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Platelets are essential effector cells in hemostasis. Aside from their role in coagulation, 
platelets are now recognized as major inflammatory cells with key roles in the innate and 
adaptive arms of the immune system. Activated platelets have key thromboinflammatory 
functions linking coagulation to immune responses in various infections, including in 
response to virus. Recent studies have revealed that platelets exhibit several pattern 
recognition receptors (PRR) including those from the toll-like receptor, NOD-like receptor, 
and C-type lectin receptor family and are first-line sentinels in detecting and responding 
to pathogens in the vasculature. Here, we review the main mechanisms of platelets 
interaction with viruses, including their ability to sustain viral infection and replication, 
their expression of specialized PRR, and activation of thromboinflammatory responses 
against viruses. Finally, we discuss the role of platelet-derived mediators and platelet 
interaction with vascular and immune cells in protective and pathophysiologic responses 
to dengue, influenza, and human immunodeficiency virus 1 infections.
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iNTRODUCTiON

Platelets are highly specialized effectors of hemostasis with essential functions in vascular thrombosis 
and wound healing. For a long time, cellular activities attributed to platelets were restricted to rapid 
procoagulant responses mediated by G-protein-coupled receptors leading to platelet aggregation, 
enzymatic activation of eicosanoid synthesis and granule secretion (1, 2). Aside from this tradi-
tional view, it is now known that platelets express various pattern recognition receptors (PRR) and 
respond to infecting microorganisms, initiating cellular activities that participate in the immune and 
inflammatory network against diverse pathogens, including viruses (1–3). While traditional platelet 
activation by G-protein-coupled receptors is usually rapid, platelet PRR activation in responses to 
infectious and immune stimuli can be delayed and sustained, lasting hours after initial aggregation 
and secretion (1, 4). For example, platelets have stored RNA molecules and diverse mechanisms for 
posttranscriptionaly process intronic RNA using specialized pathways to synthesize immunoregula-
tory proteins such as cytokines and antimicrobial peptides (5–7). Through this new view, platelets are 
now recognized as first-line sentinels in detecting and responding to pathogens and damage signals 
in the vasculature and also in the extravascular space.

Pattern recognition receptors are cellular sensors that recognize molecular structures broadly 
shared among pathogens, the so called pathogen-associated molecular patterns (PAMPs); or cellular 
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molecules modified and/or released during tissue damage called 
damage-associated molecular patterns (DAMPs). PRR from dif-
ferent classes have been shown to be expressed and functional in 
platelets, including those from C-type lectin receptors (CLR) and 
toll-like receptors (TLRs) families (2, 8, 9). CLR are a large family 
of surface proteins containing at least one carbohydrate-binding 
domain which are specialized in the recognition of bacterial, 
fungi, or viral glycans (10–12). Some viruses can exploit certain 
CLR for viral attachment and entry in host cells, including in 
platelets (13, 14). The TLRs, a family of transmembrane cellular 
sensors, are the best described class of PRR in platelets. While 
virtually all TLRs (1–10 in human) are detected at some level 
(mRNA or protein) in platelets (1–3, 8, 15–18), most of func-
tional characterization of TLR-mediated platelet responses were 
reported for those specialized in bacterial molecules, especially 
regarding platelet TLR-4 activation by lipopolysaccharide (LPS) 
from Gram-negative bacteria (4, 6, 19–22). Recently, the expres-
sion and functionality of endosomal TLR-3, -7, and -9, related to 
recognition and response to viral genome in nucleated cells, were 
also reported in platelets (23–25). The presence of cytoplasmic 
PRR in platelets is far less explored, and it remains a subject of 
controversy whether platelets are able to sustain the replication 
of viral genome allowing its recognition by cytoplasmic sensors.

Two major cytoplasmic PRR from the NOD-like recep-
tor (NLR) family were recently reported to be expressed and 
functional in platelets: the nucleotide-binding domain leucine 
rich repeat containing pyrin 3 (NLRP3), a major sensor for the 
activation of inflammasome that recognizes various bacterial, 
viral, and tissue damage signals; and the nucleotide-binding 
oligomerization domain 2 that recognizes the bacterial cell wall 
peptidoglycan component muramyl dipeptide (26–28). Other 
intracellular sensors including retinoic acid-inducible gene I and 
melanoma differentiation-associated gene 5, which are highly 
specialized in viral RNA recognition, are expressed in human 
megakaryocytes in response to type I interferon (IFN-α and -β) 
(29), but their expression in platelets, as well the ability of platelets 
to express other IFN-stimulated genes (ISGs) and to perform 
IFN-induced antiviral response are not known.

Megakaryocytes, platelets’ mother cells, transfer to platelets 
all cellular components responsible for their hemostatic and 
immune functions including granule-stored chemokines, immune 
receptors, RNA molecules, and spliceosomes (5, 23, 30, 31).  
Mega karyocytes have been shown to be susceptible to various 
viruses (29, 32–37). In addition, megakaryocytes express PRR 
and cytokine receptors, and there is evidence that TLR agonists 
or cytokine engagement affects megakaryocytic maturation and 
thrombopoiesis (25, 34, 38, 39). Megakaryocytes and mega-
karyocytic cell lines respond to viral infections or viral PAMPs 
by secreting high levels of α and β IFN (25, 29, 34, 40, 41), which 
reduce platelet production in vitro through an autocrine IFNAR 
signaling (25, 40–42). Besides their consequences reducing 
the numbers of new platelets, megakaryocyte infection, PRR 
engagement, and/or cytokine signaling are expected to change 
the phenotype of platelet progeny during infections, influ-
encing platelet-mediated immune and inflammatory processes 
at the periphery. However, participation of megakaryocytes 
in immune response still deserves more in-depth investigation.  

In this review, we discuss the molecular mechanisms involved in 
platelet interactions with viruses including PRR and intracellular 
pathways related to platelet inflammatory activities during viral 
infections. We focused our discussion on the contributions of 
human platelets to pathophysiologic and protective responses 
during viral infections of major concern in human health glob-
ally including acquired immunodeficiency syndrome (AIDS), 
dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), 
and influenza pneumonia.

PLATeLeT iNTeRACTiON AND ReSPONSe 
TO viRUS

Viral infection of a susceptible cell initiates with virus binding 
to a surface receptor that mediate its internalization through the 
endocytic pathway. Successful infection relies on the ability of 
the virus to escape endosomal acidification and lysosomal fusion 
through diverse mechanisms, delivering its genome to the cyto-
plasm or nucleus depending on the virus type (43–45). For each 
step of viral replication, the host cell has evolved mechanisms 
for recognizing and fighting viral infection, mainly by induc-
ing the expression of antiviral restriction factors in bystander 
cells through type I IFN signaling (46–48). Platelets have been 
reported to express surface receptors able to mediate binding and 
entry of various viruses [reviewed in Ref. (49–51)]. Even though 
platelets do not have nucleus, they have all the molecular machin-
ery to synthesize proteins from stored mRNA (5, 17, 52, 53),  
which may also implicate in the ability to translate proteins 
from RNA viruses. In addition, some of the PRR related to viral 
recognition were recently identified to be present and functional 
in platelets, and platelet participation in immune response to 
virus has been investigated in experimental viral infections and 
in human patients naturally infected with viruses (23–26, 54–56). 
Recent studies of these types have increased our understanding of 
how platelet responses triggered by interactions with viruses may 
both limit viral proliferation and pathogen burden, or complicate 
inflammation and disease pathogenesis. The main mechanisms 
for platelet interaction with viruses and the PRR involved in viral 
recognition by platelets known so far are discussed in this chapter 
and summarized in Figure 1.

Among diverse surface receptors involved in platelet interac-
tions with viruses (49–51), the CLR dendritic cell-specific ICAM-
3-grabbing non-integrin (DC-SIGN) is involved in dengue 
virus (DENV) and human immunodeficiency virus 1 (HIV-1) 
binding and entry in platelets (57, 58). DC-SIGN is a PRR that 
recognizes mannose-terminal-containing pathogen-associated 
carbohydrates. DC-SIGN also binds glycosylated domains on 
the envelope (E) protein of DENV and glycoprotein 120 (GP120) 
of HIV-1, a recognized mechanism for viral entry in dendritic 
cells (13, 45, 50, 59, 60). HIV-1 entry in dendritic cells through 
DC-SIGN or other C-type lectins occurs without viral membrane 
fusion and independently on the receptor CD4 or the corecep-
tors CXCR4 or CCR5 (13, 45, 50). Through this non-canonical 
pathway, endocytosed HIV particles sustain their infectivity for 
several days allowing trans-infection to CD4+ T  cells (13, 45). 
Even through platelets internalize HIV-1 viral particles though 
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FigURe 1 | Platelet interaction with viruses and virus-related pathogen-associated molecular patterns (PAMPs): schematic representation of the main receptors and 
pathways involved in virus binding and internalization, and pattern recognition receptor involved in recognition of viral PAMP by platelets. See text for details and 
references.
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similar mechanisms involving DC-SIGN or C-type lectin-like 
receptor 2 (CLEC-2) for viral attachment (14, 57), it is still 
controversial if platelets can perform HIV-1 trans-infection 
to T cells, and opposite results have been found on this regard  
(14, 61), as will be discussed in Section “Platelet Activation in 
HIV Infection.”

Platelet ability to endocytose viral particles is not an HIV-
specific feature. The viral genome of DENV and hepatitis C virus 
(HCV), both from Flaviviridae family, have been detected in 
circulating platelets from infected patients (62–67). HCV genome 
was also detected in platelets from healthy volunteers that were 
exposed to HCV in  vitro (65, 68). HCV capture by platelets 
depended on the binding domain of HCV envelope protein E2 
but was not dependent on the surface receptor CD81 (65). In 
another in vitro study, HCV viral particles were able to bind to 

recombinant human glycoprotein VI (GPVI) (69), which may be 
a potential receptor for HCV attachment on platelets. However, 
the role played by GPVI on HCV binding and entry in platelets 
has not been addressed (69). Endocytosed DENV-like particles 
have been also evidenced by ultrastructural analysis of platelets 
from patients with dengue (62). In vitro studies identified the 
mechanisms of DENV binding and internalization by platelets 
requiring DC-SIGN and heparan sulfate proteoglycans for viral 
attachment (58). When isolated platelets are infected with DENV 
in vitro, positive- and negative-sense viral RNA as well DENV 
non-structural protein 1 accumulate in platelets, indicating 
replication and translation of viral genome (58, 70). However, 
infective viral particles do not accumulate in platelet pellets or 
culture supernatants over time (58, 70). These data indicate that 
even though platelets support DENV replication, they do not 
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assemble or release mature viral particles, strongly suggesting an 
abortive DENV infection in platelets.

We and others have shown that in vitro infection of platelets 
with DENV induces platelet activation (26, 64, 71, 72), which 
is inhibited by anti-DC-SIGN neutralizing antibodies (72). 
Beyond DENV binding to DC-SIGN, heparan sulfate or other 
surface receptors, DENV immunocomplexes formed with cross-
reactive antibodies may enhance the infection of Fcγ receptor 
(FcγR)-bearing phagocytes in secondary DENV infections 
(73). Similarly, DENV capture by platelets is increased in the 
presence of antibodies (74), but whether this interaction leads 
to DENV replication and/or FcγR-mediated platelet activation 
remains unknown. Regarding this issue, immunocomplexes of 
influenza A (H1N1) virus with specific or cross-reactive (H3N2) 
antibodies activate platelets through FcγRIIA, increasing platelet 
degranulation and shedding of microparticles (MPs) (75). It 
remains unknown, however, whether virus attachment to platelet 
surface receptors is sufficient to initiate downstream activation of 
platelets or if virus internalization and replication are required for 
subsequent activation of intracellular PRR in platelets (Figure 1).

Among PRR involved in recognition and response against 
viruses, at least the endosomal TLR-3, -7, and -9 have already 
been demonstrated in megakaryocytes and platelets (23–25). 
Intracellular TLR-3 and -9 are highly expressed by megakaryo-
cytes and there is evidence for at least TLR-3 functional responses 
in megakaryocytic cell lines (23, 25). Megakaryocytes infected 
with RNA viruses or stimulated with TLR-3 synthetic agonists 
poly I:C or poly A:U respond with increased type I IFN secretion 
and expression of ISGs (25, 29, 41). Similarly, isolated platelets 
stimulated with TLR-3 agonists translocate α-granule-stored 
factors (P-selectin and CD40L) to surface and have enhanced 
procoagulant responses to thrombin or other traditional agonists 
(25, 76). However, it is not clear if TLR-3 activation in platelets 
and megakaryocytes participates in immune response against 
viral infections.

While in nucleated cells the endosomal TLRs are restricted to 
intracellular compartment (77), TLR-3 and -9 in platelets have 
been shown to translocate to surface after platelet activation 
(8, 19, 23). In proplatelet-forming megakaryocytes, TLR-9 in 
electron-dense tubular system-related granules are transferred to 
platelet progeny. TLR-9-containing granules in platelets do not 
colocalize with α- or dense-granules, neither with TLR-7 or -8 or 
other endosomal proteins (23). Even though platelet TLR-9 is not 
expressed in endosomes, platelet stimulation promotes TLR-9 
translocation to surface and pre-activated platelets are able to 
bind and respond to extracellular unmethylated CpG-containing 
oligodeoxynucleotide (ODN) (23). Besides ODN from viral or 
bacterial origin, TLR-9 also recognizes the endogenous DAMP 
carboxyalkylpyrrole (CAP) protein adducts formed during 
vascular oxidative stress. CAP adducts activate TLR-9–MyD88 
signaling in platelets leading to platelet degranulation and aggre-
gation in vitro and to in vivo thrombosis in atherosclerotic mice 
(78). However, whether and how surface-translocated TLR-9 in 
platelets are activated during viral infections deserves further 
investigation.

Toll-like receptor-7 signaling in platelets appears to be 
more similar to that of nucleated cells. During experimental 

encephalomyocarditis virus (ECMV) infection in mice, platelets 
are able to internalize and recognize viral RNA through TLR-7 
(24). In this model, infected mice developed profound throm-
bocytopenia while platelets formed aggregates with neutrophils. 
Platelet TLR-7 also recognizes the synthetic agonist loxoribine 
which similarly causes platelet–neutrophil aggregates and throm-
bocytopenia in mice. Additional in vitro experiments with murine 
and human cells demonstrated that platelet–neutrophil aggrega-
tion in response to RNA virus or synthetic agonist require TLR-7 
expression and endosomal-dependent signaling in platelets, but 
not in neutrophils. Importantly, transfusion of TLR-7-expressing 
platelets delayed the mortality of TLR-7-deficient mice after 
experimental ECMV infection, indicating that platelet TLR-7 
may have important roles in immune response against RNA 
viruses (24).

Regardless of virus attachment to surface receptors or recog-
nition by PRR in platelets, platelet activation can contribute to  
immune responses against viruses through a diversity of mecha -
nisms including the release of chemokines that promote endo thelial 
signaling and leukocyte migration or by physically interacting 
with leukocytes changing their responses (56, 79, 80). Recently, 
platelet factor 4 (PF4/CXCL4), a chemokine secreted exclusively 
by platelets and megakaryocytes, was identified as an essential 
mediator for neutrophil recruitment and virus clearance in 
influenza A infection (also see Platelet Activation in Influenza) 
(56). Another mechanism of protection involving platelet and 
neutrophils is platelet-mediated extrusion of neutrophil extracel-
lular traps (NET). The ability of platelets to induce NET release 
has been extensively reported in bacterial infections, including in 
response to LPS (22, 81, 82). In an experimental model of myxoma 
virus infection, infected mice presented platelet–neutrophil 
aggregates and NET extrusion in the liver vasculature (79). In this 
model, platelet-mediated NET release protected liver cells from 
subsequent viral challenge (79). Platelets have been also identified 
as central players for preservation of spleen architecture and effec-
tive CD8+ T cell response against lymphocytic choriomeningitis 
arenavirus (LCMV), a murine model of viral hemorrhagic fever 
(80). In this model, partial platelet depletion to a degree that did 
not increase viral-induced hemorrhage significantly impaired 
viral clearance through defective assembly of virus-specific CD8+ 
T cell response (80). In a genetic model of hepatitis B virus infec-
tion, however, platelet-induced CD8+ T  cell intrahepatic accu-
mulation culminated in liver damage as consequence of cytotoxic 
activity of recruited lymphocytes toward elimination of infected 
cells (83). Even though the mechanisms of platelet activation and 
platelet–leukocyte signaling were not explored in these models, 
these data convincingly show that platelets play major roles in 
innate and adaptive immune responses against viruses.

PLATeLeT ACTivATiON iN THe 
PATHOPHYSiOLOgY OF viRAL 
iNFeCTiONS

Platelet Activation in Hiv infection
Because of combined antiretroviral therapy (ART), in the last dec-
ades the epidemiology of HIV has changed from high mortality 
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by opportunistic infections in AIDS to long-term non-infectious 
complication of HIV infection (84, 85). However, even though 
sustained virologic control is achieved by ART, people living with 
HIV still experience increased mortality associated with higher 
rates of long-term comorbidities including cardiovascular dis-
eases, depression, HIV-associated neurocognitive disorders, and 
non-AIDS cancers (86–90). Many of long-term complications 
in HIV-infected individuals are related to continuing immune 
suppression (87, 91, 92) and/or sustained inflammation (93–95). 
Ischemic thrombotic and cardiovascular events represent some 
of the most frequent long-term complications and leading cause 
of death among virologically suppressed HIV-infected subjects  
(86, 89, 91, 92, 96, 97). Considering the potential role for platelets in 
the cardiovascular risk of people living with HIV, much attention 
has been given on the implications of platelet activation in the 
pathogenesis of HIV infection.

Increased platelet activation in HIV-infected subjects and 
AIDS patients has been extensively reported in the last two dec-
ades (55, 98–104). In AIDS patients, markers of platelet activation 
correlate with patient viral loads and the nadir of CD4+ T  cell 
counts (98–100, 102). P-selectin surface expression on platelets 
and plasma markers of platelet activation as soluble P-selectin 
and CD40L (sP-selectin and sCD40L) are increased in ART naïve 
patients and decrease during the first weeks after antiretroviral 
treatment (98, 102). However, there is evidence for sustained 
platelet activation after months to years of virologic suppression 
by ART (55, 103, 105, 106). Increased platelet activation in people 
living with HIV is associated with measures of inflammation and 
coagulopathy including elevated levels of TNF-α, tissue factor, 
and D-dimers (98, 99, 101). Consistently, antiplatelet therapy 
with aspirin has been shown to reduce not only platelet activation 
but also activation of monocytes and T cells from CD4+ and CD8+ 
subsets in HIV-infected subjects undergoing virologic suppres-
sion by ART (55).

Ultrastructural analysis of platelets from HIV-1-infected sub-
jects or in vitro-infected platelets identify HIV-1 internalization in 
endosome-like vesicles (57, 107, 108). These ultrastructural stud-
ies show activation-associated morphology in HIV-containing 
platelets, indicating that platelets become activated after direct 
binding and internalization of HIV-1 viral particles (57, 108). In 
addition, HIV-1 transactivator of transcription (Tat), a viral pro-
tein that is released in the circulation of infected subjects, is able 
to activate platelets increasing the translocation and secretion 
of CD40L and P-selectin (109). Tat-mediated platelet activation 
occurs through its binding to β3 integrin and CCR3 chemokine 
receptor on platelets (109). Injection of recombinant Tat or 
Tat-expressing retrovirus increases platelet P-selectin expres-
sion and plasma levels of PF4 and sCD40L in mice (109–111). 
Nevertheless, other mechanisms beyond platelet interaction 
with HIV-1 or Tat may account for platelet activation in people 
living with HIV since platelet activation persists in virologically 
suppressed individuals (55, 103). One possible mechanism is 
platelet TLR-4 activation by LPS from microbial translocation, 
which is considered a central feature of HIV pathogenesis and 
has been documented to persist for years after initiation of ART 
(112). Other possibility is the effects of ART itself. Regarding this, 
abacavir-containing antiretroviral regimens have been associated 

with platelet hyperreactivity while raltegravir-based therapy 
was associated with reduced platelet activation (103, 113, 114). 
Ritonavir-containing protease inhibitor-based ART has been 
also associated with increased platelet activation when compared 
with samples obtained before ART initiation in a small cohort of 
protease-inhibitor naïve patients (104). In in vitro experiments, 
abacavir and its metabolite carbovir triphosphate have been 
shown to potentiate platelet responsiveness to prothrombotic 
agonists by competitively inhibiting the activity of guanylyl 
cyclase when compared with non-guanosine nucleotide analogs 
(115, 116). New studies are still necessary to investigate the 
impact of ART in platelet activation and long-term comorbidities 
in people living with HIV.

Activated platelets in HIV-infected individuals express mol-
ecules including P-selectin, CD40L, and TF that participate in the 
thromboinflammatory state related to long-term comorbidities 
of HIV infection (98, 99, 103, 104, 235). In ex vivo aggregometry 
assay, platelets from HIV-infected subjects are more sensitive 
to aggregation under suboptimal prothrombotic stimulation  
(55, 113). In addition to prothrombotic responses, platelet activa-
tion participates in the immune and inflammatory network of 
HIV infection through diverse mechanisms involving secretion 
of stored factors and interactions with leukocytes as summarized 
in Figure 2 and discussed below.

Activated platelets interact with several classes of leukocytes 
including monocytes, neutrophils, and lymphocytes. These 
heterotypic aggregates are formed by the binding of platelet 
P-selectin to leukocyte P-selectin glycoprotein ligand 1 (PSGL-1), 
a molecular interaction that not only tethers the cells together but 
also signals gene expression and functional activating pathways 
in the leukocyte (1, 2, 117–119). Circulating platelet–monocyte 
and platelet–lymphocyte aggregates have been reported in 
increased numbers in HIV-infected subjects even after virologic 
suppression by ART (103, 120). Platelet aggregates formation 
with monocytes or with CD4+ and CD8+ T cells in people liv-
ing with HIV correlate with P-selectin expression on platelets 
(120–122). In HIV-infected subjects under virologic suppression, 
aggregates of activated platelets with CD4+ and CD8+ T cells form 
preferentially with lymphocytes of memory phenotype (120). 
Interestingly, memory lymphocytes isolated from HIV-infected 
individuals have increased avidity for recombinant P-selectin ex 
vivo, suggesting that besides platelet activation, T cell activation 
state also contributes to platelet–lymphocyte adhesion in HIV 
infection (120). Platelet–monocyte aggregates in HIV-infected 
people are more frequent among CD16+ inflammatory mono-
cytes and associates to increased levels of sCD163, a marker of 
monocyte activation (121, 122). While, similarly to lymphocytes, 
inflammatory monocytes may be more avid targets for activated 
platelets, it is tempting to speculate whether platelet adhesion 
contributes to monocyte or lymphocyte inflammatory activation 
in HIV infection. However, new studies are still necessary to 
determine the effects of platelet–leukocyte aggregates on mono-
cyte- and T cell-mediated responses during HIV infection.

Among stored factors secreted upon platelet activation, two 
major chemokines from α-granules, RANTES/CCL5 and PF4/
CXCL4, are considered endogenous inhibitors of HIV-1 repli-
cation regarding their ability to bind HIV-1 coreceptor CCR5 
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FigURe 2 | Platelets participate in inflammatory, virologic, and prothrombotic responses in HIV infection: (A) platelets from HIV-infected subjects have increased 
activation at baseline and hyperreactive aggregation under suboptimal prothrombotic stimuli. Activated platelets also form aggregates with CD16+ inflammatory 
monocytes and HLADR+CD38+ memory T cells in people living with HIV. HIV-infected subjects undertaken antiplatelet therapy with aspirin had reduced platelet 
activation, platelet hyperreactivity, and platelet–monocyte aggregates, as well as reduced activation of monocytes (sCD14) and T cells (HLADR+CD38+).  
(B) Platelets infected with high inoculum of reporter lentivirus are able to trans-infect susceptible T cells in vitro. Activated platelets can also inhibit human 
immunodeficiency virus 1 infection through the secretion of the HIV suppressive chemokines PF4/CXCL4 and RANTES/CCL5. (C) Platelet-derived CD40L  
plays a major role in HIV-associated neurocognitive disorders. Platelet-derived CD40L increases blood–brain barrier permeability and adhesion of GR1+CCR2+ 
leukocytes on brain microvasculature. CD40L-activated platelets induce monocyte migration though brain microvascular endothelial cells, and platelet–monocyte 
aggregates accumulate in brain microvasculature and parenchyma. Activated monocytes and microglia are more sensitive to CD40L-induced TNF-α secretion, 
which contributes to neuronal apoptosis. See the text for details and references.
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and HIV-1 GP120, respectively (123, 124). Together with other 
chemokine ligands of HIV-1 coreceptors MIP-1α/CCL3 and 
MIP-1β/CCL4 for CCR5 and SDF-1/CXCL12 for CXCR4 (123), 
platelet-derived RANTES and PF4 may be central mediators in 
the control of HIV-1 replication in vivo [for more details on HIV-1 
suppressive chemokines see Ref. (125)]. Accordingly, genetic 
polymorphisms involved with the expression of these chemokines 
and their receptors have been reported as key determinants of 
the outcome in HIV-1 infection (126–129). These epidemiologic 
studies are supported by ultrastructural analysis of platelets 
from HIV-1-infected subjects or in  vitro-infected platelets that 
show evidence for α-granules fusion with virus-containing 
compartments indicating HIV inactivation and/or degradation 
by α-granule proteins (57, 108). In addition, coculture with plate-
lets is able to prevent T  cell infection through PF4-dependent 
mechanisms regardless of CCR5 or CXCR4 coreceptor tropism 

(61, 124). In another study, however, when platelets were infected 
with HIV-1 in a high viral load and exposed to T cells few hours 
postinfection, platelets were able to trans-infect T cells instead of 
preventing their infection (14). These results suggest that platelets 
may have a dual role in HIV-1 spreading, being able to inactivate 
endocytosed viruses or shelter them depending on viral load and 
platelets α-granule content (14, 61) (Figures 1 and 2B). Of note, 
platelet exhaustion of α-granule chemokines has been reported 
in association with high viral load in HIV/AIDS patients (98).

Other platelet-derived mediators as TGF-β and CD40L have 
been implicated in pathologic mechanisms of HIV-associated 
long-term comorbidities as consequence of infection or ART (111, 
130–132). TGF-β from activated platelets has been identified as a 
critical factor for heart tissue fibrosis and cardiac dysfunction in 
mice chronically treated with the antiretroviral ritonavir (132); 
and CD40L, besides being a key mediator for B cell germinative 
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center formation and isotype switching, plays immunopathogenic 
roles in HIV-associated neurocognitive disorders (Figure 2C) as 
discussed below (109, 111, 121).

The levels of sCD40L are increased in plasma and cerebro-
spinal fluid from patients with HIV-associated cognitive impair-
ment compared with HIV-infected subjects without cognitive 
damage (130). In mice experimentally infected with transgenic 
viruses (retrovirus expressing HIV Tat or HIV expressing 
murine leukemia virus GP80 in replacement of GP120) and 
in Tat-injected mice, platelet-derived CD40L is a crucial com-
ponent for increased blood–brain barrier permeability and 
leukocyte recruitment to brain microvasculature (109, 111, 131). 
CD40L reciprocally increases platelet activation promoting the 
formation of platelet–monocyte aggregates (121). Adhesion of 
CD40L-activated platelets to monocytes increase their ability to 
transmigrate brain microvascular endothelial cells in vitro; and 
increased numbers of platelet–monocyte aggregates have been 
observed on microvascular bed and in vascular lumen of brain 
sections from patients who died by HIV-associated encephalopa-
thy (121). Recruited monocytes and activated resident micro-
glia secrete pro-inflammatory cytokines in response to CD40L, 
including TNF-α, amplifying local inflammation, and neuronal 
death, as suggested by in  vitro experiments with Tat-activated 
monocytes and microglia (130). These evidences from infected 
patients together with in  vivo and in  vitro studies suggest that 
platelet-derived CD40L plays a central role in HIV-associated 
neurocognitive disorder.

Platelet Activation in the Pathogenesis  
of Dengue
Dengue is an arthropod-born viral disease caused by one of 
four antigenically related DENV serotypes (DENV-1 to -4). It 
is the most frequent hemorrhagic viral disease and re-emergent 
infection in the world (133, 134). Recently, it was estimated 
that over 2.5 billion people live in high-risk transmission areas 
with more than 90 million symptomatic infections occurring 
annually (134). DENV infection induces a spectrum of clinical 
manifestations that range from mild self-limited dengue fever 
to life-threatening severe dengue. While mild dengue presents 
as undifferentiated febrile illness, severe dengue syndrome pro-
gress with hemodynamic dysfunction including coagulopathy 
and vasculopathy associated with hypovolemia, hypotension, 
shock, organ dysfunction, and eventually death (133, 135–137). 
Thrombocytopenia is a common feature in dengue syndromes, 
and the drop of platelet counts is temporally coincident with 
the hemodynamic instability and progression to severity, while 
its recovery associates with clinical improvement and hospital 
discharge (136, 138–142). The pathophysiologic mechanisms 
underlying severe dengue cases are not completely understood. 
Overwhelming immune activation with increased levels of 
cytokines and other pro-inflammatory mediators that target the 
vascular endothelium is considered to favor DENV pathology 
and severity (140, 143–146). Activation of various immune cells 
including B and T cells, monocytes, macrophages, and dendritic 
cells has been shown to participate in this process (147–152). Even 
through thrombocytopenia is a hallmark of dengue infection, the 

role played by platelets in dengue immunopathology was only 
recently addressed.

Platelet activation has been demonstrated in patients with 
dengue and increased platelet activation associated with disease 
severity (26, 54, 64, 72, 153, 154). Surface markers of activa-
tion including P-selectin and CD63 expression (translocated 
from α- and dense-granules, respectively), phosphatidylserine 
exposure, and inside-out activation of αIIbβ3 integrin all correlate 
with the decline of platelet counts during dengue infection  
(64, 72, 155). Increased platelet activation may contribute to plate-
let loss by mediating platelet deposition in the microvascular bed 
at the periphery. In agreement, platelet aggregates and fibrinogen 
deposition have been detected in microvessels of postmortem 
histology and skin biopsies from severe dengue cases (156, 157). 
In a flow model, perfusion of DENV-infected whole blood on 
histamine-activated endothelial cells formed increased area of 
adhered platelets and platelet-von Willebrand factor strings com-
pared with uninfected blood (64). Platelets have been also shown 
to adhere on DENV-infected endothelial cells in  vitro, which 
reciprocally increased platelet activation (158). Aggregation 
of activated platelets with leukocytes may also contribute to 
thrombocytopenia in dengue, and circulating platelet–leukocyte 
aggregates have been shown among monocytes, lymphocytes, 
and granulocytes from dengue patients (54, 159). Accordingly, 
the levels of platelet–monocyte aggregates in the circulation of 
dengue patients negatively correlate with platelet counts (54). 
The participation of platelet–leukocyte aggregates (as well other 
platelet-mediated responses) in inflammatory amplification and 
dengue pathogenesis will be discussed further in this section and 
is highlighted in Figure 3.

The exact triggers of platelet activation in dengue infection 
are not completely clear. As discussed earlier, the mechanisms 
of DENV binding and replication in platelets and those involved 
in activation of DENV-infected platelets have been investigated  
(58, 64, 72). Consistently, DENV genome copies in platelets posi-
tively correlate with platelet activation in acute dengue infection 
(64). However, platelet activation in patients with dengue is maxi-
mal at the critical phase of infection, when DENV particles are no 
longer circulating (72, 153), indicating the existence of additional 
mechanisms governing platelet activation in non-viremic phases 
of infection. Mechanisms possibly involved in platelet activation 
in dengue include platelet adhesion to activated endothelium 
(158), increased thrombin generation (138, 160–162), and 
increased production of pro-inflammatory mediators as platelet-
activating factor (PAF) (163–165). Regarding the latter, experi-
mental DENV infection in mice lacking PAF receptor results in 
mild disease with reduced thrombocytopenia, inflammation, and 
mortality (166). Recently, a quantitative proteome approach of 
platelets from patients with dengue revealed novel mechanisms 
and pathways of platelet activation involving the binding of cell-
free histone H2A (154). Cell-free histones are recognized DAMP 
signals that activate platelets through TLR-2 and -4 in vitro and 
in vivo (167–169). Injection of histones in mice leads to histone 
accumulation in sites of thrombosis and to thrombocytopenia 
(168–170). In dengue patients, increased levels of circulating 
cell-free histone H2A and histone sequestration by circulating 
platelets associate with disease severity (154). When platelets 
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adhesion and platelet clot formation on microvascular bed at the periphery may all contribute to thrombocytopenia in dengue. (B) Contributions of platelet activation 
and thrombocytopenia to inflammatory amplification and increased vascular permeability in dengue: (i) thrombocytopenia and reduced levels of platelet-derived 
endothelium-stabilizing factors alongside increased production of pro-inflammatory vasoactive factors by activated platelets that remain in circulation may contribute 
to dengue-associated vasculopathy; (ii) platelet synthesis of IL-1β and release of IL-1β-containing microparticles (MPs) associate with increased vascular permeability 
in dengue patients, and IL-1-β-rich MPs shed from dengue virus-infected platelets increase endothelial permeability in vitro; activated platelets from dengue-infected 
patients also induce pro-inflammatory cytokine secretion by monocytes. See the text for details and references.
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from healthy volunteers are exposed to plasma from dengue 
patients, cell-free histone H2A binds to and activates platelets ex 
vivo, indicating that circulating cell-free histones may contribute 
to platelet activation in dengue (154).

Aside from platelet activation and intravascular thrombosis, 
increased platelet apoptosis may contribute to thrombocytopenia 
in dengue infection. Increased rates of apoptotic platelets circu-
late in dengue-infected patients (54, 72, 155). In vitro infection 
with any serotype of DENV also culminates in the activation 
of an intrinsic cell death program in platelets that involves 
mitochondrial dysfunction and activation of apoptotic caspases  
(64, 72, 155). Patients with dengue hemorrhagic fever (DHF) 
present higher frequencies of platelet apoptosis compared with 
mild dengue (155). Accordingly, platelet life-span is reduced 
in DHF, and patients with DHF/DSS present increased platelet 
sequestration in the liver (171). In parallel ex vivo experiments, 
cultured macrophages phagocytized apoptotic platelets from 
dengue patients chiefly depending on phosphatidylserine recog-
nition by the phagocyte (155). These studies suggest that platelet 
retention in the reticuloendothelial system with phagocytosis of 
apoptotic platelets by resident macrophages may represent a key 
mechanism of thrombocytopenia in dengue.

Besides platelet apoptosis and aggregation at the periphery, 
central mechanisms of bone marrow suppression may also 

contribute to thrombocytopenia in dengue (172, 173). DENV 
propagation in bone marrow (33, 174, 175) may contribute to 
suppression of hematopoiesis in all lineages, including the mega-
karyocytic (174, 176, 177). Bone marrow aspirates from dengue 
patients show moderate hypocellularity and arrest of maturation 
in granulocyte, megakaryocyte, and erythroid/myeloid precur-
sors (178–181). In agreement, experimental DENV infection 
of humanized mice shows transient thrombocytopenia with 
reduced numbers of human megakaryocytic progenitors and 
megakaryocytes in the marrow (182). In in  vitro experiments, 
DENV infection of megakaryocyte progenitor cells culminates 
in loss of their proliferative capacity and cell death by apoptosis 
(177). Regarding mature megakaryocytes, it has been demon-
strated in non-human primates and ex vivo infection of human 
marrow cells that megakaryocytes are the main target for DENV 
in the marrow (32, 33), but whether DENV infection of mature 
megakaryocytes impacts platelet production, quantitative or 
qualitatively, remains to be explored.

Thrombocytopenia may be involved in the increased vascular 
permeability of dengue patients. Platelets participate in the 
regulation of endothelial barrier function and are required for 
the maintenance of basal endothelial permeability in physi-
ological conditions (2, 183, 184). In in vitro experiments, isolated 
platelets or supernatants from rested platelets are able to reduce 
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the permeability of endothelial monolayers in a concentration-
dependent fashion (185–188). Platelet-rich plasma is also able to 
revert TNF-α-induced endothelial permeability in vitro and LPS-
induced alveolar-capillary leak in experimental endotoxemia in 
mice (189). Various platelet-derived proteins and lipid mediators 
have been identified as vascular endothelium-stabilizing fac-
tors including lysophosphatidic acid, sphingosine-1-phosphate 
(S1P), thromboxane A2 (TXA2), and angiopoietin-1 (188–193). 
In agreement, reduced plasma levels of angiopoietin-1 alongside 
increased levels of its antagonist angiopoietin-2 are associated 
with shock presentation in children with DHF (194). Similarly, 
plasma levels of TXA2 and S1P are reduced in patients presenting 
ultrasound-evidence of plasma leakage or that progress to shock 
(195–197). These results together with the association between 
thrombocytopenia and plasma leakage in dengue patients  
(136, 138–142) suggest that platelets at steady state are required for 
preservation of vascular barrier integrity, and reductions in plate-
let counts and platelet-derived endothelium-stabilizing factors 
might increase vascular permeability in dengue. Paradoxically, 
activated platelets participate in inflammatory processes that 
trigger increased vascular permeability as well.

Activated platelets in patients with dengue or platelets infected 
with DENV in  vitro secrete various factors with vasorelaxing 
or endothelial activating functions, including small molecules 
(serotonin and nitric oxide) (153, 198, 199), granule-stored 
chemokine (RANTES/CCL5 and PF4/CXCL4) (154), and newly-
synthesized IL-1β (26). Among these factors, at least nitric oxide, 
RANTES, and IL-1β have been linked to disease severity and 
vascular instability in dengue-infected patients (140, 200–204). 
Similarly, platelet activation markers have been associated with 
measures of plasma leakage in patients with dengue (26, 54, 153).  
We recently reported increased expression of IL-1β in platelets 
from patients with dengue and in DENV-infected platelets in vitro. 
Newly synthesized pro-IL-1β was processed by inflammasome- 
dependent caspase-1 activity, as demonstrated in platelets from 
infected patients and in functional assays using inflammasome 
and caspase-1 inhibitors in vitro (26). In this model, IL-1β pro-
cessing and secretion required the generation of reactive oxygen 
species in mitochondria as an endogenous signal for NLRP3 acti-
vation (Figure 1). Biologically active mature IL-1β was released 
from platelets in suspension and in IL-1β-rich MPs. In patients 
with dengue, IL-1β expression in platelets and platelet-derived 
MPs and caspase-1 activity in platelets correlated with clinical 
signs of increased vascular permeability; and MPs recovered 
from DENV-infected platelets increased endothelial cell perme-
ability in vitro, which was blocked by IL-1 receptor antagonist. 
These observations in platelets from patients with dengue  
and from in  vitro infection models and functional assays 
provided evidence for NLRP3 inflammasome activation in 
plate lets culminating in the release of IL-1β-containing MPs as 
an important pathogenic mechanism for vasculopathy in dengue 
syndrome (26).

Platelet–leukocyte aggregates also participate in leukocyte 
immunoregulation and inflammatory response in dengue. As 
mentioned before, platelets form aggregates with lymphocytes, 
monocytes, and granulocytes during dengue infection (54, 159). 
Circulating platelet–monocyte and platelet–neutrophil aggregates  

were also demonstrated in a model of dengue-induced hemor-
rhage in rhesus macaques (205). In this model, microscopic evi-
dence of platelet–monocyte aggregates and platelet phagocytosis 
by monocytes in peripheral blood was also provided (205). In 
recent experiments from our group, ex vivo heterologous interac-
tions of platelets from dengue-infected patients with monocytes 
from healthy volunteers demonstrated the ability of activated 
and apoptotic platelets from infected patients to modulate the 
synthesis and secretion of IL-1β, IL-8, and IL-10 by mono-
cytes. The same responses were not achieved by platelets from  
healthy volunteers interacted with monocytes from heterolo-
gous healthy subjects or dengue patients (54). Complementary 
in vitro experiments demonstrated that modulation of cytokine 
secretion by monocytes required P-selectin-mediated adhesion 
and recognition of phosphatidylserine on apoptotic platelets, 
which provided a previously unrecognized signal for IL-10 
secretion in platelet–monocyte complexes (54). Beyond cyto-
kines, activated platelets have been shown to trigger the syn-
thesis of chemokines, adhesion molecules, metalloproteinase-9, 
and cyclooxygenase-2 by monocytes (118, 119, 206, 207), which 
were all implicated in dengue immunopathology in other stud-
ies (195, 208–213).

The consequences of platelet–neutrophil and platelet–lym-
phocyte interactions in dengue pathogenesis is far less explored. 
Regarding platelet interaction with lymphocytes, the ability of 
platelets to cross-present exogenous protein antigens to CD8+ 
T cells through major histocompatibility complex (MHC) class I 
was recently demonstrated in vitro and in experimental cerebral 
malaria in vivo (214). In this study, platelets effectively activated 
antigen-specific CD8+ T cells through presentation of pathogen-
derived antigen in MHC class I (214). Very recent experiments 
investigating the ability of mature megakaryocytes to process 
exogenous proteins and present their peptides in MHC class I 
indicate that megakaryocytes also trigger CD8+ T  cell activa-
tion and proliferation in  vitro and in  vivo. More importantly, 
megakaryocytes are able to transfer antigen-loaded MHC class 
I complexes to platelets during thrombopoiesis (31). Platelets 
isolated from patients with dengue have increased expression of 
MHC class I as evidenced by mass spectrometry-based proteome 
and western blot (154). This increased MHC class I content may 
derive from megakaryocytes, which have been identified as the 
main target cells for DENV infection in marrow (32, 33); or from 
DENV infection of platelets at circulation (62–64). In in  vitro 
experiments, platelets infected with DENV increased MHC class 
I expression and surface display through mechanisms depend-
ing on proteasome activity (154). Whether peptides processed 
by platelet proteasome/immunoproteasome and presented in 
MHC class I on platelets derived from viral antigens or self-
proteins requires further investigation. In experimental models 
or patients with idiopathic thrombocytopenic purpura and in 
platelet transfusion-refractory individuals, platelet MHC class 
I-mediated CD8+ T cell cytotoxicity leads to platelet clearance and 
inflammatory cytokine secretion (31, 214–219), both important 
pathogenic mechanisms in dengue. Nevertheless, new studies 
are still necessary to investigate the role played by platelet MHC 
class I expression and platelet–lymphocyte interactions in dengue 
pathogenesis, specially thrombocytopenia and cytokine storm.
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Platelet Activation in influenza
Influenza pneumonia, caused by virulent strains of influenza 
A virus (IAV), remains a major global health problem with 
seasonal influenza epidemics and unexpected pandemics that 
have occurred for more than a century. For example, the virulent 
H1N1 strain of influenza identified in the 2009 flu pandemic 
caused increased morbidity and mortality worldwide (220–222). 
Patients admitted in intensive care unit (ICU) with severe 
influenza pneumonia usually presented acute lung injury and 
acute respiratory distress syndrome (ALI/ARDS) which have 
exacerbated immune response and increased systemic and airway 
inflammation as central features of pathogenesis (221, 223, 224). 
Pathophysiologic mechanisms of severe influenza pneumonia 
include overwhelming immune activation at the airways result-
ing in alveolar-capillary barrier damage, edema, pulmonary 
microvascular thrombosis, and progressive loss of respiratory 
capacity (224–226). Because of disrupted alveolar-capillary bar-
rier integrity in influenza pneumonia, platelets may interact with 
influenza virus or influenza-IgG immunocomplexes even if the 
virus is restricted to alveoli and airways compartment (75, 227).  
In addition, there has been evidence for platelet activation by 
locally generated agonists and damage signals (227, 228). The 
participation of platelets in local immune and inflammatory 
responses during influenza infection (Figure 4) makes a perfect 
example of platelet activities at the extravascular space.

Increased platelet activation and increased formation of 
platelet–monocyte aggregates have been reported in the blood 
of critically ill H1N1 influenza patients presenting ALI/ARDS 
(229). In this study, platelet activation and platelet–monocyte 
aggregates’ formation were higher in H1N1 influenza patients 

compared with patients with bacterial pneumonia at ICU (229). 
Activated platelets and platelet–monocyte aggregates have been 
also shown in influenza vaccinated subjects (230–232). Increased 
platelet activation and platelet–monocyte aggregation after 
influenza vaccination correlated with the expansion of inflam-
matory CD14highCD16+ and reduction of classical CD14highCD16− 
monocyte subsets, which was prevented by antiplatelet therapy 
with aspirin or clopidogrel (230, 232). Complementary in vitro 
experiments indicated that concurrent signaling from P-selectin-
PSGL-1 binding and secreted prostaglandin E2 expanded the 
subset of CD16+ inflammatory monocytes in platelet–monocyte 
cocultures (230). However, whether and how platelet–monocyte 
aggregates contribute to the expansion of inflammatory mono-
cytes in influenza or other infections in humans remains to be 
demonstrated.

Histopathological studies of lungs in experimental influenza 
A infection in mice and autopsies from patients who expired 
from H1N1 influenza documented frequent microvascular 
thrombosis in areas of disrupted integrity of alveolar-capillary 
barrier (56, 226–228). In influenza A-infected mice, platelet 
infiltration to lung parenchyma was evidenced by CD41 and 
PF4 immunohistochemistry, transmission electron microscopy, 
and platelet counting in bronchoalveolar lavage (BAL) (56, 75, 
227, 228). Ultrastructural analysis of infiltrated platelets shows 
evidence of platelet activation and formation of platelet–neutro-
phil aggregates, which are in agreement with increased levels of 
serotonin, sP-selectin, and sCD40L in BAL (227, 228). In these 
models, platelet activation has been observed in both airways 
and blood from infected mice, advocating in favor of multiple 
(parallel or sequential) mechanisms for platelet activation  
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(56, 227, 228). These mechanisms may involve, in addition to 
direct contact with the virus or virus-IgG immunocomplexes, 
the generation of agonists and damage signals that activate infil-
trated and circulating platelets in severe influenza pneumonia  
(75, 227, 228). Recent in vitro experiments investigating platelet 
responses to H1N1 in the presence of influenza immune serum 
demonstrated that complete thromboinflammatory phenotype 
of activated platelets depends on the synergistic activation of 
FcγRIIA by immunocomplexes and protease activating receptor 
(PAR) by thrombin (75).

Studies of experimental influenza A infection plus pharma-
cological and genetic models have supported the participation 
of platelets in the pathogenesis of airway inflammation and lung 
injury. Influenza A infection together with PAR-4 agonist or 
antagonist were able to, respectively, exacerbate or recover lung 
inflammation, plasma leakage and mortality with no change on 
influenza viral load (227). Genetic deficiency of integrin αIIbβ3 or 
treatment with the integrin αIIbβ3 inhibitor eptifibatide reduced 
influenza- or influenza plus PAR-4 agonist-induced platelet 
infiltration and activation in the lungs, and rescued infected 
mice from lung injury and mortality (227). Other antiplatelet 
drugs including aspirin and P2Y purinergic receptor inhibitors 
also protected influenza-infected mice from platelet accumula-
tion in lungs and mortality (227, 233). In complementary 
in  vitro experiments, it was demonstrated that platelet attach-
ment to infected pulmonary microvascular endothelial cells 
depended on integrin-mediated adhesion and was also blocked 
by pharmacological inhibitors of platelet activation (233). Very 
recent studies investigating the role of extracellular histones in 
influenza-mediated lung injury and vascular thrombosis has 
evidenced the deposition of cell-free histones in association with 
activated platelets and neutrophils in areas of alveolar damage in 
lungs of infected mice (228). Increased levels of cell-free histones 
have been observed in BAL from influenza-infected mice and 
in nasal wash from influenza A, but not influenza B, infected 
patients (228, 234). Even though this study has demonstrated 
activated platelets in BAL of infected mice, the particular role of 
cell-free histones in platelet activation and platelet infiltration 
in the airways has not been addressed (228). Altogether, these 
experiments indicate that pathogenic mechanisms involving 
activation-dependent platelet adhesion, infiltration, and inflam-
matory response in the lungs contribute to influenza pneumonia 
and ARDS. These evidences from experimental infection 
models shed light on novel targets for therapeutic intervention 
in influenza-associated ALI/ARDS. Accordingly, supplementa-
tion of antiviral therapy with antiplatelet drugs or antihistone 
antibodies has improved histological index of lung injury and 
increased the survival of infected mice when compared with 
antiviral therapy alone (228, 233).

Another recent work indicates that platelets have protective 
activities in innate immune response against IAV. Increased levels 
of PF4 accumulate in blood and lung of mice experimentally 
infected with H1N1 influenza. Based on genetic models, PF4 in 
blood and lungs from infected mice have essential roles in innate 
mechanisms of viral clearance and survival. Experimental infec-
tion of PF4-deficient mice resulted in exacerbated lung inflamma-
tion, alveolar damage, and increased mortality (56). Mice lacking 
PF4 were unable to provide effective clearance of the virus even 
though specific T and B  cell-mediated adaptive immunity were 
responsive (56). Deficient viral clearance was related to insuffi-
cient production of neutrophil chemoattractant chemokines and, 
consequently, to lower neutrophil migration to the circulation 
and lungs. PF4 intravenous injection or instillation in the lungs 
recovered the levels of chemokines, infiltration of neutrophils, and 
survival of PF4-deficient mice (56). These experimental observa-
tions together with the ones aforementioned indicate that platelets 
accumulate at intra- and extravascular space in the lungs during 
influenza A infection, and that they are effectors of both host pro-
tection and, in severe influenza pneumonia, lung injury (56, 227).

CONCLUSiON

Emerging evidences identify platelets as dynamic cells that partici-
pate in inflammation and prothrombotic responses in many vas-
cular and inflammatory processes, including viral infections. New 
platelet functions have emerged over time and platelets are get-
ting increasingly recognized as immune cells. Pathophysiological 
mecha nisms involving platelet responses have been reported in 
HIV infection, dengue fever, and influenza pneumonia in naturally 
infected patients and in experimental infection models as discussed 
here. Thrombocytopenia, platelet secretion of stored and newly 
synthesized factors, and complex interactions with leukocytes 
comprise platelet features that may have both injurious and pro-
tective immune consequences in viral infections. Increasing our 
understanding on immunoregulatory functions of platelets in viral 
infections will undoubtedly improve our knowledge on diseases 
pathogenesis, clinical management, and therapeutic options.
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