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Bone marrow-derived mesenchymal stem cells (MSCs) have therapeutic effects in 
experimental models of lung injury. Hypoxia-inducible factor-1 alpha (HIF-1α) is a tran-
scriptional regulator that influences cellular metabolism, energetics, and survival under 
hypoxic conditions. The current study investigated the effects of stabilizing HIF-1α on the 
therapeutic capacity of MSCs in an experimental mouse model of bacterial pneumonia. 
HIF-1α stabilization was achieved by the small molecule prolyl-hydroxlase inhibitor, AKB-
4924 (Aerpio Therapeutics, Inc.), which blocks the pathway for HIF-1α degradation in 
the proteosome. In vitro, pre-treatment with AKB-4924 increased HIF-1α levels in MSCs, 
reduced the kinetics of their cell death when exposed to cytotoxic stimuli, and increased 
their antibacterial capacity. In vivo, AKB-4924 enhanced MSC therapeutic capacity in 
experimental pneumonia as quantified by a sustainable survival benefit, greater bacterial 
clearance from the lung, decreased lung injury, and reduced inflammatory indices. These 
results suggest that HIF-1α stabilization in MSCs, achieved ex vivo, may represent a 
promising approach to augment the therapeutic benefit of these cells in severe pneumo-
nia complicated by acute lung injury.

Keywords: mesenchymal stem cells, hypoxia-inducible factor-1 alpha, lung injury, pneumonia, sepsis

iNtroDUctioN

Severe pneumonia is the most common cause of sepsis and respiratory failure among critically ill 
patients. The mortality in the most severe cases can approach 50%, and treatment options have 
become increasingly limited due to the rapid emergence of multi-drug resistant bacterial strains, 
particularly among enteric Gram-negative bacteria (1–3). New treatment options that can harness 
the potential of the innate immune system are needed to more effectively manage this complex 
condition.

Bone marrow-derived mesenchymal stem cells (MSCs) have been studied as a potential source 
for cell-based therapy for a wide range of experimental organ injury models. In particular, there 
has been a considerable amount of focus on using MSCs as a therapy for severe lung injury 
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and sepsis as there are no proven pharmacological therapies 
in this field (4–9). MSCs have a number of biological proper-
ties that lend them to producing a favorable outcome in lung 
injury and sepsis including immunomodulation, secretion of 
epithelial and endothelial growth factors, and augmentation 
of host defense to infection (6, 10, 11). However, the clinical 
benefits of MSCs in trials have been modest, which may be due 
to a lack of sustained benefit given MSC death and clearance 
under inflammatory conditions in vivo. It has previously been 
shown that non-viable MSCs exert no therapeutic benefit (5). 
Thus, methods to enhance MSC survival and augment their 
therapeutic capacity should improve their efficacy in clinical 
lung injury and sepsis.

Hypoxia-inducible factor-1 alpha (HIF-1α) is an important 
transcriptional regulator that controls many cellular processes 
under hypoxic conditions, and the injured lung represents a 
low-oxygen tension environment that presents a metabolic 
stress to cells introduced into that space. Prior efforts suggested 
that stabilization of cellular HIF-1α levels could increase the 
therapeutic function of MSCs in cardiac and vascular injury 
models (12–14). Consequently, we hypothesized that HIF-1α 
stabilization in MSCs would enhance their therapeutic efficacy 
in experimental lung injury and pneumonia, potentially by 
improving cell survival in the face of inflammatory, cytotoxic 
stimuli. To that end, we pharmacologically stabilized HIF-1α 
in MSCs using AKB-4924 (Aerpio Therapeutics, Blue Ash, OH, 
USA) given our previous experience with the selective potency 
of this compound (15–17).

MethoDs

isolation, characterization, and  
culturing of Mscs
Mouse MSCs were isolated from 8- to 10-week old male C57BL/6J 
mice and characterized as published before (8). MSCs were 
then cultured using MEM-alpha media (Gibco, catalog #12561) 
with 15% FBS (Gibco, catalog #12662-029) and 1% Pen/Strep/ 
l-Glutamine and used for in vitro and in vivo experiments from 
passages 5 to 10.

hif-1α stabilization in Mscs and Western 
Blotting
Mesenchymal stem cells were incubated in the presence of 
AKB-4924 in a 12-well plates for 4 and 24 h to determine the 
optimal time and concentration for HIF-1α stabilization in 
MSCs. AKB-4924 was used at 10 and 100 µM in MEM-alpha 
supplemented with 5% FBS. MSCs were then lysed and the 
protein fraction isolated, quantified, and analyzed for HIF-1α 
expression by Western blotting (see Supplementary Material for 
details). Based on the data, AKB-4924 was used at 100 µM for 
4  h on MSCs to stabilize HIF-1α in most in  vitro and in  vivo 
studies.

In Vitro Bacterial Killing studies
To determine if AKB-4924 enhances MSC killing of bacteria, 
separate assays were done with live MSCs and MSC-derived 

conditioned media in the presence of Escherichia coli (see 
Supplementary Material). Mouse cathelicidin-related antimicro-
bial protein (CRAMP ELISA, MyBioSource, catalog #MBS280706) 
was specifically measured to determine if it accounted for the 
antimicrobial effects induced by AKB-4924. Gene expression for 
CRAMP was quantified using qPCR as outlined below.

In Vitro cell Death and caspase  
3/7 activity
To measure the effect of AKB-4924 on MSC death when exposed 
to cytotoxic, inflammatory stimuli, studies were done to measure 
caspase 3/7 activity in a plate-based assay (Promega, catalog 
#G7790). TNF-α and cycloheximide were chosen as the stimuli 
since this combination resulted in the most reproducible quantity 
of cell death for MSCs, and it has been published as an in vitro 
method to model cell death in an inflammatory environment  
(18, 19) (see Supplementary Material).

rNa isolation and qpcr
In vitro studies were done to determine if AKB-4924 regulated 
expression of selected genes (CRAMP, Oct4, TWIST) in MSCs 
that could account for the observed in vitro and in vivo effects. 
RNA was isolated and qPCR was carried out using standard 
procedures (see Supplementary Material).

In Vivo E. coli pneumonia Model  
and experimental Design
All mice used for these experiments were male C57BL/6J 
(Jackson Labs) between the ages of 10 and 15 weeks of age. All 
experiments were approved by the University of California, San 
Diego (UCSD) Institutional Animal Care and Use Committee, 
and mice were housed in a UCSD facility approved by the 
Association for Assessment and Accreditation of Laboratory 
Animal Care. The general experimental design that we fol-
lowed is as previously published (5, 8) (see Supplementary 
Material).

assessment of Lung injury, inflammation, 
and Bacterial Burden
Lung injury was assessed by histological methods and scored 
using a previously published method (20). Markers of inflam-
mation and permeability were measured in the bronchoal-
veolar lavage (BAL) fluid (5, 8), and bacterial burden was 
calculated from whole lung homogenate (see Supplementary 
Material).

statistical analysis
The majority of the data is presented as mean ± SD for each group 
analyzed. An unpaired, two-sided Student’s t-test was used for 
comparisons between sets of data. For sets of data with a small 
sample size (total n  <  20), a Mann–Whitney U test was used. 
If multiple groups of data were compared simultaneously, an 
ANOVA was used. Survival data were analyzed using a log-rank 
test. A p-value <0.05 was used for statistical significance for all 
analyses.
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figUre 1 | AKB-4924 stabilizes hypoxia-inducible factor 1α (HIF-1α) in mesenchymal stem cells (MSCs) and improves MSC survival and bacterial clearance  
under in vitro conditions. Use of AKB-4924 at both 10 and 100 µM resulted in detectable amounts of HIF-1α protein in MSCs after 4 and 24 h of incubation  
(a). AKB-4924 significantly reduced caspase 3/7 activity in MSCs exposed to TNF-α and cycloheximide for 5 h [(B), **p < 0.01 for MSC + AKB vs MSC, n = 6 per 
group]. MSCs pre-stimulated with AKB-4924 exhibited enhanced bacterial clearance at 6 h [(c), **p < 0.01 when compared with MSC group, n = 4 per group] that 
may be partially due to a soluble antimicrobial factor [(D), *p < 0.05 compared with unstim group, n = 4 per group]. Cathelicidin-related antimicrobial protein (CRAMP) 
was not significantly increased in the conditioned media of MSCs pre-treated with AKB-4924 when compared with unstimulated MSCs [(e), n = 3 per group].
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resULts

aKB-4924 stabilizes hif-1α in Mscs and 
reduces Msc Death Under cytotoxic 
conditions
AKB-4924 stabilization of HIF-1α protein levels in MSCs occurred 
at a concentration of 10 or 100  µM and was readily apparent 
after 4 h incubation (Figure 1A). MSCs treated with AKB-4924 
exhibited significantly reduced cell death, as measured by cas-
pase 3/7 activity, when exposed to TNF-α and cycloheximide  
(Figure 1B).

aKB-4924 enhances the antibacterial 
capacity of Mscs
In vitro, AKB-4924 was able to significantly improve MSC-based 
reduction of viable E. coli. The effect of AKB-4924 occurred 
under both basal and TNF-α stimulated conditions (Figure 1C). 
Conditioned media from AKB-4924 stimulated and TNF-α +   
LPS stimulated MSCs demonstrated an approximate 20% reduc-
tion in viable E. coli compared with conditioned media from 
unstimulated MSCs (Figure 1D). This suggests that release of 
an antimicrobial factor into the conditioned media may account 
for part of the increased bacterial killing by MSCs that is 
induced by AKB-4924. We hypothesized that this factor may be 
mouse CRAMP given previous literature demonstrating that the 

human cathelicidin antimicrobial protein LL-37 is a potential 
transcriptional target of HIF-1α, and that human MSCs exert 
antibacterial effects via LL-37 secretion (10, 21). However, 
under the conditions utilized in this study, we did not detect a 
significant increase in CRAMP protein secretion in HIF-1α 
stabilized MSCs (Figure 1E).

aKB-4924 improves Msc-Derived 
therapeutic capacity In Vivo
To determine if the in vitro benefits with AKB-4924 described 
above translated into greater MSC-derived therapeutic 
capacity in  vivo, the experimental design using an E. coli 
pneumonia model outlined in Figure 2A was utilized. While 
both unstimulated and AKB-4924 stimulated MSCs exerted 
significant survival benefits at 72 h (Figure  2B), only MSCs 
incubated with AKB-4924 conferred sustained protection 
against mortality over the course of 7  days (Figure  2C). 
Bacterial clearance from the lung at 24  h post-infection was 
significantly impro ved with MSCs incubated with AKB-4924 
as well (Figure 2D). In addition, HIF-1α stabilized MSCs led 
to a significant reduc tion in inflammatory indices such as 
BAL myeloperoxidase (MPO) and macrophage inflammatory 
 protein-2 (MIP-2) levels 24  h after infection (Figures  2F,G, 
respectively), though there was not a significant reduction in the 
total BAL cell count (Figure 2E) or BAL albumin concentration 
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figUre 2 | AKB-4924 augments the therapeutic capacity of mesenchymal stem cells (MSCs) in an Escherichia coli pneumonia model. Following the experimental design 
outlined in panel (a), both unstimulated MSCs and MSCs pre-incubated with AKB-4924 (100 µM × 4 h) significantly improved the survival of mice at 72 h [(B), #p < 0.05 for 
MSC + AKB vs PBS, *p < 0.05 for MSC vs PBS, n = 17–20 per group], while only AKB-4924 stimulated MSCs increased survival over 7 days [(c), *,#p < 0.05 for 
MSC + AKB vs MSC and PBS treated groups, respectively, n = 17–20 per group]. AKB-4924 also significantly improved the ability of MSCs to reduce whole lung bacterial 
burden [(D), *,#p < 0.05 for MSC + AKB vs MSC and PBS treated groups, respectively, n = 5–6 per group], alveolar neutrophil influx as measured by bronchoalveolar lavage 
(BAL) MPO levels [(f), *p < 0.05 for MSC + AKB vs PBS treated group, n = 6–12 per group], and inflammation as measured by BAL MIP-2 levels [(g), *p < 0.05 for 
MSC + AKB vs PBS treated group, n = 6 per group]. Total BAL cell counts [(e), n = 5 per group], albumin concentration [(h), n = 5 per group], and cathelicidin-related 
antimicrobial protein (CRAMP) levels [(i), n = 5 per group] were not significantly changed in the BAL of mice treated with AKB-4924 stimulated MSCs. Lung injury was 
significantly reduced in both MSC and MSC + AKB treated groups, though the magnitude of improvement was greater in mice treated with AKB-4924 stimulated MSCs 
[(J,K), *p < 0.05 for MSC vs PBS treated group, **p < 0.01 for MSC + AKB vs PBS treated group, n = 8–12 per group; images taken at 2.5 and 20× magnification].
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(Figure 2H). BAL CRAMP was measured to see if it correlated 
with the reduction in bacterial burden seen in Figure  2D, 
but the increase in CRAMP observed with HIF-1α stabilized 
MSCs did not reach statistical significance (Figure  2I). The 
improvements in bacterial clearance and inflammation were 
associated with a reduction in lung injury at 48  h post-
infection, as assessed by histological methods, that was more 
pronounced in mice treated with HIF-1α stabilized MSCs  
(Figures 2J,K).

DiscUssioN

Mesenchymal stem cells have been extensively studied as a 
potential therapy for severe lung injury and sepsis and have 
shown promise in several pre-clinical models (4–11). However, 
strategies to improve the survival of MSCs in inflammatory 
environments and thus augment their therapeutic potential 
are needed. This proof-of-principle study sought to enhance 
the therapeutic potential of MSCs in experimental lung injury 
due to pneumonia by stabilizing the transcription factor HIF-
1α with the pharmacological agent AKB-4924. Results from 
this study substantiated our hypothesis by demonstrating that 
AKB-4924 improved: (a) MSC survival under in vitro cytotoxic 
conditions; (b) MSC antibacterial activity in  vitro; and (c) 
MSC-derived therapeutic capacity in vivo with reduced mortal-
ity, bacterial burden, inflammation, and lung injury. Though, it 
is interesting to note that while BAL MPO levels were reduced, 
total BAL cell counts were not in this study. This discordance 
may due to a greater effect on neutrophil degranulation as 
opposed to absolute neutrophil recruitment to the alveolar 
space. Also, the lack of reduction in BAL albumin at 24 h is not 
concordant with the other parameters measured, which may 
be because it represents a summation of permeability over the 
entire time period and is not sensitive enough to detect changes 
that develop later in the timeframe being studied. Nevertheless, 
the overall findings suggest that methods to stabilize HIF-1α in 
MSCs could be implemented in order to boost the therapeutic 
effect achieved in critically ill patients with lung injury, and are 
consistent with recent promising results in cardiac and vascular 
disease models (12–14).

Mesenchymal stem cells have been tested in several hundred 
clinical trials to date targeting a wide range of clinical diseases, 
but their clinical efficacy has not been reproducibly robust to 
date (22, 23). One of the potential explanations that has been 
suggested is the relatively short half-life of MSCs in vivo (24, 25).  
HIF-1α represents an intuitive target to augment survival of 
MSCs in lung injury applications since the injured lung is a 
hypoxic environment requiring metabolic adaptations. Recent 
studies in experimental models of ischemia-reperfusion and 
radiation-induced lung injury have shown that hypoxic precon-
ditioning of MSCs enhances their therapeutic efficacy (26, 27). 
The mechanisms demonstrated include improved MSC survival 
and antioxidant ability.

In this study, HIF-1α stabilization in MSCs with the use 
of AKB-4924 resulted in significantly improved MSC survival 
under cytotoxic conditions and MSC-derived therapeutic 

capa city in  vivo. While improving MSC survival is likely an 
important contributor to the augmented biological effect 
achieved with HIF-1α stabilized MSCs, there are other pos-
sible mechanisms to consider. We provide some preliminary 
data that HIF-1α stabilization augments the antibacterial 
property of MSCs, and it is possible that HIF-1α stabilization 
in MSCs may be boosting other biological effects of MSCs 
such as growth factor secretion and immunomodulation. We 
also tested the possibility that HIF-1α stabilization could keep 
MSCs in an undifferentiated, “stem-like” state that permits 
them to retain their reparative properties for a longer dura-
tion (28). However, screening qPCR analyses to determine 
if HIF-1α stabilization upregulated-specific genes involved 
in maintaining an undifferentiated MSC phenotype (Oct4, 
TWIST) were unable to detect a significant difference com-
pared with unstimulated MSCs (Figure S1 in Supplementary 
Material). Finally, HIF-1α stabilized MSCs may be modulating 
the survival and function of other cell types that are known to 
be present in the injured lung such as alveolar epithelial cells, 
endothelial cells, neutrophils, and macrophages. These other 
potential mechanisms remain the focus of ongoing and future 
investigations.

While we used a small molecule, AKB-4924, to stabilize 
HIF-1α in MSCs there are other potential methods that could 
be used to achieve this goal. Previous studies have used hypoxic 
preconditioning (i.e., growing MSCs under hypoxic conditions) 
to augment HIF-1α expression. In addition, genetic editing could 
be applied to MSCs in order to inactivate the prolyl hydroxylase 
enzymes responsible for HIF-1α degradation under normoxic 
conditions. However, genetic editing may carry an increased risk 
of malignant transformation of MSCs due to sustained dysregu-
lation of HIF-1α expression, particularly since HIF-1α has been 
implicated in tumor development and invasiveness (29–31). 
In this regard, the use of AKB-4924 affords the advantage of 
stabilizing HIF-1α for a defined time period that is determined 
by its own half-life. For acute inflammatory processes, such as 
lung injury due to bacterial pneumonia, even transient stabiliza-
tion of HIF-1α can lead to significant beneficial outcomes as we 
observed.

In summary, stabilization of HIF-1α in MSCs, with the use of 
AKB-4924, significantly boosts MSC-derived therapeutic capac-
ity in an E. coli model of bacterial pneumonia. Mechanistically, 
this may be due, in part, to improved MSC survival under 
cyto toxic conditions. This study and other recent publications 
suggest that strategies to stabilize HIF-1α should be incorporated 
into MSC-based clinical trials for critically ill patients with lung 
injury.
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