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As average life span and elderly people prevalence in the western world population 
is gradually increasing, the incidence of age-related diseases such as cancer, heart 
diseases, diabetes, and dementia is increasing, bearing social and economic conse-
quences worldwide. Understanding the molecular basis of aging-related processes can 
help extend the organism’s health span, i.e., the life period in which the organism is free 
of chronic diseases or decrease in basic body functions. During the last few decades, 
immense progress was made in the understanding of major components of aging 
and healthy aging biology, including genomic instability, telomere attrition, epigenetic 
changes, proteostasis, nutrient sensing, mitochondrial dysfunction, cellular senescence, 
stem cell exhaustion, and intracellular communications. This progress has been made 
by three spear-headed strategies: in vitro (cell and tissue culture from various sources), 
in vivo (includes diverse model and non-model organisms), both can be manipulated and 
translated to human biology, and the study of aging-like human syndromes and human 
populations. Herein, we will focus on current repository of genomic “senescence” stage 
of aging, which includes health decline, structural changes of the genome, faulty DNA 
damage response and DNA damage, telomere shortening, and epigenetic alterations. 
Although aging is a complex process, many of the “hallmarks” of aging are directly related 
to DNA structure and function. This review will illustrate the variety of these studies, done 
in in vitro, in vivo and human levels, and highlight the unique potential and contribution 
of each research level and eventually the link between them.
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GeNeRAL iNTRODUCTiON

During an organism’s lifetime, cells are constantly exposed to exogenous and endogenous stressful 
agents. Cells can cope with these stressors by various response mechanisms, or in case of irreversible 
damage, programmed cell death (apoptosis), or permanent cell-cycle arrest (cellular senescence). 
Cellular senescence is characterized by a halt in cellular replication, accompanied by a specific 
molecular phenotype (1–3). This phenotype can be the result of a few factors, such as accumulation 
of DNA damage, telomere attrition, and various epigenetic alterations (4).
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In this review, we will highlight the major efforts to unveil 
the role of senescence in healthy aging by three main strategies: 
in vitro, in vivo, and human. Each strategy has advantages and 
limitations, yet when stratified and combined can elucidate 
molecular and physiological mechanisms and phenotypes, in 
general, and in healthy aging in particular.

CeLLULAR SeNeSCeNCe AND 
PHYSiOLOGiCAL AGiNG

The aging process is a complex trait that combines different 
biologic levels. Aging at the organism level includes failure to 
maintain internal environment and regular function, alongside 
increased susceptibility to diseases. Aging at the tissue level 
may involve, for example, chronic inflammation, which in turn 
contributes to cardiovascular and neurodegenerative disorders 
(5). The mechanisms of aging are affected by cellular and non-
cellular pathways. The buildup of chronic stress, for example, is 
significant for the aging phenotype, but it is an organism-level 
phenotype (6). Structural deterioration of the body will influence 
an organism’s ability to forage, resulting in bad nutritional state 
that in turn will speed the aging process. Cellular senescence is 
one of the cellular pathways contributing to organismal aging. 
This process is triggered by several factors such as accumula-
tion of DNA damage, telomere attrition, and various epigenetic 
alterations and involves the activation of permanent cell-cycle 
arrest. Yet, unlike quiescence and other kinds of no-proliferation 
conditions, it is followed by a typical gene expression, metabolic 
activity, and a senescence-associated secretory phenotype 
(SASP). Cellular senescence is a multistage path. Once activated, 
the arrested cells shift from unstable to steady cell-cycle arrest, in 
a procedure that involves p21, p16Ink4a, and p53 (Figure 1). Next, 
alterations in chromatin methylation are generated. Senescent 
cells can accumulate in tissues and organs and can ultimately 
result in tissue lesions that will cause organ dysfunction (7, 8), 
and thus the cellular processes can lead to organism-level decay 
in function and health.

FROM CeLL CULTURe TO HUMAN 
SUBJeCTS: STRATeGieS iN AGiNG 
ReSeARCH

In Vitro
Cell cultures are used in biological research since 1912. Carrel 
(10) isolated and cultured chicken cells to study aging processes 
(10). He concluded that the single cell is immortal, and aging and 
death are multicellular organism-related phenotypes. It was not 
until 1961 that Hayflick and Moorehead proved that Carrel was 
wrong and normal cells have limited proliferation capability in 
culture (10–12), also known as the Hayflick limit. Hayflick and 
Moorehead also discovered that normal cells looked “old” after 
they exhausted their replication potential. They speculated that 
single-celled replicative senescence contributed to the organism’s 
aging (11), which promoted the use of cell cultures to study aging 
processes in the full organism (12). Since the study by Hayflick 
and Moorehead, in vitro studies became the basis for every study 

in human biology. In vitro studies enable comparisons between 
many types of cells including mesenchymal stem cells, peripheral 
blood mononuclear cells, lymphoblast cells, muscle satellite cells 
(SCs), skin fibroblasts, endothelial cells, and embryonic stem 
cells, cultures from different organisms and different donor’s 
ages, enabling use for studying the genetics and biology of aging. 
Another advantage of in vitro studies is the capability to easily 
perform manipulations and treatments directly on the cells and 
to study the responses isolated from the original environment. 
The biggest limitation of in  vitro studies is the translation to a 
whole organism (13). In culture, cells “behave” differently due 
to the loss of the cross talk between cells and the extracellular 
matrix from other regions in the body (such as immune system or 
hormonal signals). Though it helps with eliminating background 
pathway signaling noise when investigating certain mechanisms 
or pathways, it is a setback when trying to translate the effect of 
a manipulation or treatment to the whole organism. In attempt 
to compensate for the main in vitro limitation (i.e., translation 
drawback), researchers turn to in vivo (animal model) studies.

In Vivo
In vivo studies can further test the effect of a manipulation or treat-
ment, either targeted or scattered, on the whole organism. Most of 
these biological models offer many advantages over humans, for 
instance, their basic biology and genomes are well documented 
and are easier to manipulate genetically. Furthermore, they have 
much shorter life spans than humans, enabling longitudinal 
studies, while ethical issues, long natural life span, environmen-
tal influences, genetic heterogeneity, and various other limiting 
factors complicate the use of human subjects in aging research. 
Regardless of the advantages listed earlier and the eminent contri-
bution to our understanding of the aging process, the use of ani-
mal models in aging studies has its own limitations. Aging is not 
a simple process, and there is no genuine agreement about what 
it is and how to define it (14, 15), despite the agreement on being 
a multifactorial and complex phenomenon. Additionally, there is 
conflicting evidence about aging as a process that is similar across 
all organisms or particular to each species (15, 16). Therefore, it 
is important to draw attention to the fact that animal models are 
usually chosen for convenience rather than for specific features 
applicable to human aging. Hence, choosing the suitable animal 
model to answer the specific question we aim to understand is 
of high importance in these types of studies. Among the most 
prevalent aging model organisms are Saccharomyces cerevisiae, 
Caenorhabditis elegans, Drosophila melanogaster, and Mus mus-
culus. As a single-celled organism, S. cerevisiae is easily grown, 
manipulated, and observed; together with a well-characterized 
genome that bares much resemblance to bigger and more complex 
organisms, this model organism among others is a convenient 
platform for the study of the aging phenotype. Another important 
model system for studying a range of biological processes, includ-
ing aging, is the nematode C. elegans. C. elegans has a short adult 
life span of ~2  weeks and a well-documented anatomy which 
is visible using a microscope. This enables easy observations of 
aging-related changes in the whole organism, in specific tissues 
and organs, and even on molecular and cellular levels (17–21). 
The classic genetic model organism, D. melanogaster, is also used 
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FiGURe 1 | Key elements in the DNA damage response (DDR) pathway. In case of double-strand breaks (DSB), the DNA damage sensor MRN complex recruits the 
protein kinase ATM which activates γH2AX at the damaged site. γH2AX connects to MDC1, and this complex amplifies the activity of the MRN complex which, in a 
positive feedback, amplifies the ATM activity and the dispersal of γH2AX along the chromosome. MDC1 and 53BP1 further mediates the activation of CHK2 which 
carries the signal to distant locations on the genome. For single-strand breaks (SSB), the protein kinase ATR is activated and amplified by the 9-1-1 complex and 
TOPBP1, which also mediates the activation of CHK1. The signaling pathway cascades toward the key factors p53 and CDC25. When the lesion is repaired, the 
DDR complexes are dismantled (2, 4, 9).
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in the study of aging. Studies conducted in these flies have identi-
fied single gene mutations that influence their life span. One of 
the strengths of Drosophila as a model organism is the capability 
to illustrate how genes that have an established role in regulating 
organismal life span particularly influence cellular and tissue 
function, how they work together, and how their tissue-specific 
functions might be linked (22–25). That said, Drosophila is far 
from being a good model for human aging as they share only 
60% of the human genome. A better similarity is achieved with 
M. musculus, the mouse. It is the most commonly used model 
in biological research for various reasons. Mice are small, have a 

short generation time, and an accelerated life span which means 
they are not expensive and require only little space and time, 
compared to larger animal models. Another important reason is 
the fact that the mouse genome is well documented and can be 
easily manipulated. In addition, they are biologically similar to 
humans, exhibiting many of the same diseases and conditions. 
Nevertheless, mice do not develop several important age-related 
diseases naturally (e.g., atherosclerosis and diabetes), a fact 
that limits their potential as an aging model. All the organisms 
described earlier are short-lived, which is one of their desired traits 
as model organisms. However, that may not be appropriate for the 
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study of human aging. Thus, in recent years there have been more 
studies conducted on non-model long-living organisms such as 
the naked mole rats and bats, which may be more appropriate 
models in understanding healthy human aging. The naked mole 
rat (Heterocephalus glaber) is a very important non-model organ-
ism in cancer and aging studies. This subterranean, mouse-sized, 
eusocial rodent is known as the longest-living rodent, living 
4–17 years in the wild and with captive individuals demonstrating 
exceptional longevity that exceeds 30 years (26)—almost an order 
of magnitude longer than mice. Moreover, until a few years ago 
no cancer cases were reported in NMRs, and researchers failed 
to induce tumorigenesis, placing this rodent as a novel model for 
cancer studies. Bats are the second most speciose mammalian 
order after rodents. Little brown bats (Myotis) are the smallest 
bats (3–30 g) with the highest longevity records (Myotis myotis 
live for 37.1 years and M. brandti live for 41 years). Nevertheless, 
longevity is generally high in all bat lineages, which makes them 
an interesting model in biogerontology. One of the most inter-
esting non-model organisms adopted for aging research is the 
Bowhead whale (Balaena mysticetus), which is estimated to be 
the longest-living mammal, reaching the age of ~200 years and 
also one of the biggest species, with length and weight of 20 m 
and 100 tons (6, 27). Bowhead whales live in arctic environment 
and are well adapted to these harsh surroundings. They are con-
sidered to be resistance to cancer and age-related diseases, and 
thus, though research is very technically complicated, the study 
of Bowhead whale in the context of longevity could improve our 
understanding of molecular mechanisms of healthy aging (27).

Human Aging-Like Syndromes
The limitations of in vitro and in vivo studies, and the great power 
of inferring from human studies on the human population, lead 
researchers to focus on aging-like human models. There are 
obvious moral and ethical limitations when working with human 
subjects, for this reason, most information on human aging 
was obtained from various progeroid syndromes, especially 
Hutchinson–Gilford progeria syndrome (HGPS) and Werner 
syndrome (28). These genetic conditions offer a glimpse into the 
molecular and physiological mechanisms of the aging cell and 
body, yet they do not capture the entire complexity of the aging 
and senescence phenotypes. Another approach for this purpose is 
using genome- and epigenome-wide association studies (GWAS 
and EWAS, respectively), which utilize the great improvement 
in whole genome sequencing technologies. Such studies have 
highlighted aging-related genes such as APOE (apolipoprotein 
E) (29–31) and have alleviated the dependency on in vitro and 
in vivo models by using direct human samples.

AGe-ReLATeD DNA DAMAGe AND DNA 
DAMAGe ReSPONSe (DDR) ACTiviTY

Age-related accumulation of DNA damage has been studied 
thoroughly, showing correlation between age and damage levels 
or mutation frequency (32, 33). In the presence of DNA lesions 
or abnormalities, the DDR, a complex multigenic pathway, is 
activated and can eventually lead to cell cycle arrest (Figure 1) 

(2, 4, 9). In older organisms, accumulation of DNA damage and 
loss of regenerative potential consequently increase the number 
of senescent cells, leading to aging cells, tissues, organs (4), and 
inevitable death (2, 34, 35). The general term DNA damage 
encompasses different types of lesions in the DNA, including 
large chromosomal lesions such as double-strand breaks (DSBs) 
and small, local lesions such as single-strand breaks (SSBs) and 
mismatched bases. To prevent the deleterious effect of these 
lesions, cells have evolved four DNA damage repair mecha-
nisms. For large DSBs, such as the case in DSBs, cells utilize 
homologous recombination (HR) or non-homologous end 
joining (NHEJ). SSBs are resolved via the base- or nucleotide-
excision repair pathways (BER and NER, respectively) (33, 36), 
and mismatched bases are corrected by the mismatch repair 
(MMR) mechanism (37).

BeR Reactive Oxygen Species (ROS)-
Related DNA Damage Repair efficiency, 
In Vitro
Wang et  al. (38) tested lens samples isolated from age-related 
cataract (ARC) patients and age-matched patients with unrelated 
eye diseases (38). ARC was found to be affected by ROS and oxi-
dative DNA damage, which is repaired by the BER pathway. The 
study showed that in ARC patients the expression levels of 8-oxo-
guanine DNA glycosylase (OGG1), a core member of the BER 
pathway, were significantly low. In addition, hypermethylation 
was demonstrated in the first exon of OGG1, hinting at the role 
of faulty DDR in the formation of ARC. Age-related BER activity 
was also studied with human foreskin fibroblasts derived from 20 
to 64-year-old healthy donors, with similar results showing BER 
efficiency decrease with age. However, among several BER-related 
factors that were assessed, only Polβ (DNA polymerase beta) and 
XRCC1 (X-Ray Repair Cross Complementing 1) showed correla-
tion between expression levels and age. In addition, a negative 
correlation was observed between age and the expression of 
Sirtuin 6 (SIRT6), which is connected to DNA maintenance and 
DSB repair (39), demonstrating a correlation between SIRT6 
expression levels and BER quality. While overexpression of SIRT6 
increased BER activity, SIRT6 knockout decreased BER activity, 
in the human foreskin fibroblasts (39). Related results were found 
in young and old rat MSCs. Here, increased cellular ROS produc-
tion was observed with age. A hinting cause for the increased ROS 
level was the low superoxide dismutase (SOD) 1 (a central gene in 
the ROS response pathway) expression suggesting potential DNA 
damage (40). ROS is a known cause for DNA damage, from single 
base oxidation to single and DSBs, indicating that high ROS levels 
have an erroneous effect on genomic integrity (41).

DSB Repair efficiency, In Vitro and In Vivo
A similar approach was implemented on eyelid fibroblast cells 
originating from different ages of healthy donors, showing that 
the efficiency and quality of DNA repair through NHEJ and HR 
pathways decreased with age (42).

The role of faulty DNA repair machinery in age-related 
genomic instability was also found in S. cerevisiae and Drosophila. 
Mutations in the sgs1 and srs2 genes [encoding for RecQ helicase, 
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homologous to the human WRN (43)] shortened S. cerevisiae life 
span through two distinct pathways: sgs1- and srs2-mutated cells 
stopped dividing randomly in an age-independent manner that 
required the RAD9 (cell cycle checkpoint control protein) DNA 
damage checkpoint, but late-generation sgs1- and srs2-mutated 
cells exhibited premature aging. The double sgs1/srs2-mutated 
yeast cells showed a high rate of terminal G2/M arrest. This 
arrest was suppressed by knockouts of RAD51 (DNA repair 
protein RAD51 homolog 1), RAD52 (DNA repair protein), and 
RAD57 (DNA repair protein), hinting for malfunctioning HR. In 
a similar study, knockout of DNA2, encoding RecQ helicase-like 
protein, caused premature aging phenotypes including longer 
cell cycle time, transcriptional silencing, genomic alterations, 
and eventually shorter life span (44). Shaposhnikov et  al. (45) 
used D. melanogaster to evaluate the effect of overexpression of 
DNA repair genes in several locations in the body and several 
time points during the life period on the Drosophila life span. 
Beneficial effects on life span were observed with overexpres-
sion of Hus1 (checkpoint clamp component), mnk (MAPK 
interacting protein kinases), mei-9 (meiotic 9, D. melanogaster), 
mus210 (Xeroderma pigmentosum, complementation group 
C, D. melanogaster), spn-B (spindle B, D. melanogaster), and 
WRNexo (WRN exonuclease, D. melanogaster), which control 
the processes of DNA damage recognition and repair (45). Myc, a 
key regulator protein of cell growth and proliferation, was shown 
to act as a pro-aging factor, probably by its ability to increase 
genomic instability. Overexpression of Myc in Drosophila 
increased the frequency of large genome rearrangements associ-
ated with faulty repair of DNA DSBs and decreased adult life 
span. Myc knockdowns demonstrated reduced mutation rate and 
extended life span (46). In aged mice, increased levels of DNA 
breaks or unrepaired DNA damage as illustrated by the forma-
tion of γH2AX (phosphorylated variant histone H2A) foci were 
observed (47–49). A positive effect on longevity was observed 
with overexpression of the human enzyme hMTH1 (MutT 
Human Homolog 1), which eliminates oxidized purine18 and 
deacetylase Sirt6 (50). Overexpression of SIRT6 promotes DSB 
repair by the activation of PARP1 [Poly (ADP-ribose) polymer-
ase 1] and facilitating the recruitment of Rad51 (51) and NBS1 
(Nijmegen Breakage Syndrome 1) (52) to DNA lesions.

evidence From Omics experiments, 
In Vitro
The accumulation of genomic abnormalities is influenced by the 
quality of the repair pathways, which may also decline with age. 
Laurie et  al. (53) studied age-related DNA damage in periph-
eral blood cells using single nucleotide polymorphism (SNP) 
microarray data from over 50,000 individuals. The frequency of 
detectable genomic abnormalities was low (<0.5%) at birth and 
rose to 2–3% in 50-year-old donors (53). Peripheral blood cells 
were also studied using whole-exome sequencing data from DNA 
of 17,182 individuals lacking hematologic phenotypes. Somatic 
mutations were rare in young donors (~40 years old) but became 
more frequent with age. Furthermore, while studying subjects at 
70–79 years, compared with 90–108 years, mutation frequency 
rose from 9.5 to 18.4%, respectively (54). In some cases, the 
accumulation of damage was noticeable in relatively advanced 

ages and not as a linear progression. Goronzy et al. (55) found 
that memory T cells from healthy donors showed steady increase 
in levels of DNA damage in different ages, up to 65 years (55). 
All these findings lay the basis for longitudinal in  vivo studies 
in model organisms to decipher the mechanistic view of this 
phenomenon (i.e., accumulation of DNA damage with age) in a 
manageable life span.

DNA Repair in Long-Lived Animals
Analysis of two bat genomes showed that DNA repair and DNA 
damage signaling genes ATMh (human ataxia telangiectasia 
mutated), TP53 (tumor protein 53), RAD50 (DNA repair pro-
tein), and KU70 (XRCC6 protein product) are under selection 
in bats, suggesting that genome maintenance systems are under 
selective pressure in longer lived species (56). The study of 
Bowhead whales in the context of longevity is relatively new, but 
some insights have already been generated. Keane et al. (27) found 
duplications in genes linked to DNA damage repair and aging, 
such as PCNA (proliferating cell nuclear antigen). According to 
RNA-seq, both the PCNA copies were expressed. Several DNA 
damage and aging-associated genes, such as ERCC1 and ERCC3 
(excision repair cross-complementing rodent repair), had unique 
mutations (compared to short-living animals) that were found to 
be under positive selection (27, 57). Mice with deleted ERCC1 
suffered from liver dysfunction and died prematurely before 
weaning, a phenotype that was rescued by overexpression of 
ERCC1 (58). It is interesting to notice that similar unique muta-
tions in DNA repair genes (including ERCC1 and ERCC3) were 
also found in naked mole rats and several species of bats (56, 59), 
hinting again at the role of DDR in longevity.

Comparative Studies of Short-Lived and 
Long-Lived Animals
Long-lived organisms are suggested to possess more efficient 
genome maintenance mechanisms than short-lived ones. For 
instance, in a comparative study conducted on both short- and 
long-lived wild bats, the MMR system and the levels of DNA 
damage as well as the antioxidant enzymatic activities were 
compared (60). By analyzing the DNA MMR proteins MSH2 
(DNA MMR protein) and MLH1 (MutL homolog 1) in the liver, 
lung, and brain of young, adult, and old bats, the study showed 
that the short-lived bats presented with a decrease in protein 
levels and an increase in microsatellite instability antioxidant 
activity with age while the long-lived bats exhibited higher levels 
of antioxidant enzyme activities. These results suggest that the 
antioxidant response of those animals is important to attain a 
long life span. Several genes associated with the repair of DNA 
damage have been reported as overexpressed in long-lived sub-
terranean rodents than in short-lived surface-dwelling rodents. 
In addition, when comparing blind mole rats (the genus spalax) 
to rats, the long-lived spalax showed more transcript abundance 
in genes that encode for DNA damage repair proteins (61). In 
another comparative study performed on mice, naked mole rats, 
and humans, studying the expression levels of DNA repair genes 
in livers found that humans and naked mole rats exhibit higher 
levels of expression of DNA repair enzymes that are important 
for DNA damage sensing and the MMR, NHEJ, and the BER 
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pathways (62). This evidence supports the hypothesis that long-
lived organisms have better genome maintenance techniques 
than short-lived animals.

Antioxidants have been more attentively studied in naked 
mole rats than in bats. When comparing the activity of antioxi-
dant enzymes such as SODs, catalase, and cGPx (human cellular 
glutathione peroxidase) in the livers of young, middle-aged, and 
old naked mole rats with mice, their activity was higher in at least 
one age class in mole rats (63). More importantly, Csiszar et al. 
found that relative expression of numerous antioxidant enzymes 
in naked mole rat blood vessels remained constant with age which 
may distinguish this species from other short-lived species, such 
as mice (64). Comparative in vitro studies were performed as well. 
One recent example of such a comparative study is the study per-
formed by Ma et al. (59) which compared primary skin fibroblasts 
of 16 different mammalian species and highlighted differences in 
fibroblast profiles among long- and short-lived species (59). In 
contrast to these findings, the work of Page et al. (65) did not find 
correlation between DDR activity and life span. Page and Stuart 
(65) compared DNA repair rates and life span values by studying 
BER activity in brain and liver tissues from 15 species includ-
ing mice, hamster, bat, sheep, dogs, pigs, and two bird species, 
quail and finch. The BER activity was found to be (negatively) 
correlated only with body mass (65).

Contradicting evidence, In Vitro and 
In Vivo
Despite the body of evidence mentioned here and in other 
reviews, some studies report contrary results. In a study per-
formed by Schellenberg et al. (66), using long-term cultures of 
hMSC, Karyotype analyses at early passage and late passage did 
not reveal age-related chromosomal abnormalities and SNP array 
analysis did not reveal passage-related changes (66). A similar 
trend was observed when the efficiency of DNA MMR pathway 
was studied using CD4+ T cells from 25 to 80-year-old healthy 
donors. In this study, there was no connection between MMR 
frequency and donor’s age. Only when mutations were chemi-
cally induced, there was a negative correlation between MMR 
efficiency and age, but only among the younger age groups, 
25–40  years old; no such connection was found for the older 
donors (67). Similar contradictions were also established in 
in vivo studies. Though there is a documented phenotype of DNA 
instability in aging yeast cells, it is still under debate whether 
accumulation of mutations is a cause of aging for yeast. Ijpma 
and Greider (68) found that chromosome loss was not related to 
loss of viability (68, 69). Daughter cells produced in early stages 
of their mother cell life live as long as their progenitors, yet cells 
produced later had reduced life span. However, the last cell cre-
ated by a specific mother cell is still capable of bearing offspring. 
The observed increase in division time, which corresponded with 
an age-specific decline in reproduction in old mother cells, was 
only partially passed on to the daughter cells, and they resumed 
normal division time after a few budding cycles (70, 71). Kaya 
et al. (72) studied de novo mutations during multiple replications 
in daughter cells of mother cells at different ages. Mutations were 
found to increase with age, but their frequency was very low, and 

no effect on viability was detected (72). All these observations 
suggest genome integrity conservation through generations and 
question the role of genomic changes in aging in yeast. A possible 
explanation for aging-related genomic instability in yeast could 
be found in extra-chromosomal rDNA circles (ERCs), which 
were shown to be correlated with premature aging and short life 
span in yeast. sgs1 mutant accumulated more ERCs than wild-
type cells, causing shorter life span (73), while knockouts of FOB1 
(DNA replication fork blocking protein) decreased the formation 
of ERCs and extending life span (74).

Progeroid Diseases as Models for Aging
As mentioned earlier, age-related genomic instabilities in humans 
are studied through progeroid diseases. The first three genes caus-
ally linked to human aging (according to HAGRID) are progeroid 
phenotype causing genes: LMNA (Lamin A/C), WRN (Werner 
Syndrome RecQ-Like Helicase), and ERCC8 (DNA excision 
repair protein) (75). LMNA is a gene coding for a nuclear envelope 
scaffolding protein, mutations in which lead to genomic instabil-
ity which in turn cause HGPS. This syndrome serves as a model 
for human aging since progerin (the mutated LMNA protein) can 
be found in normally aging cells and is believed to cause cellular 
toxicity and senescence (76). Mutates WRN (RecQ-like helicase) 
causes Werner syndrome and is involved in the DNA DSB repair 
pathway, similar to the S. cerevisiae SGS1 (43, 77). ERCC8, mutated 
in Cockayne syndrome patients, is a protein involved in the NER 
pathway, mutations in which cause high sensitivity to UV due 
to loss of ability to repair UV-induced DNA damage (78). These 
genes exemplify the effect of the DNA damage repair quality on 
aging, as brought forth by the previously mentioned in vitro and 
in vivo studies. Besides these three genes, another, more recently 
described gene is the SPRTN (SprT-Like N-Terminal Domain) 
gene whose translated protein product acts in the translation 
repair pathway, allowing DNA replication despite single nucleo-
tide lesions. Mutations in this genes cause Werner-like progeria, 
probably due to their disabling effect on this replication pathway 
(79). Additional support for the importance of genomic integrity 
in the aging process is 53BP1 (p53 binding protein 1) (76). This 
protein is crucial for DNA DSB repair mediation and proteins’ 
recruitment. First described as a p53 binding protein, 53BP1 
recognizes DSB histone code and recruits the repair proteins to 
the site in different mechanisms depending on different stages 
of the cell cycle (80). The DNA DSB repair is crucial as it is well 
established that DSBs lead to premature aging and senescence 
(81, 82).

TeLOMeRe ALTeRATiONS AND 
CeLLULAR SeNeSCeNCe

Besides direct DNA damage, cellular senescence can be induced 
by diverse mechanisms, the principal among them is telomere 
attrition. Telomeres are short tandem repeats that serve as “caps” 
that protect the ends of the chromosomes from being recognized 
as DSBs and prevent the cascade of DDR in the cell and actively 
participate in genome maintenance. With every cellular division, 
the telomeres shorten by several repeats.
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evidence From In Vitro Studies
In most organisms, telomere elongation is controlled by the 
enzyme telomerase under tight regulation to ensure sufficient 
number of replications, yet when this number is reached, 
telomere elongation is seized (2, 83). Once telomeres reach the 
critical length, the cells undergo senescence and stop proliferat-
ing (84). This process is believed to be the trigger for the aging 
process, according to the telomere theory (11, 85, 86). It is further 
supported by Bodnar et al. who proved that telomere elongation 
caused by ectopic expression of telomerase avoids the senescence 
phenotype (87). His work relied on one of the earliest studies 
linking telomere shortening to aging which was performed 
by Harley et  al. on human fibroblast cells (88). In their paper, 
they describe the shortening of telomeres in aging fibroblasts 
alongside chromosomal abnormalities, specifically the fusion 
of two chromosomes at the telomeric region and chromosomal 
rearrangement, while hinting at a biological significance to the 
shortening process. Since this early study, numerous studies 
have emerged strengthening this association and aiming to 
elucidate the exact underlying mechanism of telomere shorten-
ing. Murillo-Ortiz et al. (89) studied telomere alterations using 
T, B, and NK cells from 20 to 25-year-old and 60 to 65-year-old 
donors. Treatment with concanavalin A (a mitogen of T  cells) 
caused increase in telomere length and number of replications 
in the samples from the young donors, but did not improve the 
samples from the older donors, which exhibited loss of telomere 
parts, decrease in telomere length, and decreased proliferation 
potential (89). Age-related changes in telomere length were also 
established in bone marrow hMSC in a long-term in vitro study 
(90). COMET assay revealed higher levels of damage in cells from 
older donors (91). Similar results were obtained in the study of 
CD34− and CD34+ cells isolated from healthy donors of different 
ages. However, some of the cells exhibited telomere shortening 
that was not correlated with age. It seems that CD34+ cells from 
older donor suffer from increased non-telomeric DNA damage, 
but the variation among the cultures hints for multiple factors 
contributing to DNA damage (92).

The Question of Telomere-Related 
Senescence in S. cerevisiae
For S. cerevisiae, various studies were performed on the effect of 
missing/broken telomere and mutated telomerase on the physiol-
ogy of the organism. Genetic manipulations of S. cerevisiae cells 
caused decreased growth, irregular shape, and eventually, cellular 
senescence (69). Several genes, such as EST1 (telomere elongation 
protein), EST2 (telomere reverse transcriptase), EST3 (telomere 
replication protein), TLC1 (template RNA component), RAD9, 
RAP1 (DNA binding protein), CDC13 (cell division control pro-
tein 13), TEL1 (serine/threonine protein kinase), MEC1 (serine/
threonine protein kinase), and MRC1 (macrophage mannose 
receptor 1 precursor) were studied in connection to telomere-
related senescence; however, despite the extensive experimental 
work put into using mutated cells, the role of eroded telomeres in 
“natural” cellular senescence in yeast remained questionable (93). 
For example, EST1-4 (ever short telomere) mutants began to lose 
viability after 60 doublings, but late knockout cultures continued 
to maintain proliferation potential (94). Cells with mutated 

telomerase exhibited irregular morphology and short telomeres, 
but these changes did not cause deadly damage and determinate 
senescence (95). One hypothesis connects aging to telomere 
erosion through the transcription of subtelomeric genes. Genes 
located in subtelomeric regions are affected by transcriptional 
silencing which was found to change in an age-related manner. 
Kim et  al. (96) found that silencing of genes in subtelomeric 
regions declined during the cell’s senescence, hinting at a connec-
tion between the transcription of subtelomeric regions and cellu-
lar senescence in yeast (96). The work of Austriaco and Guarente 
(97) reinforced this model, as they found that mutated telomerase 
extended life span (relatively to the wild type), probably by hang-
ing the silencing procedure in the subtelomeric locations (97).

Telomere Alterations in C. elegans
The evidence for the role of telomere attrition in the senescence 
of C. elegans are contradicting and are influenced by the worm’s 
unique physiology, as the adult worm go through a short repro-
ductive stage, followed by a “post-mitotic life” with a definite 
number of steady post-mitotic cells (98, 99). Overexpression of 
HRP1 (Heterogeneous nuclear Ribonucleo Protein 1) was found 
to increase telomere length and, subsequently, the life span of 
transgenic worms. The resulting prolonged life span was reliant 
on DAF16 (Forkhead box protein O gene, C. elegans) (100), 
which codes for a FOXO (Forkhead Box protein O) transcrip-
tion factor and is required also for the effect of the insulin/IGF-1 
pathway on life span in C. elegans (98). This connects to the first 
life span-related gene that was discovered in C. elegans—AGE-1. 
AGE-1 encodes a phosphatidylinositol-3-kinase that functions 
in the insulin/IGF-1 signaling pathway. Mutations in this gene 
cause delay in age-related deterioration of body movement and 
muscle deterioration a twofold extension of the life span (17, 101, 
102). Opposing results were obtained by Raices et al. (103) that 
found no correlation between telomere length and the life span 
of daf-2 and daf-16 mutants. Furthermore, a study of different 
wild-type populations with diverse telomere lengths found again 
that the length of the telomeres was not correlated with life span 
(103). Similar phenomena were observed in mutants of TRT-1, a 
catalytic subunit of telomerase. The mutants reproduced regularly 
for several generations but eventually became sterile (104). The 
telomeres shortened by ~125 nucleotides per generation and suf-
fered from sequence abnormalities, but the mutation and other 
telomere-shortening manipulations did not affect post-mitotic 
aging (104, 105). Mutations in MRT-2, a gene in the same pathway 
as TRT-1, caused similar phenotypes including telomere shorten-
ing, accumulation of DNA damage, and sterility. Similarly, the 
mutation had no effect on life span (106).

Relevance of Drosophila and Mice in the 
Study of Telomere-Related Senescence
While most organisms have a tandem repeat-based telomere 
and a telomerase for its maintenance, Drosophila telomeres 
are composed of randomly ordered retrotransposable elements 
that are maintained by retrotransposition (107–110). Although 
the length of the drosophila telomere is close to the human 
telomere (~10–12 kb), its structure is much more complex since 
each building block contains its own promoter regions, coding 
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sequences, and regulatory elements (110, 111). These might be 
the reasons why there are no evidence for connection between 
telomere shortening and aging in Drosophila. Walter et  al. 
(112) found that like C. elegans, the length of the telomeres in 
Drosophila did not affect life span, but it was correlated with 
fertility and fecundity (112). Study of age-related transcriptional 
changes did not find any telomere-related modifications (113). 
As in C. elegans, the FOXO-mediated insulin/IGF-1 pathway can 
affect the Drosophila life span (114), but a possible connection to 
telomere length was not studied.

Similar to Drosophila, the relevance of mice telomeres studies 
is also debated and unclear. Several studies show that mice with 
shortened or lengthened telomeres exhibit decreased or increased 
life span, respectively (115–119). The premature aging of telomer-
ase-deficient mice was reverted when telomerase was genetically 
reactivated in aged mice (120), and systematic viral transduction 
of telomerase in adult wild-type mice delayed normal physiologi-
cal aging (121). Mice with telomerase deficiencies exhibited signs 
of accelerated aging, but only after several generations and that 
overexpressing telomerase did not alter aging (122). The delayed 
phenotype implies that for senescence activation, telomeres 
need to be shortened extensively, in a manner that might not be 
realistic during the regular mouse life span. Mice are interesting 
models for the research of human telomere diseases. Telomerase 
dysfunction in humans causes a disease called dyskeratosis 
congenita (DKC), which shares some features with telomerase-
deficient mice (123). However, the use of mice as a model for 
telomere-related human aging and aging-related human diseases 
is very questionable since the telomeres of most laboratory mice 
are 5–10 times longer than in humans (~40–50 kb), yet their life 
span is 30 times shorter (111, 124). Like S. cerevisiae, although 
genetic manipulations of telomere and telomerase may influence 
the organism’s life span, this effect might be overlooked while 
observing naive mice.

Telomere-Related Senescence in Long-
Lived Animals
In a study conducted on four wild populations of long-lived 
bats, telomeres were shown to maintain their length in blood 
fibroblasts in the M. myotis species, and similar to humans, 
they also showed no signs of telomerase expression (125). In 
naked mole rats, genes involved in the function and regula-
tion of telomerase, Tep1 (telomerase-associated protein 1) and 
Terf1 (telomeric repeat binding factor 1), were found to have 
undergone positive selection which may contribute to their slow 
rate of aging, though contradicting results were also published 
(126). For instance, a different study established that similar to 
mice (but unlike humans), naked mole rat somatic cells express 
telomerase, although at lower levels, and are not amenable to 
telomere-dependent replicative senescence. Gomes et  al. (124) 
studied the telomeres of the bowhead whale lung fibroblast 
cells and found that the average telomere lengths was ~9  kb, 
in resemblance to human telomere length (124). The bowhead 
whale telomerase had repressed activity as well, again, similar 
to human telomerase (124, 127). Lai et al. (128) tested cultured 
bowhead whale lung fibroblasts at different population doublings 
and found age-related telomere shortening (128).

Human Diseases—Telomeropathies
In humans, early telomere attrition or exhaustion leads to 
telomeropathies (telomere syndromes) and age-related diseases 
(129). Telomeropathies are divided into two subgroups: primary 
and secondary telomeropathies. Primary telomeropathies are 
disorders of impaired telomere maintenance, or in other words, 
telomere disorders, while secondary telomeropathies are disor-
ders in which the main mutated gene has a role in DNA repair, 
thus affecting telomere maintenance without actual damage to 
the telomere maintenance biology (130, 131). As previously men-
tioned, human genetic diseases are the main mode of “in vivo” 
research in humans. Almost all secondary telomeropathies, 
such as Werner syndrome and Hutchinson–Gilford progeria, 
are associated with premature aging and increased disease risk. 
Yet, most of the primary telomeropathies, such as the various 
forms of DKC, do not present with a progeroid phenotype but 
do have a wide phenotypic range which includes bone marrow 
failure, hair loss, emphysema, liver cirrhosis, osteoporosis, and 
pulmonary fibrosis. All these symptoms are also associated with 
aging, linking once again, the deterioration of bodily functions 
to shortening telomeres (130). A study conducted on 274 pairs 
of aged twins concluded that shortened telomeres can forecast 
death in the elderly (132). There are supporting (133, 134) and 
contradicting (135–137) evidence for this, yet the authors used 
intrapair comparisons on same-sex twins in order to eliminate 
biases of gender, genetic background, and age differences, provid-
ing another strong supportive evidence.

Telomere Position effect—Over Long 
Distances
An additional effect of telomere shortening is the increase in 
expression of TPE-OLD (Telomere Position Effect—Over Long 
Distances) genes. Robin et al. demonstrated, using high-resolu-
tion Hi-C (an unbiased 3D chromatin capture technique), that 
long telomeres form chromatin loops reaching up to 10 Mb away 
from them. This loop is highly condensed causing epigenetic 
silencing of the genes in that region (called TPE-OLD genes). 
When the telomeres shorten, this loop is no longer able to form 
and in turn, the epigenetic regulation is changed to activation 
of the TPE-OLD genes. This happens before the telomeres reach 
the critical length that causes activation of DDR, thus leading to 
another earlier possible effect of telomere shortening on aging 
(138, 139). Interestingly, a following study by Kim et al. showed 
that one of the TPE-OLD sensitive genes is hTERT, the core 
reverse transcriptase component of telomerase (140). This is 
also supported by the abovementioned studies of subtelomeric 
regions performed in yeast.

SeNeSCeNCe-ReLATeD ePiGeNeTiC 
ALTeRATiONS

Epigenetics as a field, and specifically epigenetics of aging, has 
gained much interest in recent years. According to Pal and Tyler 
(141), genetics only explain 20–30% of the aging phenomenon 
and researchers now aim to elucidate the remaining 70–80% 
mainly through epigenetics. Epigenetics can be broadly defined 
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as changes in gene regulation without changes to the DNA coding 
sequence. It encompasses a range of possible changes; DNA meth-
ylation (142), histone modifications (143), various non-coding 
RNAs (144), and recently emerging evidence show that change 
in chromatin structure offers epigenetic regulation as well (145).

DNA Methylation
Age-related epigenetic modifications were shown in long-term 
cultures of hMSC. DNA methylation profiles of early and 
later passage were compared and revealed highly consistent 
senescence-associated (SA) modifications at specific CpG sites 
(66). Similar results were obtained in a long-term in vitro study of 
bone marrow hMSC. DNA methylation analysis revealed meth-
ylation changes between early and advanced passages. At early 
passages, 61.6% of all CpG islands were methylated while later, 
methylation decreased to 44.7% (90). A related phenotype was 
also observed in skeletal muscle stem cells (SCs) from young and 
old mice. Epigenetic profiles revealed age-related accumulation of 
epigenetic changes (145). Additionally, DNA methylation profiles 
were compared between different passages in order to identify SA 
changes. 1,702 CpG sites were SA hypermethylated, and 2,116 
CpG sites were SA hypomethylated. SA hypermethylation was 
enriched in inter- and intragenic regions, and in the 3′UTR, while 
SA hypomethylation was highly enriched in intergenic regions 
(146).

The gene dDNMT2 (DNA methyltransferase) was found to be 
necessary for maintenance of the average life span of the flies, 
as mutants suffered from shorten life span. Overexpression of 
dDNMT2, however, extended Drosophila life span (147).

DNA methylation is also used as an “aging clock” to predict 
a person’s age. Horvath has provided a breakthrough “epigenetic 
clock” in his study from 2013. He used 8,000 samples from 82 
publicly available datasets of Illumina DNA methylation arrays, 
including 51 tissues and cell types. This clock was able to detect 
the age of the sample using only 353 CpGs (148). This remark-
able clock was later further improved, using fresh human blood 
samples, and now contains just three CpG sites (149).

Age- and Radiation-Related DNA 
Methylation, In Vitro
Koch et al. (146) studied age-related methylation profile in bone 
marrow hMSCs under several conditions and after different 
number of passages. Their results reveal that ionizing radiation 
(IR), although connected to DNA damage, did not affect age-
related methylation profile. Chemical immortalization of the 
cells increased telomere length, but the cells still exhibited a 
senescence-related methylation profile. The only treatment that 
completely inhibited the age-related profile was “reprogramming” 
the cells back to their pluripotent stage (induced pluripotent stem 
cells) (146). It seems that although senescence has an epigenetic 
regulation, IR and immortalization are not connected to this 
process.

Histone Deacetylation—Sirtuin 2 (SiR2) 
and RPD3, In Vivo
Epigenetic alterations were also found to play a major role in 
S. Cerevisiae, C. elegans, and Drosophila life span. The histone 

deacetylase SIR2 was found to extend yeast life span when over-
expressed, as was found in worms and flies (150, 151). A double 
mutant of the C. elegans SIR2 homolog significantly induced life 
span, and analysis revealed that the sir-2.1 functions upstream of 
daf-16 in the insulin-like signaling pathway (152). Also, it was 
found that during aging, histone H4K16 acetylation increases 
while H3K56 acetylation decreases (153). This is thought to be 
a result of the decline of SIR2 that occurs naturally during aging, 
which leads to H4K16 deacetylation (154). Moreover, all histone 
protein levels were found to descend with age which has a direct 
effect on the life span of the cells (155). RPD3, another histone 
deacetylase targeting H4K16, was also found to affect longevity 
in several organisms. RPD3 deletion increased S. cerevisiae life 
span by increasing silencing at three loci, the silent mating type 
(HMR), subtelomeric, and rDNA loci (96). Similarly, a fractional 
decrease in the levels of Rpd3 resulted in a 30–50% increase in 
life span of Drosophila (156, 157). Yet, Drosophila life span was 
not affected through gene silencing. It seems that in flies, the two 
deacetylases, SIR2 and RPD3, function opposingly at the euchro-
matin influencing gene expression and affecting longevity (156).

Age-Related Histone Deacetylation—
Sirtuin Family, In Vivo
In mice, numerous sirtuin paralogs were found to improve differ-
ent characteristics of aging (158, 159). Transgenic overexpression 
of SIRT1, an ortholog of the histone deacetylase SIR2 in yeast, 
improved healthy aging but did not increase longevity (160). The 
mechanisms involved in the beneficial effects of SIRT1 are com-
plex and interconnected, including improved genomic stability 
(161, 162). Other convincing evidence for the sirtuin role in pro-
longevity is the SIRT6 that modulates genomic stability through 
histone H3K9 deacetylation (163–165). Mutant mice that lack 
SIRT6 exhibit accelerated aging (166), while overexpression in 
male transgenic mice leads to longer life span compared to wild-
type animals, an effect that is associated with reduced serum IGF-1 
(Insulin Growth Factor 1) and other indicators of IGF-1 signaling 
(50). It has been reported that SIRT3 improves the regenerative 
ability of aged hematopoietic stem cells (167). Therefore, in mice, 
SIRT1, SIRT3, and SIRT6 contribute to healthy aging. SIRT6 has 
been associated with aging and disease protection through repres-
sion of aging and cancer-related transcription factors, promotion 
of chromatin changes essential for DNA repair, maintenance of 
telomere structure, and thus preventing genomic instability and 
senescence, in humans as well (168).

Histone Methylation, In Vivo
Greer et al. (169) discovered a crucial role for histone methylation 
in aging. They examined chromatin in different states and its effect 
on life span by investigating different enzymatic complexes and 
performing a targeted RNAi screening in fertile C. elegans. They 
discovered what is now known as the COMPASS complex, a key 
regulator of worm life span that acts in germline cells. This com-
plex trimethylates histone H3 at a lysine residue (H3K4me3), and 
deficiencies in its members including the H3K4 methyltransferase 
SET2 extend life span (169). On the other hand, loss of function of 
the H3K4 demethylase RBR2 leads to a decreased life span, which 
agrees with the key idea that an increase in H3K trimethylation 
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activates chromatin, thus promoting aging. When studying 
histone marks associated with repressed chromatin, Maures et al. 
discovered that absence of the demethylase for the repressive 
H3K27me3 mark—UTX1, increased worm life span separately of 
the germline. This mark significantly declines with normal aging 
in soma cell, which means that repressive H3K27me3 levels allow 
somatic maintenance during aging (170). Related phenotypes for 
H3K4me3 were also discovered in Drosophila. Overexpression 
of LID, a RBR2 homolog, extends life span, while its knockdown 
shortens life span of male flies by 18% (171). Siebold et al. (172) 
found that heterozygous mutations in two core subunits of 
PRC2 (Polycomb Repressive Complex 2), the histone H3 lysine 
27 (H3K27)-specific methyltransferase E(Z), and the H3 bind-
ing protein ESC, enhanced life span and decreased H3K27me3 
levels in adults. Mutations in trithorax (trx), an antagonist of 
Polycomb silencing, reversed the H3K27me3 level of the E(z) 
mutants and suppressed their enhanced longevity and resistance 
to oxidative stress and starvation, hinting that the reduced levels 
of H3K27me3 are connected to longevity and stress resistance 
in the PRC2 mutants (172). In drosophila, H3K27me3 seems to 
influence life span in an opposite manner compared to C. elegans. 
Mutations in H3K27 methyltransferase (PRC2) subunits E(Z) 
and ESC reduce global levels of H3K27me3 and extend life span 
of male drosophila by activating target genes Abd-B (abdominal 
B) and Odc1 (Ornithine Decarboxylase 1) (172).

Large-Scale Chromatin Remodeling, 
In Vitro
Epigenetic alterations include also genomic organization and 
large-scale chromatin remodeling which are facilitated by smaller 
scale epigenetic changes such as DNA methylation and histone 
post-translational modifications (PTMs). Human MSCs were 
also used in a recent study performed by Dillinger et  al. (173) 
showing genomic organizational changes associated with senes-
cence. In this study, they show using Hi-C data that there is little 
change in nucleolus-associated chromosomal domains between 
proliferating and senescent cells, yet there are large satellite repeat 
clusters that dissociate from centromeric and pericentromeric 
regions in the nucleolus during senescence (173). These findings 
relate back to the established aging-associated genomic instability 
and chromatin remodeling as discussed earlier.

Chromosomal Rearrangements, In Vivo
An examination of chromatin structure during aging in Drosophila 
revealed significant age-associated chromosomal rearrangements 
(174). In young flies, H3K9me3 and HP1 were enriched in the 
pericentric regions, in chromosome 4, and in heterochromatin 
islands spread throughout the genome. However, this enrichment 
decreased in an age-associated manner, equalizing H3K9me3 and 
HP1 levels in the pericentric regions, chromosome 4, heterochro-
matin, and euchromatin. Furthermore, single-cell immunohisto-
chemistry showed changes in nuclear distribution of H3K9me3 
and HP1 marks with age.

miR’s Activity, In Vivo
miR’s also play a role in aging. Liu et al. (175) showed that miR-
34 regulates age-related effects and long-term brain stability in 

Drosophila. Expression of the drosophila mir-34 exhibits adult-
onset, brain-enriched, and age-related phenotypes. While mir-34 
loss induced genetic profile of brain aging, late-onset brain degen-
eration, and a significant decline in life span, mir-34 upregulation 
extended life span and reduced neurodegeneration evoked by 
human pathogenic polyglutamine disease protein (175). miRNAs 
also affect gene expression during the aging process in mice (176) 
and modulate senescence in human cell lines (177). Studies have 
found that miRNAs work in groups by modulating gene expres-
sion and silencing that can lead to age-dependent disease states 
or alternatively to longevity (178). Inherited epigenetic effects 
in miRNA loci cause changes in gene expression that modulate 
longevity (179), and miRNAs that target the insulin/IGF-1 path-
way can foresee up to 47% of life span variations (180). Some 
loci show positive effects on life span, promoting longevity, while 
others show the opposite effect, causing a shorter life span (181). 
Ugalde et al. have reported that alteration in the expression of two 
miRNAs leads to a progeroid phenotype in a mouse model for 
a progeria syndrome by effecting key components of the DNA-
damage response pathways (182).

epigenetic Alterations in Long-Lived 
Animal Model
Only a few studies were conducted on the epigenome of the 
naked mole rats, especially in the context of aging. Sequencing 
the naked mole rat genome (183) showed that its genome had 
relatively low CpG density and higher fraction of CpG dinu-
cleotides within CpG islands compared to the human genome. 
CpG dinucleotides within CpG islands contribute less to genetic 
variation because of their lower methylation rate. In a different 
study of the reprogramming of naked mole rat cells, analyzing 
the global histone landscape revealed that naked mole rats had 
higher levels of repressive H3K27 methylation marks and lower 
levels of activating H3K27 acetylation marks than mice which 
suggests that naked mole rats display a more stable epigenome 
that resists de-differentiation contributing to its longevity as well 
as to its resistant to cancer.

DNA Methylation—Twin Studies
Since the genomic methylation profile of each person is unique, 
comparative studies are needed. Monozygotic (MZ) twins have 
identical methylation and epigenetic patterns immediately after 
birth and in early childhood, making them a perfect platform 
for the study of methylation and epigenetic changes in general. 
Such a study performed in 2005 by Fraga et  al. has provided 
many insights on the genomic methylation and gene expression 
changes in MZ twins of different ages. Fraga et al. were the first 
to look into epigenetics of MZ twins, and in their paper, they 
described the changes in methylation with age between the twins 
as “epigenetic drift.” Epigenetic drift, as they define it, is changes 
in the methylation profile over time due to accumulating “small 
defects” in transmitting epigenetic information over successive 
cell divisions. In other words, changes in the epigenome of an 
organism over time are due to random changes in methylation 
(184). The effect of epigenetic drift on the genome can be small 
or large, depending on where those changes occur. Keeping in 
mind that hypermethylation of promoter regions is associated 
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with transcriptional repression, epigenetic drift can, and indeed 
does, cause changes in gene expression. The pattern of elevated 
methylation with age was also shown for general human popula-
tions (not twins) by Horvath (148) and Hannum et al. (185).

Histone PTMs
Human studies of histone PTMs related to aging are emerging 
and following are a few recent advances. There is accumulat-
ing evidence to the role of histones in memory and cognitive 
functions (186, 187) in the human brain. Hohl et  al. showed 
that the histone methyltransferase SUV39H1 plays a role 
together with HDAC4 (histone deacetylase 4) in repression 
of pro-hypertrophic genes in the human heart (188) linking 
histone PTMs to cardiac stress and aging. Ucar et  al. most 
recently published results indicating association of chromatin 
condensation with age in 27 histone-related genes. Among those 
genes were a few coding for histones (HIST1H3D, HIST1H3E, 
and HIST4H4) and histone modifiers such as EZH1 and SETD7 
(189). These results strengthen the previously established pat-
terns of reduction in core histone expression and changes in 
histone modifications (190).

CONCLUSiON

Healthy aging and cellular senescence are complex processes 
of great interest to researchers. The multigenic nature of both 
of them complicates studies and necessitates creative and novel 
approaches in the path for understanding those phenomena. The 
three spear-headed strategies implemented for this purpose have 
brought forth much information and knowledge, yet there is still 
much to learn in these fields. The doubting and contradicting 
results in in vivo studies are influenced both by physiological and 
genetic differences between the model organisms and humans 
and the differences in the possible research methodologies 
between in vitro and in vivo studies. In many cases, the age-related 
phenotypes searched for and studied in vitro are not visible in vivo 
or not relevant for the model organism (Table 1.).

Molecular processes such as DNA damage repair, telomere 
shortening, and epigenetic alterations discussed earlier are the 
driving forces of the aging process in human, but their signifi-
cance is varied in other organisms. Many evidence for age-related 
accumulation of DNA damage were found in in vitro studies, both 
in human and mice cell cultures. The connection between DNA 
damage and aging is emphasized by the secretion of senescence-
associated proteins during cellular senescence, a phenotype which 
is activated by DNA damage and is common for both human 
and mice. Human progeroid diseases also show the connection 
between early aging and faulty DNA repair. In yeast, flies and 
mice, however, although some evidence for age-related damage 
and faulty DNA repair mechanisms were found, contradicting 
and debating results highlight the complexity of the use of these 
model organisms in this aging research. The study of telomeres in 
relation to aging demonstrates the questions derived from both 
physiological differences between organisms and differences in 
research approaches. The connection between telomere attrition 
and aging is very present in human aging (both in in vitro studies 
and as telomeropathies such as DKC, Werner syndrome, and 

Hutchinson–Gilford progeria) but not relevant in model organ-
isms. In C. elegans, the evidence are contradicting. In drosophila, 
maybe because of the unique telomere structure, there are no 
evidence connecting telomere attrition to aging. In yeast and 
mice, genetic manipulations enabled the study of telomere-aging 
relations, but such relations were not seen in wild-type subjects. 
The study of telomere-related aging in mice especially feature the 
difficulties of comparing human and model organisms, since the 
telomeres of most laboratory mice are 5–10 times longer than in 
humans, but their life span is much shorter.

Interestingly, the only common effector on aging found 
among cell cultures, different model organisms, and humans is 
epigenetic modifications. Epigenetic modifications are indeed a 
part of every genetic response in the cell, but the existence of 
common age-related modifications and key-players is intriguing. 
Epigenetic alterations are “core” elements in cellular responses. 
They play an upstream role to specific cellular processes, and 
this might be the reason for the relatively joint phenotypes. 
Furthermore, epigenetic modifications that are related to age-
associated chromosomal rearrangements in yeast and flies might 
be a link to age-related DNA damage, where direct evidence were 
not found.

Though much progress has been achieved, full understand-
ing of these mechanisms has still a long way to go. New tools 
such as GWAS and EWAS studies hold the potential to further 
elucidate the aging phenotype by investigating large datasets 
obtained from human subjects, but, it is still important and useful 
to study the above discussed strategies and organisms. However, 
the selection of those organisms will have to be more conscious 
and target-based.
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