preliminary, 
uncontrolled, open-label phase II study to evaluate response to 
nitazoxanide treatment in patients with CDI who failed a previous 
metronidazole treatment (41); and a randomized, double-blind, 
phase III trial to compare nitazoxanide to metronidazole for the 
treatment of CDI (42).

For rifampin, a clinical trial was identified; it was a prospec-
tive, randomized, single-blinded trial to compare therapy with 
metronidazole alone versus therapy with metronidazole and 
rifampin for 10 days to treat primary CDI (43).

The literature search on rifaximin identified 110 studies, 1 of 
them was a clinical trial. This trial was a randomized, double-
blind, placebo-controlled, single-center pilot study to assess rates 
of recurrent diarrhea in patients with CDI who received rifaximin 
versus placebo immediately after the standard therapy (44).

The literature search on tigecycline identified 78 studies, none 
of them was a clinical trial.

The literature search on NVB302, thuricin CD, and lacticin 
3147 identified 3, 8, and 3 studies, respectively.

The literature search on auranofin and acyldepsipeptide 
antimicrobials identified two and one study, respectively. No 
clinical trials were identified by the literature search on NVB302, 

thuricin CD, lacticin 3147, auranofin, and acyldepsipeptide 
antimicrobials.

Table 1 shows the main characteristics of the novel antimi-
crobials in development for CD, included their inhibition of CD 
sporulation and toxins production.

Table 2 shows the phase of the latest clinical trials for the novel 
antimicrobial in development for CD.

The main features of the novel anti-CDI molecules are 
described below.

Cadazolid
Cadazolid, formerly known as ACT-179811, is a novel oxazo-
lidinone antimicrobial characterized by a chemical structure 
containing a quinonolone pharmacophore incorporated in an 
oxazolidinone ring (45). The systemic bioavailability of cadazolid 
is negligible, as well as its absorption from the intestine follow-
ing oral administration (46). The exact mechanism of action of 
cadazolid is multifaceted and not still fully elucidated; it has been 
shown that the quinolone pharmacophore of the cadazolid mol-
ecule inhibits both DNA and protein synthesis in the bacterial cell 
(45, 47). Upon administration, this agent leads to impaired bacte-
rial protein synthesis and consequently to bacterial cell death.

Recently, Locher et  al. adopted a macromolecular labeling 
assay to investigate the site of action of cadazolid in the bacte-
rial cell (48). By monitoring cadazolid incorporation of labeled 
macromolecules, authors elucidated the cadazolid inhibitory 
action on the bacterial cell wall synthesis (48). Authors also 
demonstrated cadazolid influence on bacterial transcription and 
translation, by means of cell-free coupled transcription/transla-
tion assays (48).

Since cadazolid demonstrated to be highly active against CD 
in vitro as well as in gut and animal models, it has been proposed 
for the treatment of CDI (24, 49).

Interestingly, in contrast with its wide range of inhibitory 
effects on bacterial synthesis processes, in a human gut model, 
cadazolid demonstrated a narrow spectrum antimicrobial activ-
ity (50). In this model, cadazolid eliminated CD cells while having 
a very limited impact on the normal gut microbiota (50).

Cadazolid also showed potent biological effects on CD toxin 
and spore formation (45, 47, 48).

In an in vitro study comparing vancomycin and cadazolid effect 
on CD, whereas vancomycin failed to inhibit spore formation, 
cadazolid markedly inhibited CD sporulation even at sub-growth 
inhibitory concentrations (25, 49).

The narrow spectrum activity against CD, together with the 
ability to prevent sporulation, suggests that cadazolid has the 
potential to reduce CDI recurrence (25).

A single-center, open-label, single oral dose phase I study 
showed that cadazolid was well tolerated in patients with severe 
CDI following a single dose of 3,000 mg. Systemic exposure was 
very low and concentrations in feces were not only very high at 
peak but remained elevated for several days after single-dose 
administration (25).

The expectations on this compound have been also supported 
by a phase II trial reporting lower recurrence rates and higher 
sustained clinical response rates in patients with CDI treated with 
cadazolid as compared to those treated with vancomycin (24).
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TAbLe 1 | Main characteristics and activity on CD spore and toxins production of the novel antimicrobials in development for CD.

Antimicrobials  
in development

Chemical structure 
description

Mode of action Gut availability and effect  
on gut microbiota

Activity on CD 
sporulation and CD 
toxin inhibition

Selectivity against CD  
or narrow spectrum activity

MiC ranges against CD Reference

Cadazolid Oxazolidinone 
antimicrobial, 
containing a 
quinonolone 
pharmacophore 
incorporated in an 
oxazolidinone ring 

Bacterial DNA and protein 
synthesis inhibition

Minimum observed fecal 
concentration following a single 
3,000 mg oral dose from 24 h up 
to day 7 was 311 µg/g. Maximum 
daily individual fecal concentration 
after up to 7 days was 1,419 µg/g

Inhibited CD 
sporulation even at 
sub-growth-inhibitory 
concentrations

Narrow spectrum Baseline MIC50, MIC90 
and MIC ranges were 
0.125 mg/L, 0.25 mg/L, 
and 0.06–0.25 mg/L, 
respectively

(24, 25, 47, 
48, 51)

Surotomycin 13-Amino acid 
semisynthetic 
lipopeptide

Calcium-dependent cell 
membrane depolarizing agent

High excretion in feces, achieving 
high colonic concentrations 

No Bactericidal activity against 
Gram-positive bacteria. 
Not negligible activity on 
gut microbiota, including 
Bifidobacterium and 
Lactobacillus spp.

MIC90 0.125–0.25 µg/
ml in TY medium. The 
initial bacterial titer was 
5 × 105 CFU per ml

(28, 52–58)

Ridinilazole Heterocyclic 
antibacterial

Bacterial DNA synthesis 
inhibition

>97% passes unchanged 
in the colon, achieving high 
concentrations at this site

Inhibits sporulation, as 
well as toxins A and B

Narrow-spectrum activity against 
Gram-positive pathogens 
including CD, minimally affecting 
the host gut microbiota

In vitro studies have 
reported MIC90 values of 
0.125–0.25 µg/ml

(33, 65–69)

LFF571 Thiopeptide antibiotic Bacterial protein synthesis 
disruption by inhibition of the 
elongation factor Tu

Low oral bioavailability, high 
colonic concentrations after oral 
administration

Reduce CD toxin 
production

activity against other Gram-
positive anaerobes and Gram-
positive aerobes, including 
lactobacilli and enterococci

MIC range of 
0.06–0.5 mg/L

(34–36, 
75–82)

Ramoplanin Glycolipodepsipeptide 
antibiotic

Indirect inhibition of 
peptidoglycan biosynthesis

High colonic concentrations after 
oral administration

Inhibited in vitro spore 
counts at 300 µg/
ml ramoplanin 
concentrations in 
feces

Activity against aerobic and 
anaerobic Gram-positive 
bacteria

MIC range of  
0.25–0.50 µg/ml

(83, 84, 
86–92)

CRS3123 Diaryldiamine Inhibition of bacterial protein 
synthesis (bacterial methionyl-
tRNA synthetase)

Not negligible systemic absorption 
after oral administration

At concentrations 
as low as 1 mg/L, 
CRS3123 decrease 
CD sporulation and 
inhibits in vitrotoxin 
production

Activity against Gram 
positive bacteria including 
Staphilococcus and 
Enterococcus, sparing 
Lactobacillus and 
Bifidobacterium

MIC range of 0.5–1 mg/L 
and MIC90:1 mg/L

(94–96)

Fusidic acid Polysaccharide Inhibition of bacterial protein 
synthesis; it also acts as 
a blocker of the adhesion 
molecule L-selectin, involved 
in the inflammatory response 
to CD

Levels in feces correspond to 
2% of the oral dose, around 
0.3 mg/L after an oral dose of 
250 mg. A significant intraluminal 
secretion due to inflammation may 
result in higher local therapeutic 
concentrations

n/a Activity against Staphylococci, 
Streptococcus, and 
Enterococcus spp., anaerobic 
Gram-positive bacteria and 
Gram-negative anaerobic 
bacteria 

MIC50: 0.75 mg/L and 
MIC90: 2 mg/L. MIC range 
of 0.125–4 mg/L

(38, 39)

Nitazoxanide Nitrothiazole 
benzamide

Anaerobic metabolism 
inhibition

Two-thirds of the drug is 
excreted in the feces after oral 
administration

n/a Activity against anaerobic 
bacteria, including B. fragilis, 
Bifidobacterium spp. and 
Propionibacterium spp.

Median MIC50: 0.5 µg/ml; 
MIC90: 1 µg/mL; MIC range 
of 0.25–2 µg/ml

(40, 42, 134, 
165)
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Antimicrobials  
in development

Chemical structure 
description

Mode of action Gut availability and effect  
on gut microbiota

Activity on CD 
sporulation and CD 
toxin inhibition

Selectivity against CD  
or narrow spectrum activity

MiC ranges against CD Reference

Rifampin Rifamycin 
antimicrobial class

Inhibition of DNA-dependent 
RNA polymerase after binding 
to the beta subunit of the 
enzyme

Mostly systemically absorbed 
when given orally, peak serum 
concentrations of 7–10 µg/mL 
following a dose of 600 mg

n/a Broad spectrum activity against 
gram-positive Staphylococci, 
Enterococci, gram-negative 
organisms

MIC50: 0.002 µg/ml 
and MIC90: 0.19 µg/ml. 
Potential risk of resistance 
development

(101)

NVB302 Type B lantibiotic Inhibition of cell wall 
biosynthesis by binding lipid II

n/a n/a Wide range of Gram-positive 
bacteria. Not negligible impact 
on gut microbiota including 
Clostridia spp., Bifidobacterium 
spp., B. fragilis, Enterococcus 
and Lactobacillus spp.

n/a (107)

Thuricin CD Modified bacteriocin 
antimicrobial

Acts on bacterial membrane, 
causing the collapse of 
the membrane potential, 
membrane depolarization and 
cell death

n/a n/a Narrow spectrum activity against 
CD, minimal impact on gut 
microbiota

MIC90: 1,17 µg/ml (90, 108, 
109)

Lacticin 3147 Two-peptide 
molecule possessing 
intramolecular 
rings formed by the 
thioether aminoacids 
lanthionine and 
beta-methyllanthionine

Binding of the membrane-
bound cell wall precursor lipid 
II and subsequent formation 
of a membrane pore and 
cell lysis

Oral administration is not feasible 
due to bacteriocins sensitivity to 
gastric proteolysis. the compound 
could be administered via the anal 
route

n/a Broad-spectrum activity against 
Gram-positive bacteria, high 
impact on several phila of the 
gut microbiota

MIC range of 0.95–15 mg/
ml

(106, 108, 
110)

Auranofin Gold complex 
containing a Au-S 
bond stabilized by 
a triethyl phosphine 
group [2,3,4,6-tetra-
o-acetyl-1-thio-β-d-
glucopyranosato-S-
(triethyl-phosphine) 
gold]

Sequesters inorganic 
selenium, thus impairing CD 
selenium metabolism and 
seleno-proteins synthesis

High excretion in feces after oral 
administration

n/a Specificity against CD estimated IC50 values of 
775–1,000 nM.

(111, 112)

Acyldepsipeptide-1 Acts inducing over-activation 
of intracellular caseinolytic 
ATP-dependent proteases, 
therefore disrupting protein 
metabolism in bacterial cell

n/a Acyldepsipeptide-1 
targets are related 
to the intracellular 
systems sigma factors 
σ (E) and MazEF, 
which play a key role 
in CD sporulation

Broad-spectrum activity against 
Gram-positive bacteria

n/a (113–115)

TAbLe 1 | Continued

(Continued)
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TAbLe 2 | Phase of the latest clinical trials for the novel antimicrobial in 
development for CD.

Antimicrobial in development Phase of the latest clinical 
trials

References

Cadazolid II (24)
Surotomycin III (26, 27)
Ridinilazole II (32)
LFF571 II (34, 35)
Ramoplanin II (92)
CRS3123 I (37)
Fusidic acid III (38, 39)
Nitazoxanide III (40, 42)
Rifampin II (43)
NVB302 I Unpublished
Thuricin CD None None
Lacticin 3147 None None
Auranofin None None
Acyldepsipeptide-1 None None
Tigecycline None None
Rifaximin II (44)
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Preclinical and early clinical studies are therefore promising 
and demonstrate that cadazolid may be an effective option for the 
treatment of CDI. The results from the ongoing phase III trial will 
better define the role of cadazolid for the future CDI treatment.

Surotomycin
Surotomycin, previously known as CB-183315, is an orally 
administered, water-soluble, 13-amino acid semisynthetic 
lipopeptide (51–56). It was originally obtained from daptomycin 
after a two-step process of enzymatic cleavage of the decanoyl 
side chain and its substitution with the (E)-3-(4-pentylphenyl)-
but-2-enoyl residue in its molecular structure (56).

Not surprisingly, surotomycin mechanism of action is similar 
to daptomycin, it acts as a calcium-dependent cell membrane 
depolarizing agent (31).

Similarly to daptomycin, surotomycin possesses bactericidal 
activity against Gram-positive bacteria (57). The impact of 
surotomycin on gut microbiota is not negligible, with bacteri-
cidal activity against Gram-positive microbiota components 
including Bifidobacterium and Lactobacillus spp. but limited 
effect on Gram-negative species, including Bacteroides (57). 
An in vitro gut model confirmed limited effects on Bacteroides 
fragilis after surotomycin administration in comparison with 
vancomycin (58).

Surotomycin has shown to be effective in CDI animal mod-
els (59). A study reported similar survival rate of CD infected 
hamsters treated with surotomycin or with orally administered 
vancomycin (59).

Surotomycin proved its efficacy also in human gut models 
(57, 58, 60, 61).

In summary, evidences from in vitro and animal studies on 
surotomycin showed a potent in vitro effect on CD and an efficacy 
to treat CDI similar to that of vancomycin; however, a more spar-
ing effect on gut microbiota has been reported for surotomycin 
(58, 62).

Preliminary studies on orally administered surotomycinin in 
humans reported a minimal systemic bioavailability (<1%) and 
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a high excretion in feces, achieving high colonic concentrations 
(29). Minimal systemic effects have been observed during phase 
I trials after oral administration (29, 57).

A randomized, double-blind, multicenter phase II trial including 
209 CDI patients who received either surotomycin 125 or 250 twice a 
day for 10 days or vancomycin 125 mg four times daily for 10 days was 
performed (30). Cure rates at the end of treatment were similar for 
surotomycin and vancomycin, while recurrence rates and sustained 
cure rates were higher for surotomycin than for vancomycin (30).

Therefore, two parallel phase III clinical trials were started 
to demonstrate surotomycin non-inferiority to vancomycin for 
resolving CDI and surotomycin superiority in preventing recur-
rence (26, 27).

Unfortunately, the first phase III trial evaluating surotomycin 
250  mg twice a day efficacy against CDI in comparison with 
vancomycin 125  mg four times a day did not meet the study 
endpoints (27).

Furthermore, a parallel phase III trial was conducted with 
the primary objective to demonstrate the non-inferiority of 
surotomycin versus vancomycin in response rates at the end of 
treatment in adults with CDI. As secondary objectives, this trial 
aimed to assess clinical response over time and sustained clinical 
response superiority of surotomycin compared with vancomycin 
(26). This trial randomized 608 patients to receive twice daily 
surotomycin 250 mg for 10 days or vancomycin 125 mg four times 
daily for 10 days (26).

The primary endpoint of the trial was met, and surotomycin 
demonstrated non-inferiority to vancomycin for the treatment of 
adults with CDI (clinical response rate at the end of treatment: 
83.4% vs. 82.1%) (26). However, surotomycin failed to demonstrate 
a significant benefit over the existing vancomycin therapy (26).

In conclusion, although surotomycin was generally well toler-
ated during the conduction of the phase III trials, the published 
results make doubtful that surotomycin will be introduced for the 
treatment of CDI (63).

Ridinilazole
Ridinilazole, formerly known as SMT19969, is a new narrow-
spectrum synthetic antibiotic (64, 65). The mechanism of action 
of this novel class of heterocyclic antibacterials has not been fully 
elucidated, but we know that ridinilazole inhibits DNA bacte-
rial synthesis (64). Moreover, Bassères et al. demonstrated that 
ridinilazole induces CD cell elongation while inhibiting sporula-
tion, in contrast to other traditional anti-CD antimicrobials (66).

Pharmacokinetics of ridinilazole appears ideal for the treat-
ment of CDI, as it is non-systemically absorbable after oral 
administration and more than 97% of the antimicrobial passes 
unchanged in the colon, achieving high concentrations at this site 
(33).

Ridinilazole showed a narrow-spectrum activity against 
Gram-positive pathogens, including CD and it minimally affects 
the host gut microbiota (67–69).

Interestingly, ridinilazole specifically inhibits the growth of 
CD and has no effect on other Clostridia species; this could have 
a beneficial effect on the imbalance between CD and Clostridia 
scindens that has been demonstrated to have an important role in 
CDI development (67).

Clostridia scindens is one of the few bacterial species able to 
convert primary bile salts into secondary bile salts in the human 
gut. A bile acid-dependent, C. scindens-mediated CDI inhibition 
model has been recently hypothesized (70–72). According to this 
model, microbiota-mediated modification of bile acids contrib-
utes to host resistance to intestinal pathogens such as CD (70–72). 
In health persons, a microbial network in the gut provides resist-
ance against CDI; exposure to broad-spectrum antibiotics leads 
to intestinal microflora disruption, including a reduction in C. 
scindens population. This imbalance between CD and C. scindens 
gut colonization prevents the metabolism of bile acids increasing 
the ratio between primary and secondary bile acids, this in turn 
facilitates CD germination and overgrowth (70–73). Among 
commensal microbiota components, C. scindens is one of the 
bacterial species having the ability to convert primary bile salts 
into secondary bile salts, promoting inhibition of CD vegetative 
growth. The specific activity of ridinilazole against CD, sparing 
other clostridia species, may be therefore a promising feature.

In preclinical studies adopting the CD-infected hamster model, 
ridinilazole has shown to be effective, with an observed survival 
rate similar to that of vancomycin and fidaxomicin (68, 69).

After the completion of a phase I safety study demonstrating 
that the compound is well tolerated when assumed orally at a 
dosage up to 2 g a day over 10 days (33), a phase II double-blind 
trial (CoDIFy) randomized 100 CDI patients to receive either 
ridinilazole 200 mg bid or vancomycin 125 mg qid (32).

The trial results demonstrated ridinilazole superiority in 
achieving response rates at the end of treatment (77.8% and 
69.7% for ridinilazole and vancomycin, respectively), in reduc-
ing rates of recurrent CDI (14.3% and 34.8% for ridinilazole and 
vancomycin, respectively) and in obtaining sustained clinical 
responses (66.7% and 42.4% for ridinilazole and vancomycin, 
respectively) (32). These results sound promising and support 
larger phase III clinical trials.

The results from a recently completed randomized trial 
(NCT02784002) comparing ridinilazole to fidaxomicin for the 
treatment of CDI have not yet been published (74).

LFF571
LFF571 is a novel semi-synthetic cyclic lipopeptide antibiotic 
derived from a natural metabolite produced by the actinomycete 
Planobisporarosea (75, 76). It belongs to a new class of thiopeptide 
antibiotics and acts disrupting bacterial protein synthesis by 
inhibiting the elongation factor Tu (EF-Tu), a bacterial factor 
involved in peptide synthesis (75–78).

LFF571 showed interesting pharmacokinetics features for the 
treatment of gastrointestinal infections, as it possesses low oral 
bioavailability and reaches high colonic concentrations (35, 36).

In vitro studies demonstrated LFF571 activity against CD, with 
a minimal inhibitory concentration (MIC) (79–82). LFF571 also 
possesses activity against other Gram-positive anaerobes and 
some Gram-positive aerobes, including lactobacilli and entero-
cocci (79–81).

A study performed in the CDI hamster models showed that 
LFF571 administration prevented CDI associated mortality (82).

Subsequently, a placebo-controlled phase I trial assessing 
LFF571 safety and tolerability demonstrated that a single LFF571 
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dose up to 1,000 mg and repeated doses up to 200 mg four times a 
day for 10 days were safe and well tolerated in healthy volunteers (36).

Finally, in 2015, a phase II trial has been carried out to compare 
LFF571 and vancomycin safety and efficacy (34). This evaluator-
blind trial randomized 72 patients with moderate severity CDI 
to receive a 10 days course of either LFF571 200 mg four times 
daily or vancomycin 125 mg four times daily (34). The trial results 
showed higher clinical response rates at the end of treatment with 
LFF571 (90.6% vs. 78.3%), unfortunately also higher recurrence 
rates were reported with LFF571 (37% vs 31%) (34).

No further phase II or phase III trials for LFF571 have been 
reported so far.

Ramoplanin
Ramoplanin is a glycolipodepsipeptide antimicrobial that exerts 
its mechanism of action preventing cell wall peptidoglycan 
biosynthesis (83). More precisely, ramoplanin indirectly inhibits 
the transglycosylases responsible for peptidoglycan biosynthesis 
by sequestering their intermediate substrate Lipid II at the inter-
face between the extracellular environment and the bacterial 
membrane (83). Binding to the key intermediate moiety lipid II, 
ramoplanin leads to the disruption of bacterial wall and therefore 
bacterial death (83, 84).

This compound is non-absorbable orally and achieves high 
colonic concentrations (85).

Ramoplanin has activity against both aerobic and anaero-
bic Gram-positive bacteria, including vancomycin-resistant 
Enterococcus (86, 87).

Regarding its activity against CD, an in  vitro model clearly 
showed that ramoplanin molecule can bind CD spores and also 
kills vegetative CD cell with high efficacy (87–91).

Ramoplanin activity against CDI has been demonstrated also 
in animal models (86).

Interestingly, ramoplanin superiority over vancomycin in 
reducing CD sporulation and spore release has been demon-
strated in animal model showing that CD spores were less often 
recovered from the ramoplanin-treated hamsters as compared to 
those treated with vancomycin (86).

Subsequently, in a phase II trial, 86 CDI patients were rand-
omized to receive either ramoplanin, 200 mg twice daily or 400 mg 
twice daily, or vancomycin, 125 mg four times daily for 10 days. 
The two arms receiving ramoplanin showed similar clinical cure 
rates at the end of treatment (83% and 85%, respectively, in com-
parison to 86% of vancomycin), but also higher rate of adverse 
events, with nausea, vomiting, and diarrhea as the most frequently 
reported adverse events in the ramoplanin arms (85, 92).

Nonetheless, in the light of the promising features of this drug, 
a phase III trial on ramoplanin against CDI has been planned and 
has been recently approved by the FDA (85, 92, 93).

CRS3123
CRS3123, formerly known as REP3123, is a recently developed 
fully synthetic diaryldiamine antimicrobial (93).

CRS3123 prevents both CD growth and CD spore produc-
tion by inhibiting bacterial protein synthesis (85, 94, 95). 
Interestingly, this antimicrobial acts on the bacterial methionyl-
tRNA synthetase, has limited effect on the structurally distinct 

methionyl-tRNA synthetases of Gram-negative bacteria and 
humans (85, 94, 95), and possesses activity against CD and 
other Gram positive bacteria including Staphylococcus and 
Enterococcus. However, CRS3123 is inactive against major 
intestinal Gram-positive colonizers, including Lactobacillus and 
Bifidobacterium (95, 96).

Following the evidences of CRS3123 efficacy for CDI treat-
ment obtained from the hamster model (94), the results from 
a phase I study to assess the safety, tolerability, and systemic 
exposure of escalating doses of CRS3123 in humans have been 
recently published (37).

In this single-center, double-blind, placebo-controlled phase 
I trial, escalating doses of CRS3123 were administered orally to 
the study participants. The study enrolled 40 participants rand-
omized to receive study product or placebo, with a CRS3123 dose 
range of 100, 200, 400, 800, and 1,200 mg (37).

Reported adverse events were similar in severity and fre-
quency for participants who received active drug and for those 
who received placebo, and all the adverse events in the study drug 
group were mild or moderate (37).

The bioavailability of CRS3123 following oral administration 
could not be accurately assessed during this trial, because of 
the absence of standards for the metabolites. Nonetheless, a not 
negligible fraction of the administered oral dose of CRS3123 was 
detected systemically (37).

Phase II trials are urgently needed in order to assess CRS3123 
efficacy for CDI in humans.

Fusidic Acid
Fusidic acid is a relatively well-known antimicrobial belonging 
to the class of polysaccharides and originally developed from the 
fungus Fusidium coccineum (93).

Fusidic acid works by interfering with bacterial protein syn-
thesis, by preventing the translocation of the elongation factor 
G from the ribosome (93). Of interest for its implication in CDI 
treatment, fusidic acid also acts as a blocker of L-selectin, an adhe-
sion molecule involved in the inflammatory response to CD (93).

Concerning the economic cost for a course of CDI treatment, 
fusidic acid may represent one of the cheapest options in US, with 
a cost similar to metronidazole (38).

So far, a phase III trial by Wullt et al. has been published on 
fusidic acid for CDI treatment (38, 39). The authors performed 
a prospective, randomized-controlled, double-blind trial on 131 
patients to compare the efficacy of fusidic acid 250  mg orally 
three times to that of metronidazole 400 mg orally three times 
daily for 7 days for initial CDI episodes (38). In the fusidic acid 
group, clinical cure at the end of treatment was achieved in 83% 
of patients in comparison to 93% in the metronidazole group 
(P = 0.116) (38). Clinical CDI recurrence was described in 27% 
and 29% of patients receiving fusidic acid and metronidazole, 
respectively (39).

Of note, in the group of patients treated with fusidic, the 
emergence of fusidic acid resistance was reported in the 55% 
of the CD infecting strain (39). The mechanisms of fusidic acid 
resistance in CD are still unknown but the emerging fusidic acid 
resistant CD strains may easily be transmitted between patients, 
hampering any future wide-spread use of fucidic acid for CDI 
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(39). Nevertheless, fusidic acid monotherapy may still represent 
a possible future option for selected settings, i.e., units with a high 
rate of vancomycin-resistant enterococci intestinal colonization 
or with CDI patients who can not tolerate the standard CDI 
treatment (39).

At present, there are no further phase III trials on the develop-
ment of fusidic acid as anti-CDI treatment (93).

Nitazoxanide
Nitazoxanide is a nitrothiazole benzamide that was originally 
approved as an anti-parasitic drug, but over time, it also showed 
activity against bacterial enteric pathogens, including CD (97).

After oral administration, nitazoxanide is mostly excreted in 
feces, and it has been well tolerated in the studies performed in 
humans, with no reports of serious adverse events, although rare 
occurrence of elevated creatinine levels and alanine aminotrans-
ferase in serum has been reported (98, 99).

So far, clinical trials have compared nitazoxanide use for CDI 
with both vancomycin and metronidazole.

A preliminary, uncontrolled, open-label phase II study on 35 
CDI patients who failed metronidazole treatment for a first CDI 
episode or who had recurrent CDI assessed a 74% response rates 
after a 10-day nitazoxanide treatment, but also a 33% recurrence 
rate (41).

Subsequently, in a phase III, double-blind trial, 110 primary 
CDI patients were randomized to receive a 10-day treatment 
course with nitazoxanide or metronidazole, reporting similar 
clinical response rate at the end of treatment (89.5% and 82.4% 
for nitazoxanide and metronidazole, respectively) and similar 
CDI recurrence rates (13.9% and 24% for nitazoxanide and 
metronidazole, respectively) (42).

Regarding nitazoxanide comparison with vancomycin, a pro-
spective, double-blind randomized trial was conducted in CDI 
patients (40). The trial compared the efficacy of 10 days of oral 
nitazoxanide therapy versus 10 days of oral vancomycin in CDI 
patients (40). Unfortunately, this trial was prematurely stopped 
for unclear reasons, with a total number of 49 enrolled patients. 
Even if similar clinical cure rates at the end of treatment (77% for 
nitazoxanide and 74% for vancomycin) and recurrence rates (5% 
for nitazoxanide and 7% for vancomycin) were observed, these 
results did not reach statistical significance (40).

However, nitazoxanide still shows promising features as a 
future treatment of CDI, and recently its use for severe recurrent 
cases of CDI has been reported (100).

Rifampin
First synthesized in 1965, rifampin is a well-tolerated antimicro-
bial compound which exerts its activity by inhibiting bacterial 
RNA synthesis (101). Although rifampicin cannot be considered 
a novel antimicrobial, over time its activity against CD leaded to 
consider its use for CDI treatment (102, 103).

However, in a phase II trial testing rifampin in associa-
tion with metronidazole, similar initial cure rates were found 
between rifampin plus metronidazole versus metronidazole 
alone (63% and 65%, respectively), and the study was ended 
prematurely because of the non superiority of the combination 
therapy (43).

A different phase III trial was begun in 2008 and was recently 
completed (NCT00182429), but no results have been reported 
so far (93).

Moreover, beside all the uncertainties on its efficacy as a single 
agent against CDI, the emergence of resistance to rifampin repre-
sents a further matter of concern (104, 105).

Nvb302
The antimicrobial NVB302 was first isolated from Actinoplanes 
liguriae (93, 106).

After promising pre-clinical studies in human gut models 
(107), no results have been published from phase I trials, and no 
development of phase II or III trials has been reported (106, 107).

Thuricin CD
Thuricin CD is a recently developed, modified bacteriocin anti-
microbial, which exhibited excellent narrow spectrum activity 
against CD (108, 109).

This compound is showing promising features; interestingly, in 
a human gut research model, it displayed a minimal impact on gut 
microbiota, sparing Firmicutes, Bacteroides, and Proteobacteria in 
comparison with traditional anti-CD antibiotics (109).

At present no trials have been conducted on Thuricin CD, and 
its safety and efficacy for CDI are still to be demonstrated (106).

Lacticin 3147
Lacticin 3147 is a small 2-peptide molecule “lantibiotic” synthe-
sized by Lactococcus lactis (110). Even if it has been demonstrated 
a high activity of this molecule against CD, its broad-spectrum 
antimicrobial activity against Gram-positive bacteria and its 
high impact on several phila of the gut microbiota make unlikely 
lacticin 3147 future use for CDI treatment (106, 108, 110).

Auranofin
Auranofin is a molecule originally approved for the treatment of 
rheumatoid arthritis (111). This compound gained attention for a 
possible treatment in CDI because of its potent in vitro inhibitory 
activity of CD and its considerable excretion in feces after oral 
administration (111).

Auranofin acts on CD by sequestering inorganic selenium, 
thus impairing CD selenium metabolism and seleno-proteins 
synthesis, essential for the bacterium survival (112).

Interestingly, this mechanism of action should confer to 
auranofin specificity or quasi-specificity against CD.

At present, despite these promising features, no clinical trials 
have been published on auranofin use for CDI.

ADeP-1
ADEP-1 (acyldepsipeptide-1) is a novel bactericidal antimicro-
bial molecule belonging to the acyldepsipeptide antibiotic class 
(113). These natural antibiotics are originated from the soil 
bacteria Streptomycetes (113). More precisely, ADEP-1 originates 
from the bacteria Streptomyces hawaiiensis and showed a potent 
activity against Gram-positive bacteria (114).

As other acyldepsipeptide antibiotics, ADEP-1 acts dis-
rupting the protein metabolism in bacterial cell, by inducing 
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over-activation of intracellular caseinolytic ATP-dependent pro-
teases (114). Subsequently, the intracellular protein metabolism 
derangement causes cell division, differentiation, and sporulation 
impairment, finally leading to bacterial cell death (114, 115).

Interestingly, it has been shown that the CD proteases targeted 
by acyldepsipeptide antimicrobials are also related to the intracel-
lular systems sigma factors σ (E) and MazEF, which play a key role 
in CD sporulation (114, 116).

Recently, starting from the consideration of ADEP-1 
Gram-positive bactericidal activity and the presence in CD of 
caseinolytic proteases, potential target of this compound, some 
authors proposed the use of ADEP-1 and other acyldepsipeptide 
antimicrobials for the treatment of CDI, alone or in combination 
with other antimicrobial classes (114).

Even if these authors highlighted the lack of specificity against 
CD of this compound, in our opinion, the promising feature of 
ADEP-1, including its bactericidal activity and its potential effect 
on CD sporulation, urges the design of pre-clinical studies on 
this molecule.

At present, there are no ongoing clinical trials on acyldepsi-
peptide antibiotics for CDI treatment.

Tigecycline
Tigecycline is a broad-spectrum antimicrobial of the glycylglycine 
class (117). It acts as a protein synthesis inhibitor, with activity 
against Gram-positive, Gram-negative and anaerobe bacteria, 
including Fusobacterium spp., Prevotella spp., Porphyromonas 
spp., and Bacteroides fragilis (117, 118).

Tigecycline has been approved for treatment of complicated 
skin infections and complicated intra-abdominal infections (119).

Tigecycline is not registered for use in CDI; however, it exerts 
a bacteriostatic activity against CD (119–121).

Importantly, tigecycline achieves high concentrations in the 
bile and gastrointestinal tract after intravenous administration, 
with a median fecal concentration in human volunteers of 5.6 mg/
kg after 8 days, and has been proposed as an alternative agent for 
the treatment of CDI in humans (122).

A large pan-European study, conducted between 2011 and 
2014 across 22 European countries, reported that tigecycline 
had in vitro activity against all the CD isolates (2,830) tested for 
tigecycline susceptibility, with a mean MIC of 0.04 mg/L (123).

Moreover, multi-drug resistant CD strains have been found 
susceptible to tigecycline, showing a MIC range from 0.016 to 
0.25 mg/L (118, 123–135).

Therefore, tigecycline represents a potential antibiotic treat-
ment for CDI (118, 125, 135–137).

Interestingly, the effects of tigecycline on sporulation and toxin 
production have been evaluated by means of in vitro experiments 
and animal models, demonstrating that tigecycline is effective in 
preventing CD overgrowth and CD toxin production (118, 128, 
129, 138).

Regarding the impact on gut microbiota, there is evidence 
that tigecycline causes a significant alteration of the microbiota, 
including a reduction of Bacteroides spp (118, 132, 139–141). 
However, Jump et al. demonstrated that, in comparison to other 
broad-spectrum antibiotics, the use of tigecycline is associated 

with a lower risk of alteration of colonization resistance to 
CD (142). In the study, levels of bacterial metabolites in fecal 
specimens from a mouse model were measured, showing that 
tigecycline treatment caused a less profound alteration of fecal 
metabolites in comparison to linezolid, piperacillin/tazobactam, 
and ceftriaxone (142).

A retrospective cohort study comparing 45 patients receiving 
tigecycline monotherapy to 45 patients receiving standard treat-
ment for CDI, reported higher clinical cure rates with tigecycline 
than with vancomycin and metronidazole (143).

However, retrospective studies evaluating the efficacy of tige-
cycline adjunctive therapy for CDI reported conflicting results 
(143–147).

Moreover, three retrospective cohort studies failed to demon-
strate a beneficial effect of adjunctive tigecycline CDI treatment 
on patients outcome in comparison to standard treatment alone 
(145–147).

A phase II trial started in 2011 could have been able to 
elucidate the role of tigecycline for CDI treatment but unfortu-
nately was discontinued because of a too slow enrollment rate 
(NCT01401023) (119).

No further phase II or III trials have been started so far  
(93, 119).

Therefore, randomized controlled trials are needed to fully 
elucidate tigecycline efficacy and safety for the management of 
CDI.

A Room for Preventing CDi Recurrence
Rifaximin
Rifaximin is a well-tolerated antimicrobial compound which 
belongs to the rifamycin class. Similarly to rifampin, rifaximin 
acts inhibiting bacterial RNA synthesis (117, 118, 148, 149).

Interestingly, rifaximin is minimally absorbed after oral 
administration, achieving high colonic concentrations (148–150).

Therefore, rifaximin shares with rifampin several interest-
ing features, i.e., a potent activity against CD, but also several 
drawbacks, including the high risk of emergence of resistance 
(93, 151).

It was introduced for the treatment of traveler’s diarrhea, 
rifaximin has also been proposed for CDI treatment (148–150).

Initially, rifaximin has been tested as a “chaser” to augment 
vancomycin efficacy in the CDI treatment (148–150), however, 
rifaximin ability to spare enteric microbiota makes it a potentially 
useful agent for the prevention of CDI recurrence after a first CDI 
episode.

On this issue, three case series have investigated the use of 
rifaximin to prevent CDI recurrence so far (152–154).

The first case series reported the administration of a 2-week 
regimen of rifaximin immediately after the vancomycin standard 
treatment in eight CDI patients with multiple recurrences (152). 
During the follow-up after this protocol, only one out of the eight 
patients experienced CDI (152).

In a report by Garey et  al, five patients with multiple CDI 
recurrences received a rifaximin tapering regimen for 4  weeks 
(154). None of these subjects experienced CDI recurrence after 
the rifaximin protocol during a follow-up of at least 54 days (154).
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Afterward, a phase II, double-blind, randomized placebo-
controlled study was carried out to assess rifaximin efficacy in 
preventing recurrences in 68 CDI patients (44). Immediately 
after the standard metronidazole or vancomycin based therapy, 
the treatment arm received rifaximin at the dose of 1.2 g daily for 
20 days (44). The observed rate of recurrence resulted lower in 
the rifaximin arm in comparison with the placebo (15% vs. 31% 
of recurrence, respectively), but unfortunately the findings of the 
study did not reach a significant difference (44).

A new trial to evaluate a rifaximin tapering regimen in a larger 
cohort of CDI recurrences patients has been recently completed, 
and results have yet to be published (NCT01670149, available 
from http://clinicaltrials.gov).

DiSCUSSiON AND CONCLUSiON

In comparison with the traditional anti-CDI antimicrobial treat-
ment, some novel antimicrobials reviewed in this study offer 
several advantages.

The favorable pharmacokinetic and pharmacodynamic 
profile, the narrow-spectrum activity and the specificity against 
CD that implicate a low impact on the gut microbiota composi-
tion, and the inhibitory activity on CD sporulation and toxins 
production are among the most promising features of these 
compounds.

First, the potential capacity of the new medication to reduce 
CDI recurrences preserving the human gut microbiota is of major 
importance.

In fact, beside well-known risk factors for the development of 
CDI, such as decreased stomach acidity, advanced age, renal dis-
ease, and other comorbidities, it has been recently demonstrated 
that the disruption of the intestinal microbiota is a key factor for 
CDI development (155–158). Microbiota disruption facilitates 
CD germination and overgrowth and therefore CDI development 
(155–158).

Previous studies have demonstrated that the microbiota of 
CDI patients is characterized by a decrease in species rich-
ness, with an association between loss of Bacterioides, 
Lachnospiraceae, and Ruminococcaceae and the development of 
CDI (156–158).

A broad spectrum antibiotic treatment given for concomitant 
infection, usually inactive against CD but very active against 
bacterial intestinal colonizers, represents one of the main causes 
of microbiota disruption.

Importantly, also the traditional anti-CD antimicrobial 
compounds may negatively impact on the indigenous gut flora, 
paradoxically facilitating the imbalance between “protective” 
enteric pathogens and CD (159).

In fact, metronidazole possesses bactericidal activity against 
the protective anaerobic philia of Bifidobacterium and Bacteroides 
(159); vancomycin has remarkable activity against Enterococcus 
spp. and Bacteroides (160, 161).

Also fidaxomicin, even if may be considered an advancement 
in terms of specificity against CD in comparison with metro-
nidazole and vancomycin, has shown relevant activity against 
Bacillus spp., Enterococcus spp., Lactobacilli, and Bifidobacterium 
(162, 163).

The imbalance determined in the gut flora mediated by these 
traditional first-line anti-CD antimicrobials can subsequently 
facilitate CDI recurrence (159).

Interestingly, it has been observed that the period of major 
vulnerability for CDI recurrence starts from the end of the tra-
ditional anti-CDI treatment, when sub-inhibitory levels of CDI 
antibiotics are still present in the human gut and further contribute 
to a misbalance in the gut microflora (157, 163, 164). Therefore, 
despite the administration of these traditional antimicrobials, CD 
spores can survive in the gut and be facilitated to germinate by the 
microbiota disruption, leading to recurrent CDI and trapping the 
patient in a vicious “recurrent CDI cycle” (157, 163, 164).

In the light of these considerations, the potential narrow-
spectrum activity and the specificity against CD showed by some 
novel antimicrobials in development for CDI appears of crucial 
importance, allowing to preserve microbiota integrity and thus 
reducing CDI recurrences.

The novel antimicrobials that better fit with this characteristic are 
cadazolid, surotomycin, ridinilazole, auranofin, and thuricin CD.

Second, the ecological impact of the new antimicrobials 
against CD has to be highlighted.

The activity against CD spores and the ability to prevent CD 
sporulation displayed by several novel antimicrobials suggest that 
these compounds may not only reduce CDI recurrence rate, but 
may also potentially reduce CD environment persistence, thus 
reducing CD spread in the hospital setting and CDI healthcare 
associated acquisition.

Cadazolid, ridinilazole, CRS3123, ramoplanin, and, poten-
tially, the acyldepsipeptide antimicrobial are, among the anti-
microbial reviewed in this paper, the most active compounds in 
reducing spore production (Table 1).

Along with the potential benefit of new anti-CDI antimicrobi-
als, it is important to emphasize that some new molecules present 
limitations that could affect the probability of their approval for 
the CDI treatment.

Main drawbacks include the occurrence of CD resistant strains 
for rifampicin and fusidic acid; the failure to achieve a significant 
benefit over the existing traditional antimicrobial CDI treatment 
for surotomycin; the failure to reduce the CDI recurrence rate at 
the end of treatment for LFF571, and the relatively high impact 
on several phila of the gut microbiota for ramoplanin.

In conclusion, the novel antimicrobial molecules under devel-
opment for CDI present promising key features and advance-
ments in comparison to the traditional anti-CDI antimicrobials. 
Hopefully, in the near future, these new molecules will be effec-
tive alternatives to fight and prevent CDI, a condition which may 
actually represent a real “spiral of disease.”
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