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Focal segmental glomerulosclerosis (FSGS) is the most common primary glomerular 
disease resulting in end-stage renal disease in the USA and is increasing in prevalence 
worldwide. It is a diverse clinical entity with idiopathic, genetic, metabolic, infectious, and 
other causes that culminate in a characteristic histologic pattern of injury. Proteinuria 
is a hallmark of FSGS as well as other primary and secondary glomerular disorders. 
The magnitude of proteinuria at disease onset and during treatment has prognostic 
implications for renal survival as well as associated cardiovascular morbidity and mor-
tality. Significant advances over the last two decades have shed light on the molecular 
architecture of the glomerular filtration barrier. The podocyte is the target cell for injury 
in FSGS. A growing list of disease-causing gene mutations encoding proteins that reg-
ulate podocyte survival and homeostasis has been identified in FSGS patients. Several 
pathogenic and regulatory pathways have been uncovered that result in proteinuria in 
rodent models and human FSGS. The recurrence of proteinuria and FSGS after kidney 
transplantation is supporting evidence for the role of a circulating permeability factor in 
disease pathogenesis. These advances reviewed herein have significant implications for 
disease classification and therapeutic drug development for FSGS.

Keywords: podocyte, focal segmental glomerulosclerosis, HivAN, soluble urokinase-type plasminogen activator 
receptor, podocin

iNTRODUCTiON

The glomerular filtration barrier is composed of fenestrated endothelial cells, the glomerular base-
ment membrane (GBM), and podocytes, terminally differentiated epithelial cells connected by 
interposed slit diaphragms between actin-rich foot processes (1). Seminal studies by Farquhar and 
Palade highlight the role of the GBM in excluding molecules of the size and negative charge of 
albumin from the urine under normal conditions (2). Though proteinuria can result from injury 
to any of these components, experimental nephrosis was initially described as mainly affecting the 
visceral epithelium with loss of podocyte foot processes, reduction and modification of the “urinary 
slits” (interposed slit diaphragm), and intracellular accumulation of vacuoles and protein absorption 
droplets (3, 4). Positional cloning of the NPHS1 gene encoding nephrin, a vital component of the 
slit diaphragm, was a landmark event that initiated the era of molecular discovery of the complex 
molecular architecture of the podocyte (5). Wiggins et al. performed elegant studies showing that 
in a diphtheria toxin rat model, podocyte loss of more than 20% results in a low-level-sustained 
proteinuria. Loss greater than 40% directly causes a high-level proteinuria, a decreased renal func-
tion, and lesions of focal segmental glomerulosclerosis (FSGS) (6). Podocyte loss triggers a cascade 
involving tuft adhesions of bare areas of GBM to Bowman’s capsule, a nidus for sclerosis development 
that can progress to segmental sclerosis (7). Rather than a disease, FSGS should be considered a 
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histologic pattern of glomerular injury resulting from podocyte 
loss. It describes not only primary podocyte injury but also a 
lesion that occurs as a secondary process such as hypertensive 
and diabetic nephropathy (DN). Clinically and genetically 
heterogeneous, FSGS is characterized by segmental sclerosis of 
the glomerular capillary tuft, with or without deposition of IgM 
and complement C3 (8). The pathogenesis of FSGS is multifacto-
rial, thereby complicating classification efforts and therapeutic 
approaches. The contribution of circulating permeability factors 
has been suggested for four decades with the recurrence of FSGS 
after kidney transplantation potentially occurring within hours 
(9, 10). Separately, many genes identified in patients with familial 
and sporadic FSGS encode essential podocyte proteins (11). Viral 
nephritides, HIV in particular, has been associated with collaps-
ing FSGS (12).

This review discusses the knowledge to date of the underlying 
pathogenesis of podocyte injury leading to proteinuria and FSGS. 
We focus on the contributions of putative circulating factors,  
gene mutations, and viral infections.

CiRCULATiNG FACTORS

The high recurrence rate of FSGS post transplant (estimated at 
30–40%) suggests the presence of a circulating factor in recipients. 
A pivotal study by Savin et al. showed that plasma from patients 
with recurrent FSGS could increase the glomerular permeability 
to albumin in an in  vitro assay. Plasmapheresis was associated 
with a reduced proteinuria as well as a reduced glomerular 
permeability (13). Gallon presented an interesting case of a 
kidney-transplant patient with recurrent FSGS (14). The allograft 
kidney regained function with a reduction in proteinuria after the 
graft was removed and re-transplanted to another patient whose 
ESRD was due to diabetes mellitus. In addition, an infant born 
to a mother with primary FSGS developed transient proteinuria, 
suggesting a circulating factor crossing the placenta leading to 
proteinuria (15). These studies well illustrate the existence of 
a circulating factor, but the nature and source of such a factor 
remained unclear. Several putative factors have been proposed 
including soluble urokinase-type plasminogen activator recep-
tor (suPAR), CLC-1, Apolipoprotein A1, active protease, and 
anti-CD40.

Soluble Urokinase-Type Plasminogen 
Activator Receptor
Of the putative factors, the role of urokinase-type plasminogen 
activator receptor (uPAR) and its soluble form (suPAR) have been 
the most studied (16, 17). uPAR is a glycosylphosphatidylinositol 
(GPI)-anchored three-domain (DI, DII, and DIII) protein. Apart 
from being a receptor for urokinase, uPAR also forms signaling 
complexes with various transmembrane proteins including integ-
rin and is involved in non-proteolytic pathways. The soluble form 
suPAR can be released by the cleavage of GPI anchor. In Wei’s 
study, uPAR was upregulated in the glomeruli from both DN and 
FSGS. Using uPAR knockout (Plaur−/−) mice model, they showed 
that lipopolysaccharide (LPS)-induced proteinuria was uPAR-
mediated, and uPAR upregulation following LPS stimulation led 

to αvβ3 integrin activation, with subsequent podocyte foot process 
effacement, increased podocyte motility, and proteinuria (16). The 
same group subsequently revealed the role of suPAR as a potential 
pathogenic factor involved in podocyte injury (17). Recombinant 
suPAR and serum from patients with FSGS recurrence induced 
αvβ3 integrin activation both in vitro and in vivo. In uPAR-knockout 
(Plaur−/−) mice, the supraphysiologic level of endogenous suPAR 
and exogenous suPAR injection induced αvβ3 integrin activation, 
resulting in podocyte injury and proteinuria. A recent study (18) 
has shed light on the source of suPAR production. Myeloid pro-
genitor Gr-1lo cell expansion along with suPAR upregulation and 
proteinuria was observed in different rodent models for proteinu-
ric kidney disease including DN and nephrotoxic serum nephritis. 
Incubating Gr-1lo − Sca-1 +  myeloid progenitor cells with LPS 
led to uPAR expression and suPAR secretion, and injecting these 
myeloid progenitor cells could induce proteinuria in NSG mice 
(deficient in mature lymphocytes and natural killer cells). To trans-
late their findings to human disease, the investigators introduced 
whole peripheral blood mononuclear cells (human hematopoietic 
cells), drawn from individuals with recurrent FSGS and injected 
into NSG mice. This approach led to Gr-1lo cell expansion, suPAR 
upregulation, and proteinuria. However, CD34+-depleted PBMC 
from these patients failed to induce any proteinuria. This process 
was distinct from GVHD pathophysiology since T cell-depleted 
PBMC yielded similar results. Though human homologs of Gr-1lo 
− Sca-1  +  myeloid progenitor cells have not been identified 
given the lack of Gr-1 or Sca-1 antigen, these findings implicate 
a common upstream pathway relevant to general CKD. The same 
investigators recently linked APOL1-risk alleles to the suPAR–β3 
integrin activation pathway (19). In this study, G1/G2-risk alleles 
were demonstrated to activate β3 integrin synergistically with 
suPAR, inducing autophagosome formation in podocytes and 
leading to foot process effacement, podocyte detachment, and 
proteinuria.

These findings have not been without controversy. Conflicting 
studies have shown that suPAR does not distinguish FSGS from 
other causes of nephrotic syndrome and that suPAR expression 
may be nonspecifically increased in the setting of a low eGFR 
(20–22). These findings have raised questions about the reliability 
of current ELISA methodology as a diagnostic biomarker for 
FSGS (23). It is likely that suPAR’s utility is confined to patients 
with a preserved eGFR. This is supported by the fact that elevated 
suPAR levels predicted future CKD development in the 3683 
subject Emory Cardiovascular Biobank (24). The fact that suPAR 
was associated with both proteinuric and non-proteinuric CKD 
in this cohort also highlights the need for additional mechanistic 
studies on suPAR targets, production, and mechanism of action.

Other Proposed Circulating Permeability Factors
Cardiotrophin-Like Cytokine Factor 1 (CLCF1)
Proteomic analysis by liquid chromatography tandem mass 
spectrometry of recurrent FSGS plasma fractions that induce 
proteinuria in rats and enhance glomerular permeability to 
albumin led to the identification of CLCF1 (25–27). CLCF1 is 
a member of the IL-6 cytokine family and is secreted into the 
circulation as a heterodimer with either cytokine receptor-like 
factor 1 (CRLF1) or soluble ciliary neurotrophic factor receptor 
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alpha. This heterodimeric coexpression is essential for efficient 
CLF1 secretion (28, 29). It has been demonstrated that CLCF1 
increased glomerular permeability to albumin in a specific man-
ner with anti-CLCF1 monoclonal antibody, blocking this effect 
and attenuating the effect of FSGS serum (30). CLCF1 appeared 
to be JAK/STAT dependent with both JAK2 and STAT3 inhibition 
blocking the ability of CLCF1 to increase glomerular permeability 
to albumin. Interestingly, heterodimeric CLCF1–CRLF1 also had 
an inhibitory effect on CLCF1 and FSGS-induced albumin per-
meability (30). This would suggest that while monomeric CLCF1 
is pathogenic, heterodimeric CLCF1 is protective. The study also 
highlights the need for further exploration of the JAK–STAT 
pathway in FSGS pathogenesis.

Anti-CD40 Antibody
Recently, Delville et al. (31) screened 9,000 antigens in pretrans-
plant sera from 64 patients with or without recurrent FSGS, 
compared to 34 non-FSGS CKD patients. A panel of antibodies 
(CD40, PTPRO, CGB5, FAS, P2RY11, SNRPB2, and APOL2) 
could predict posttransplant FSGS recurrence with 92% accuracy. 
Pretransplant elevation anti-CD40 antibody alone had the best 
accuracy of 78% in predicting FSGS recurrence. Anti-CD40 anti-
body caused podocyte injury both in cultured human podocytes 
and in wild-type mice, and the formation of this antibody may 
be associated with altered immunogenicity of the CD40 protein 
in serum among patients with recurrent FSGS. Proteinuria was 
further enhanced by co-injecting full-length suPAR into wild 
mice, suggesting that uPAR–αvβ3 signaling pathway may also be 
involved in anti-CD40 antibody-induced podocyte injury (31). 
This study was limited by a small sample size with validation 
required in other recurrent FSGS cohorts.

Apolipoprotein A-I
Proteomic analysis of plasma and urine samples performed on 
patients with recurrent FSGS post transplant identified a high-
molecular-weight form of Apolipoprotein A-I, named as ApoA-Ib 
in 93% of recurrent FSGS urines compared with <5% of those 
without recurrence, patients with non- FSGS proteinuric diseases, 
or patients transplanted for familial FSGS. Urinary ApoA-Ib had 
a sensitivity of 92.8% and a specificity of 98.1% for identifying 
FSGS relapse (32). Urinary ApoA-Ib warrants additional inves-
tigation as a biomarker of FSGS recurrence post transplant. It 
remains unclear whether it is a cause or a consequence of FSGS 
recurrence. A potential pathogenic role in causing podocyte 
injury has not been established.

Active Proteases
There is evidence that plasma proteases may have a pathogenic 
role in recurrent FSGS. Vasodilator-stimulated phosphoprotein 
(VASP), a molecule involved in actin cytoskeleton organization is 
phosphorylated in response to exchange plasma from 10 patients 
with recurrent FSGS (33). VASP phosphorylation was associated 
with pathogenic-enhanced podocyte motility. Protease inhibitory 
drug cocktails and silencing of the protease-activated receptor-1 
led to the loss of VASP phosphorylation. The source of increased 
proteases or whether they are enhanced by protease inhibitor  
loss remains unclear.

GeNeTiC eTiOLOGieS OF FSGS

Beginning with nephrin, the positional cloning of patients 
and relatives with familial FSGS has enabled the identification 
of numerous disease-causing podocyte genes (Table  1). They 
encode podocyte proteins localized to the cell membrane 
(TRPC6), nucleus (WT1), mitochondria (COQ2 and COQ6), 
lysosomes (LIMP2), and cytosol (PLCE1) (34–43). The most 
common mutations encode actin cytoskeletal (INF2, ACTN4, 
MYO1E) and slit diaphragm (NPHS1, NPHS2, CD2AP) (5, 
44–49) proteins, thereby highlighting the essential role of these 
structures in the maintenance of the glomerular filtration barrier. 
Mutations in the ACTN4 gene are all in the actin-binding domain 
of the encoded protein and have a much higher affinity for actin 
filaments than of the wild-type protein (50). This gain of func-
tion produces a rigid cytoskeleton more susceptible to stress and  
actin network breaking. INF2, a member of the formin family, also 
regulates the actin cytoskeleton but in a different way. INF2 vari-
ants occur in the diaphanous inhibitory domain that is essential 
in the inhibition of Rho activation (51). Unchecked Rho signaling 
has therefore been suggested as a potential etiology for podocyte 
injury in INF2 mutation (51). Indeed, the activation of RhoA in 
podocytes has been shown to lead to albuminuria, podocyte foot 
process effacement, and histologic lesions of FSGS (52).

The Rho family small GTPases (RhoA, Rac1, and Cdc42) are 
essential in actin cytoskeletal dynamics, cell morphology, motil-
ity, and adhesion. While overactive RhoA can be deleterious, 
there is an emerging consensus that a relative predominance of 
RhoA activity relative to Rac1/Cdc42 favors a more stationary 
podocyte with intact foot processes (53, 54). Conversely, Cdc42/
Rac1 activation is associated with a more motile podocyte 
phenotype and foot process retraction. Loss of function muta-
tions in the Arhgap24 gene associated with familial FSGS cause 
increased levels of active Rac1 and Cdc42 and increased podocyte 
motility (55). Likewise, ARHGDIA mutations in patients with 
steroid-resistant nephrotic syndrome increase active GTP-bound 
Rac1 and Cdc42 again resulting in increased podocyte motility 
reversed with Rac1 inhibitors (56). The slit diaphragm is also 
intricately connected to podocyte actin cytoskeletal dynamics. 
CD2AP and nephrin are direct binding partners with CD2AP 
interacting with actin, cortactin, and the alpha-actinin modulat-
ing protein synaptopodin (57, 58). Nck adaptor proteins link 
nephrin to the actin cytoskeleton (59). The cytoplasmic domain 
of nephrin contains six conserved tyrosine residues that when 
phosphorylated facilitates binding to the SH2 domains of Nck, 
leading to actin polymerization (60). Upregulated nephrin tyros-
ine phosphorylation has been described in glomerular injury 
(61), but the involved tyrosine kinase remains undefined.

The onset of proteinuria is variable in genetic disease with 
autosomal-recessive etiologies generally manifesting clinically 
in childhood and autosomal-dominant traits in adulthood. 
Commercially available genetic testing is most likely to identify 
known disease-causing variants in infants and patients with 
familial and syndromic disease (62). Exomic and genomic 
sequencing have the potential to uncover rare novel gene vari-
ants even in sporadic disease, but confirming causation typically 
requires experimental modeling with cell- and animal-based 
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TABLe 1 | Gene mutations linked to focal segmental glomerulosclerosis (FSGS).

Gene Protein Gene locus Mode of 
inheritance

Phenotype

Slit diaphragm
NPHS1 Nephrin 19q13.1 AR Congenital nephrotic syndrome Finnish type,  

sporadic FSGS, nephrotic syndrome 
NPHS2 Podocin 1q25.31 AR Minimal change nephropathy, FSGS
CD2AP CD2-associated protein 6p12 AD/AR AD or AR sporadic adult-onset FSGS
TRPC6 TRPC6 11q22.1 AD Adult-onset FSGS

Actin cytoskeleton and cytosol
ACTN4 Alpha-actinin 4 19q13.1 AD Adult-onset FSGS
INF2 Inverted formin 2 14q32.33 AD Adult-onset FSGS, Charcot–Marie tooth disease
MYO1E Myosin 1E 15q22.2 AR Early-onset autosomal-recessive FSGS
ARHGAP24 Arhgap24 (RhoGAP) 4q22.1 AD Adolescent-onset FSGS
ARHGDIA Arhgdia 17q25.3 AR Early-onset nephrotic syndrome or FSGS 
PLCE1 Phospholipase C epsilon 1 10q23.33 AR Early-onset diffuse mesangial sclerosis and FSGS
PTPRO Receptor-type tyrosine-protein phosphatase-0 12p12.3 by AR Childhood FSGS

Syndromic conditions
WT1 Wilms’ tumor 1 11p13 AD Diffuse mesangial sclerosis and FSGS, Frasier or  

Denys–Drash syndrome; GU abnormalities 
LXMB1 Lim homeobox transcription factor 1B 9q31.1 AD FSGS, dystrophic nails, absent or malformed patella
tRNALEU Mitochondrial Maternal FSGS, tubulointerstitial nephritis
COQ2 Coenzyme Q2 homolog, prenyltransferase 4q21.22 AR FSGS, neurologic, and muscle abnormalities 
COQ6 Ubiquinone biosynthesis monooxygenase COQ6 14q24.3 AR FSGS, deafness
ITGB4 Integrin B4 17q25.1 AR FSGS, epidermolysis bullosa
PDSS2 Decaprenyl diphosphate synthase subunit 2 6q21 FSGS or collapsing FSGS

Glomerular basement membrane
CD151 CD151 Antigen  11p15.5 Early FSGS, deafness, β-thalassemia
CUBN Cubilin 10p13 AR Chronic glomerulosclerosis, FSGS, or  

HIV-associated nephropathy
LAMB2 Laminin beta 2 3p21 AR Isolated nephrotic syndrome as part of Pierson syndrome

Function unknown
APOL1 Apolipoprotein L1 22q12.3 FSGS, hypertensive-associated kidney  

disease and HIV nephropathy
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models. Identification of disease-causing gene mutations in FSGS 
has prognostic consequences since these patients are less likely to 
respond to steroid and calcineurin inhibitor therapy (63). They 
should perhaps be prioritized for kidney transplantation since 
disease recurrence is lower (64). Caution is necessary in the clini-
cal application of genetic data, however. It is estimated that only 
2.9% of US patients with nephrotic syndrome have a monogenic 
form of the disease and there is a risk in attributing a pathogenic 
role to identified variants that could be noncausal (65, 66).

Apolipoprotein L1 (APOL1)
Focal segmental glomerulosclerosis occurs with a higher fre-
quency in African Americans largely due to variations in the 
Apol1 gene encoding APOL1 (67). APOL1 is a plasma factor 
that lyses the parasite Trypanosoma b. brucei. Over time, the 
parasite evolved into a serum resistance-associated protein (SRA) 
containing T. brucei rhodesiense that cause African sleeping sick-
ness and capable of inactivating and evading Apol1. G1 and G2 
Apol1 gene variants evade the SRA and are active against T. brucei 
rhodesiense. In this sense, this is analogous to malaria where the 
sickle trait is protective against parasitic infection but causes a 
hemoglobinopathy. Located on chromosome 22, the G1 and G2 
alleles confer an increased risk for developing FSGS, hypertensive-
associated kidney disease, and HIV nephropathy (68). In some 

population-based studies, it has been shown that APOLI1 vari-
ants conferred a 17-fold risk of FSGS and a 29-fold risk of HIVAN 
(69). Interestingly, 9 of 10 (90%) African American patients with 
collapsing FSGS in one cohort were noted to have at least one 
APOL1-risk allele (70). Several recently published studies have 
increased the understanding of how APOL1 G1 and G2 variants 
induce podocyte injury. Mice with podocyte-specific expression 
of either allele develop foot process effacement, proteinuria, and 
azotemia (71). These variants were found to interfere with endo-
somal trafficking and autophagic flux within podocytes leading 
to inflammatory-mediated cell death and glomerulosclerosis. 
Defects in autophagy have been previously shown to induce 
podocyte injury, proteinuria, and FSGS (72, 73), and manipula-
tion of autophagic pathways could form the basis for therapeutic 
targeting of Apol1. These findings were distinct from those pub-
lished by another group in which podocyte-specific APOL1-G2 
transgenic mice developed preeclampsia but not kidney disease 
(74). The difference could be explained by the level-lower APOL1 
levels obtained in the latter model. Other potential mechanisms 
have been implicated in APOL1-induced podocyte injury based 
on in  vitro studies. In a human embryonic kidney cell, Tet-on 
system expression of G1 and G2 variants enhanced efflux of extra-
cellular potassium and subsequent activation of stress-activated 
protein kinases (SAPK), p38 MAPK, and JNK. Interestingly, 
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cytotoxicity was abrogated by SAPK inhibition and inhibition of 
K+  efflux (75). Apol1 has also been postulated to be involved 
in apoptosis, mitochondrial dysfunction, and energy depletion 
in other cell-based studies (76–78). Merely carrying high-risk 
APOL1 variants is not sufficient to cause kidney disease, and sig-
nificant attention is currently being directed toward identifying 
second hits in the form of environmental and infectious triggers 
that promote disease development. The identification of patients 
lacking APOL1 with a normal phenotype increases the prospect 
that it can be therapeutically targeted.

viRAL-ASSOCiATeD DiSeASe

Podocytes can be injured by viruses either directly or by inflam-
matory cytokine-mediated targeting of podocyte receptors. In 
this context, HIV has been best studied. The renal expression of 
HIV genes has long been recognized as a central role in promot-
ing HIVAN pathogenesis (79). HIV infects podocytes, tubular 
epithelial cells, infiltrating lymphocytes, as well as macrophages. 
Early studies of animal models, including the classic transgenic 
Tg26 mouse lines, studies on reciprocal transplantation between 
Tg26 and wild-type mice as well as podocyte-specific expres-
sion of HIV genes have confirmed the pathogenic role for local 
HIV gene expression in the kidney (80). Podocyte-predominant 
infection has been associated with podocyte injury, dedifferen-
tiation, and more rapid loss of kidney function, suggestive of an 
HIV-driven podocyte injury as a primary pathogenic pathway in 
HIVAN (81). Moreover, the kidney has been shown to be one 
of the reservoirs for HIV, allowing active viral replication in this 
compartment apart from blood (82, 83). In HIVAN and collaps-
ing forms of primary FSGS, injured podocytes were found to 
revert to a developmental program that includes downregulation 
of cyclin kinase inhibitors, entry into the cell cycle, upregulation 
of proliferation maker, and loss of mature phenotypic makers, 
including CD10/CALLA, C3b receptor, GLEPP-1, podocalyxin, 
synaptopodin, and importantly, WT1 (84–88). This process, 
termed podocyte dysregulation or podocyte dedifferentiation, 
is not observed in other proteinuric kidney disease marked by 
podocyte injury along with foot process effacement, such as 
minimal change disease and membranous nephropathy.

Cip/Kip family of cyclin kinase inhibitors acts in both G1 and S 
phases, while p21 also inhibits G2/M phase complexes. In healthy 
podocytes, p27 and p57 are expressed but p21 is suppressed 
(85). However, in patients with HIVAN or idiopathic collaps-
ing FSGS, the expression of p27 and p57 is significantly sup-
pressed, along with an increase in pro-mitotic cyclins (cyclin A),  
an increase in proliferation marker ki-67, and an expression 
of p21 (84, 85). Interestingly, the decrease in p27 and p57 was 
also found in histologically normal glomeruli, suggestive of a 
decrease of anti-mitotic signals preceding morphological change. 
Moreover, administering cyclin kinase inhibitors is associated 
with a restoration of normal podocyte phenotype and attenu-
ated HIVAN presentation without any suppression of HIV gene 
expression (89, 90). Podocyte dedifferentiation is accompanied by 
the proliferation of parietal epithelial cells (PECs), which express 
parietal cell marker such as CK8 and PAX2 and lack podocyte 
markers. Cell bridges to the CK8-positive parietal lining could 

be observed without any evidence of coexpression of podocyte 
markers. These findings suggest that glomerular PECs provide a 
niche for podocyte progenitor cells (12, 91, 92).

Novel mechanisms of HIV-mediated kidney injury have been 
recently uncovered. Mammalian target of rapamycin (mTOR) has 
been found to be critical for p53-induced oxidative cell injury 
with mTOR inhibition protecting against HIV-induced podocyte 
apoptosis (93). The protective function of mTOR inhibition 
in HIVAN could be due to the regulation of microRNAs since 
rapamycin treatment reverses the downregulation of miR99a, 
miR-100a, miR-199a, miR-200a, miR-200b, miR-200c, miR-429, 
and miR-141 caused by HIV infection of human podocytes in 
culture (94). HIV also compromises the podocyte actin cytoskel-
eton through downregulation of the vitamin D receptor with 
associated enhanced deleterious intracellular angiotensin II and 
cathepsin L expression (95).

Other viral-Associated FSGS
Collapsing FSGS has long been associated with parvovirus B19 
infection (96, 97). The prevalence of parvovirus DNA infection 
within renal tissue is associated with idiopathic FSGS and col-
lapsing FSGS compared with other diseases (98). Using in  situ 
hybridization techniques, parvovirus B19 DNA was localized at 
endothelial cells and both visceral and PECs. However, whether 
this viral infection results in podocyte dysfunction is still a matter 
of debate (97). CMV has been associated with FSGS (99), but it 
remains unclear whether this virus directly infects podocytes. The 
detection of tubuloreticular inclusions in glomerular endothelial 
cells in CMV infection suggests a pathogenic role for interferon 
stimulation (100). Susceptible patients may have identifiable 
genetic risk factors. Indeed, a cohort of patients receiving interferon 
treatment who developed collapsing FSGS was reported to carry 
high-risk ApoL1 genotypes. Interferon α, β, and γ treatment of 
cultured podocytes increased APOL1 expression (101). Upstream 
of interferons, Toll-like receptor 3 (TLR3) was also shown here to 
signal through TBK1, NFkB, and JAK kinases in an interferon-
independent manner to also increase APOL1 expression where 
the TLR3 agonist polyl:C promotes the binding of transcription 
factor IRF1/2 and STAT2 at the APOL1 transcription start site 
(101). These findings highlight the complex interplay between 
viruses, antiviral defenses, and the APOL1 genotype in the devel-
opment of HIV and non-HIV-mediated viral FSGS.

DeCReASeD NePHRON MASS

Low birth weight individuals have long been known to be sus-
ceptible to a reduced nephron number and resulting abnormal 
hemodynamic stress on remaining nephrons (102, 103). Low 
birth weight is more commonly seen in FSGS patients than 
in the general population (104). Proteinuria has also been 
recognized in patients with unilateral renal agenesis where 
the remaining kidney has a reduced nephron number (105). 
A decreased nephron mass results in glomerular hypertension 
and hyperfiltration that increase mechanical stretch and injury 
to podocytes (106, 107). Glomerular hyperfiltration has also 
been associated with the pathogenesis of obesity-related FSGS 
(108). Here as with a decreased nephron mass, the activation of 
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the renin–angiotensin–aldosterone system, the upregulation of 
TGFβ, and glomerulomegaly contribute to the vicious cycle that 
leads to proteinuria and FSGS (109, 110). Angiotensin blockers 
are the mainstay of treatment for patients with proteinuria due to 
hyperfiltration. There is some evidence that bariatric surgery can 
normalize proteinuria in patients with obesity-related glomerular 
disease (111).

TARGeTeD THeRAPY

The identification of molecules essential for maintaining podo-
cyte homeostasis has opened the door to targeted therapeutics for 
FSGS. Indeed, a number of repurposed drugs currently in clinical 
use have been shown to act directly on podocytes. Steroids pro-
tect podocytes from puromycin aminonucleoside-induced injury 
(112). Rituximab protects podocytes from injury by preserving 
sphingomyelin phosphodiesterase acid-like 3b (SMPDL-3b) 
expression (113). Cyclosporine stabilizes the actin-bundling 
protein synaptopodin, preventing cathepsin-mediated cleavage 
(114). Novel target-specific agents being tested at various stages of 
development include GDC-0879 (115), AC1903 (116), Abatacept 
(117), Bis-T-23 (118), and cycloRGDfV (17) as summarized in 
Figure 1.

CONCLUSiON

Podocyte injury due to circulating factors, gene mutations, 
infections, and many diverse etiologies culminate in the clinical 

manifestation of proteinuria and the histologic finding of FSGS. 
The evidence for a circulating permeability factor has been 
evolving in recent years, and various studies have suggested the 
pathogenic role of suPAR and other factors in the development 
of FSGS. The composition, origin, identity, and synergistic roles 
of circulating factor(s) remain unclear, representing an area of 
high unmet clinical need. Increasingly, podocyte-associated gene 
mutations are being identified in patients with FSGS. Expanded 
knowledge of the molecular architecture of the glomerular filtra-
tion barrier raises the prospect of a targeted therapeutic drug 
development.

HIV and other viral infections can induce podocyte injury and 
FSGS with an increasing interest in the enhanced susceptibility 
conferred by APOL1-risk alleles. The numerous divergent etiolo-
gies and pathogenic mechanisms with resulting variable response 
rates to therapy and recurrence post transplant speak to the need 
for a reclassification of the disease into more clinically relevant 
subtypes. Further exploration of the contributions of JAK/STAT, 
Rho-GTPase, and ApoL1 to podocyte injury and survival could 
enhance the quest for novel therapeutic agents.
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FiGURe 1 | Targeted therapeutics for podocyte protection. Cyclosporine protects synaptopodin from cathepsin-mediated cleavage; cycloRGDfV inhibits soluble 
urokinase-type plasminogen activator receptor (suPAR) mediated β3 integrin activation; GDC-0879 promotes protective MAPK activation; ML204 and AC1903 
inhibit TRPC5 ion channels; Rituximab preserves sphingomyelin phosphodiesterase acid-like 3b (SMPDL-3b) expression; Abatacept inhibits B7-1 mediated 
podocyte injury; Bis-T-23 promotes actin-dependent dynamin oligomerization; Forskolin inhibits damage-associated protein biosynthesis.
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