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Idiopathic pulmonary fibrosis (IPF) is an inexorably progressive lung disease of unknown

origin. Prognosis is poor, with limited treatment options available, and the median survival

remains just 3–5 years. Despite the use of pirfenidone and nintedanib for the treatment of

IPF, curative therapies remain elusive and mortality remains high. Regenerative medicine

and the use of cell-based therapies has recently emerged as a potential option for

various diseases. Promising results of preclinical studies using mesenchymal stem cells

(MSCs) suggest that they may represent a potential therapeutic option for the treatment

of chronic lung diseases including IPF. Encouraging results of Phase 1 studies of MSCs

various have reduced safety concerns. Nonetheless, there is still a pressing need for

exploratory biomarkers and interval end-points in the context of MSCs investigation.

This review intends to summarize the current state of knowledge for stem cells in the

experimental and clinical setting of IPF, present important safety and efficacy issues,

highlight future challenges and address the need for large, multicenter clinical trials

coupled with realistic end-points, including biomarkers, to assess treatment efficacy.

Keywords: idiopathic pulmonary fibrosis, mesenchymal stem cells, treatment, safety, efficacy

INTRODUCTION

Idiopathic Pulmonary Fibrosis (IPF) is a progressive debilitating lung disease of unknown etiology
(1–4). The disease is characterized by a combination of histological changes including extracellular
matrix (ECM) deposition, phenotypic changes of fibroblasts and alveolar epithelial cells, formation
of fibroblastic foci, and scattered areas of aberrant wound healing interspersed with normal lung
parenchyma (1, 5–14).

Current evidence suggests that the areas of fibrosis seen in lungs of patients with IPF share many
features with normal aging lung, such as genomic instability, telomere attrition, mitochondrial
dysfunction, cellular senescence, and immune dysregulation (10, 15, 16). Due to the inefficacy of
immunomodulatory and immunosuppressive agents in the past, the role of the immune system
in the pathogenesis of IPF remains poorly understood (17–22). However, highly activated and
proliferative CD4+ cells and functional impairment of T regulatory cells (Tregs) in patients with
IPF, suggest a link between immunity and pulmonary fibrosis (10, 23, 24).
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There are two approved compounds for the treatment of
IPF: pirfenidone and nintedanib. Pirfenidone is an antifibrotic
compound with an unclear mechanism of action targeting
several molecules including transforming growth factor-β (TGF-
β), tumor necrosis factor-α (TNF-α), and interleukin 6 (25).
Nintedanib is a tyrosine-kinase inhibitor, targeting vascular
endothelial growth factor receptor (VEGFR), fibroblast growth
factor receptor (FGFR), and platelet derived growth factor
receptor (PDGFR) (22).While the use of pirfenidone and
nintedanib have been shown to slow the progression of IPF (26–
28), both compounds have significant side effects and neither
is curative (28–30). Morbidity and mortality from IPF remains
high and thus there is a pressing need for alternative therapeutic
options for this complex disease (7, 31–33). The US National
Institutes of Health database lists 493 complete or ongoing
clinical trials of MSCs (34). Toward this end, regeneration and
cell therapies such as the use of mesenchymal stem cells (MSCs)
have emerged as a potential option.

MSCs are multipotent cells able to differentiate into a
number of different cell lines and exert immunomodulatory, anti-
proliferative, and anti-inflammatory effects. Their multipotency,
migratory ability, and immunoprivileged state has led to
extensive research efforts for therapeutic applications in several
diseases including cardiac ischemia (35–39), ischemic acute renal
failure (37), sepsis (40), autoimmune disorders (41), severe graft-
vs. -host disease (42), pancreatic islet and renal glomerular repair
in diabetes (43), fulminant hepatic failure (44), chronic lung
diseases (45–48), and acute lung injury (49–53) (Table 2).

MSCs are easily harvested from many tissues (peripheral
blood, adipose tissue, bone marrow, and umbilical cord) and
may be expanded in vitro with minimal modifications. MSCs
represent the most extensively studied stem cell population (54).
Research supports the immunomodulatory, anti-inflammatory,
and potentially anti-fibrotic properties of MSCs (49, 55,
56). Importantly, MSCs are “immune privileged,” lacking
expression of class II major histocompatibility complex (MHC-
II). Therefore, allogeneic use of MSCs is possible (57).

PRECLINICAL STUDIES

Recent studies on the pathophysiology of IPF suggest that
early alveolar injury activates abnormal alveolar epithelial
cells and stimulates the release of mediators including matrix
metalloproteinases and TGF beta-1 (2, 58–61). These mediators
activate cytokines and chemokines including IL-1 and IL-13
leading to the phenotype of abnormal wound healing (62–
65). Therefore, IPF is considered a complex and multifactorial
disease characterized by alveolar epithelial injury and alveolar
collapse, fewer alveolar epithelial type II cells, alveolar stem cell
exhaustion, and myofibroblast deregulation due to living on a
fibrotic matrix (66, 67).

Several experimental studies have been conducted in order to
investigate the effect of MSCs from various organs, mainly from
bone marrow with a dosage ranging between 0.1 × 106 and 4 ×
106 cells, in pathways associated with lung injury and pulmonary
fibrosis and several end-points had been set (68, 69) (Table 1).

The majority of studies recorded substantial improvement in
histopathology (56, 64, 70–82), decrease to Ashcroft score (70–
72, 77, 79, 80, 83) and lung collagen content (56, 70–81), reduced
pulmonary transforming growth factor-b (TGFb) levels (56, 70–
81, 84) and decreased BAL neutrophil count (76, 77, 80, 81,
85) following to MSCs administration. Importantly, both bone
marrow and amnion-derived MSCs reduced TGFb levels (84).
However, to this end, data are still conflicting regarding levels
of tumor necrosis factor-a (TNF-a) (56, 71, 83–85), interleukins
IL-1, IL-6 (71, 77, 81, 84, 86) and metalloproteinases MMP-2,
MMP-9, MMP-13 (56, 71, 83, 84) following administration of
MSCs (4, 87–89).

The majority of studies investigating the effect of donor
MSCs on BLM-induced pulmonary fibrosis have used young
male mouse models (90, 91). Young mice, however, undergo
spontaneous resolution of BLM-induced pulmonary fibrosis
in some studies (69, 90, 91). Although IPF is primarily a
disease of individuals over the age of 50, most studies have
also utilized young female mice to evaluate the molecular
patterns and potential therapeutic targets for patients with
IPF (92–94). Interestingly, in one study of bleomycin induced
fibrosis in mice, MSCs were found to improve survival when
compared with pirfenidone (64). This study also reported
downregulation of IL-2, IL-1b, TNF-α, and TGFβ leading to a
reduction in inflammation (64). In addition, downregulation of
MMPs was noted with a reduction in collagen deposition and
fibrosis (64).

Collectively, MSCs seem to exert pleiotropic effects in the site
of lung injury including anti-inflammatory, immunomodulatory,
antifibrotic effects (65), engagement in paracrine signaling (95),
activation of resident stem cells, and differentiation into local cell
types (56, 65, 74, 77, 79, 83, 85, 96–98). Preclinical studies have
shown MSCs to be efficacious in the treatment and prevention
of lung fibrosis (65, 69). Nonetheless, concerns remain regarding
the activity of MSCs within a pro-fibrotic microenvironment
(99–102). While some preclinical studies suggest that MSCs
might promote fibrosis, to date, no human studies have found
a similar pro-fibrotic effect (37, 42, 91, 100, 101, 103–112).

TABLE 1 | Main results of preclinical studies of mesenchymal stem cell therapy in

experimental pulmonary fibrosis based on end-points set.

End-point Outcome Studies

Histopathology Significant

improvement

(56, 64, 70–82)

Ashcroft score Decrease (70–72, 77, 79, 80, 83)

Lung collagen content Decrease (56, 70–81)

TGF-b Decrease (56, 70–81, 84)

BAL neutrophil count Decrease (76, 77, 80, 81, 85)

TNF-a Conflicting (56, 71, 83–85)

IL-1, IL-6 Conflicting (71, 77, 81, 84, 86)

MMP-2, MMP-9, MMP-13 Conflicting (56, 71, 83, 84)

Survival compared with pirfenidone Improved (64)

BAL, bronchoalveolar lavage, IL, interleukin, MMP, metalloproteinases, TGF-b,

transforming growth factor-beta, TNF-a, tumor necrosis factor-a.
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TABLE 2 | Results of clinical human studies of mesenchymal stem cell therapy.

Study Disease model Cell type Delivery and dose Safety results Efficacy results

(42) Acute graft

versus host

disease

Allogeneic BM-MSCs;

HLA matched and

mismatched

IV, 1.4 × 106 cells/kg No adverse effects reported Complete response in 30 of 55

patients. Partial response in 9 of 55

patients

(37) Myocardial

infarction

Allogeneic BM-MSCs;

Non-HLA matched

IV, 0.5, 1.6, or 5.0 ×

106 cells/kg

No difference in adverse events

compared with placebo

Decreased arrhythmic events.

Decreased PVCs. Improved

post-event ejection fraction. Improved

overall clinical status. Improved FEV1
percent predicted

(41) Refractory lupus Allogeneic BM-MSCs;

Non-HLA matched

family members

IV, 1 × 106 cells/kg No adverse events reported Improved SLE disease activity index

score. Improved 24-h proteinuria

(112) Ischemic

cardiomyopathy

Allogeneic vs.

autologous BM-MSCs;

Non-HLA matched

(allogeneic)

Endocardial, 20, 100,

or 200 × 106 cells

One patient in each arm

hospitalized for heart failure. No

statistically significant difference

in adverse events between arms

Improvement in 6MWT and QOL

index with autologous MSCs. CT

evidence of reverse LV remodeling in

both arms. Improved LV and diastolic

volumes with allogeneic MSCs

(110) COPD Allogeneic BM-MSCs;

Non-HLA matched

IV, 100 × 106 cells/

infusion Four monthly

infusions

No difference in adverse events

compared with placebo

No effect seen on frequency of COPD

exacerbation or PFTs. Decreased

circulating C-reactive protein in

patients with high baseline levels

(103) IPF ADSCs-SVF Endobronchial, 0.5 ×

106 cells/kg of body

weight in 10cc; 3

dosages over 3 months

No difference in adverse events

compared with placebo. No

ectopic tissue formation

Cell-treated patients did not

deteriorate in both functional

parameters and indicators of quality

of life

(109) IPF Allogeneic placental

MSCs

IV, 1 & 2 × 106

cells/kg; one dose

Minor and transient acute

adverse events

Stable lung function. No evidence of

worsening fibrosis

(53) ARDS Allogeneic BM-MSC IV, 1, 5, or 10 × 106

cells/kg; 3 patients per

dosage arm

No adverse events Serious

adverse events after infusion (3

patients), non-MSC related

None

(105) IPF Allogeneic BM-MSC IV, one dose: 20 × 106

(n = 3) 100 × 106 (n =

3) and 200 × 106 cells

(n = 3)

No treatment-emergent serious

adverse events. Two

non-treatment related deaths

due to progression of IPF

(Exploratory results): 3.0% mean

decline in % predicted FVC and 5.4%

mean decline in % predicted DLCO

(113) IPF ADSCs-SVF Endobronchial, 0.5 ×

106 cells/kg of body

weight in 10cc; 3

dosages over 3 months

No difference in adverse events

compared with placebo.

No ectopic tissue formation

Median overall progression-free

survival 26 months. Median overall

survival 32 months. All patients alive

for at least 2 years after first

administration

ADSCs-SVF, autologous adipose derived stromal cells-stromal vascular fraction; BM-hMSCs, human bone marrow-derived mesenchymal stem cells; IPF, Idiopathic pulmonary fibrosis;

PD-MSCs, placenta-derived mesenchymal stem cells.

CLINICAL TRIALS

Early clinical studies of MSCs in patients with IPF have shown

promising safety profiles (30, 103, 114). Phase 1 clinical trials

have been conducted for safety of MSC therapy. A phase
Ib study of endobronchially administered autologous adipose-

derived MSCs showed not only acceptable safety outcomes,
but also improvements in quality of life parameters (103).

The recently published longitudinal outcomes of this study

also demonstrated an acceptable safety profile, 100% survival
rate 2 years after first administration and a median overall
progression-free survival of 26 months (113). Furthermore,
studies of intravenously administered placental derived MSCs
(105, 109) found that administration of up to 2 × 106 cells
per kilogram was safe in subjects with moderately severe
IPF (109). Importantly, the authors reported only minor and

transient alterations in peri-infusion hemodynamics and gas
exchange, reducing the concerns for embolization of stem cells
to an already compromised pulmonary vasculature. Subjects
were followed for six months with no observed decline in
forced vital capacity (FVC), diffusing lung capacity for carbon
monoxide (DLCO), six-minute walk test (6MWT), or CT fibrosis
score (90). The AETHER trial also showed favorable safety
outcomes for the intravenous delivery of a single dose of
allogeneic MSCs in patients with IPF up to 2 × 108 cells (105).
Although this was an underpowered study for the detection
of significant changes in functional indices, the mean decline
in % predicted FVC and DLCO were below the thresholds for
disease progression (1, 115). ReCell, an FDA approved phase
1b multidose, randomized, double-blind trial of 10 × 106 cells
delivered intravenously to patients with IPF, has not yet begun
enrollment.
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OUTSTANDING CHALLENGES

While it now appears that it is safe to use MSCs in patients with
IPF, many questions and challenges remain. In the preclinical
realm, there is a need for animal models more representative
of chronic IPF (91, 116) for the continued study of how MSCs
exert their effects. Bleomycin induced pulmonary fibrosis is
still considered the best available animal model for preclinical
testing (91, 117). However, there is increasing criticism that
potential therapies usually administered the first 7 days following
bleomycin exposure may act mainly through prevention of
the inflammatory cascade rather than reversal of fibrosis, thus
limiting their applicability to human IPF (69). First, improved
animal models will enable the identification of biomarkers that
may be useful as measures of disease activity and/or treatment
effect. Second, the timing of treatment for best effect needs to
be better elucidated. Furthermore, the most efficacious source of
MSCs and the role of age need to be more fully explored. One
report suggesting that adipose-derived MSCs from young, but
not old, mice prevent bleomycin induced lung fibrosis in an aged
mousemodel (118) highlights the need for further research in this
area.

Several challenges in the clinical setting also remain to be
addressed. The optimal source of MSCs, the best route of
administration, the number and timing of administrations, and
the appropriate dosing interval. Thus, allogeneic human bone
marrow-derived and autologous adipose derivedMSCs have been
the most studied in the context of IPF. There are limited studies
on endogenous stem cells from the lungs of patients with IPF and
concerns remain surrounding the risk of biopsy and the potential
for intervention-induced IPF exacerbation and the possibility of
detrimental effects on lung function from biopsy. Lung tissue
obtained at the time of lung transplant remains the best tool for
study.

It is also critical to characterize appropriate endpoints to
assess treatment effectiveness in these patients (100, 119–129).
Molecular biomarkers would be the optimal choice for the
assessment of cell based therapies. Finally, well-designed and
meticulously conducted multicenter randomized clinical trials of
MSCs for the treatment of IPF are needed to assess efficacy.

MOVING FORWARD

While preclinical trials suggest that MSCs may be effective
in the treatment of IPF, and early clinical trials suggest that
they are likely to be safe in the population, insufficient data
exists at this time to definitely state that the use of MSCs for
the treatment of IPF is either safe or efficacious. Despite this
lack of evidence, cell based therapies are being aggressively
marketed to this vulnerable patient population. A recent study
found that as of August of 2016, there were at least 351
stem cell related businesses registered in the United States.
These sites offer unproven, experimental treatments for a
wide variety of conditions (130, 131). In the case of IPF,
desperate patients and their physicians continue to succumb to
an onslaught of marketing and branding of as yet unproven
“stem cell” treatments. Unfortunately, these businesses are also

almost wholly unregulated (132). Publication of case reports
of harm arising from the misuse of unproven treatments
support increased government oversight in the interest of patient
safety.

CONCLUSION

Idiopathic Pulmonary Fibrosis (IPF) is a debilitating lung disease
characterized by a progressive decline in lung function ultimately
resulting in death. The lack of curative treatments for this
disease has created an urgency for other potential therapeutic
options. Preclinical studies suggest that because MSCs have
immunomodulatory, anti-inflammatory, and potentially anti-
fibrotic properties, they may be efficacious in the treatment
of IPF. Early clinical trials have shown that MSCs may be
safely administered to patients with IPF, but large multicenter
randomized trials still need to be performed.
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