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The structure of red blood cells is affected by many inborn and acquired factors, but

in most cases this does not seem to affect their function or survival in physiological

conditions. Often, functional deficits become apparent only when they are subjected

to biochemical or mechanical stress in vitro, or to pathological conditions in vivo. Our

data on the misshapen red blood cells of patients with neuroacanthocytosis illustrate

this general mechanism: an abnormal morphology is associated with an increase in

the susceptibility of red blood cells to osmotic and mechanical stress, and alters their

rheological properties. The underlying mutations may not only affect red cell function,

but also render neurons in specific brain areas more susceptible to a concomitant

reduction in oxygen supply. Through this mechanism, an increased susceptibility of

already compromised red blood cells to physiological stress conditions may constitute

an additional risk factor in vulnerable individuals. Also, susceptibility may be induced

or enhanced by systemic pathological conditions such as inflammation. An exploration

of the literature suggests that disturbed red blood cell function may play a role in the

pathophysiology of various neurodegenerative diseases. Therefore, interventions that

reduce the susceptibility of red blood cells to physiological and pathological stress may

reduce the extent or progress of neurodegeneration.
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INTRODUCTION

The statement that a healthy red blood cell is essential for organismal homeostasis may sound
as a truism, but this depends on the functional definition of a healthy red blood cell. There are
many genetically determined, structural abnormalities in the hemoglobin chains that, in most
circumstances, do not affect red blood cell integrity and do not seem to affect transport of oxygen
binding and release in lungs and tissues, respectively (1). Also, many obvious deviations of the
classical discoid red blood cell shape, due to inborn errors in integral membrane proteins and
cytoskeletal components, have no obvious clinical implications (2). In addition, there are hardly
any data indicating that physiological aging in vivo or in vitro during storage in the blood bank has
a notable effect on oxygen supply of the tissues and carbon dioxide removal (3).

The gas transport capacity of red blood cells is not only determined by the characteristics of
hemoglobin, but also by the capacity to regulate intracellular pH, deformability, ATP production,
redox status, resistance to osmotic and mechanical stress, and recognition and removal by the
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immune system. The role of most of these processes emerges
mainly upon recognition of their putative involvement in
pathophysiological mechanisms, and in most cases their
molecular details become clear only after detailed study
in vitro.

The absence of conspicuous clinical consequences, such as
hemolysis and anemia, of many structural and functional flaws
under physiological circumstances indicates that the red blood
cell has considerable reserves to maintain structure and function.
The limits of these reserves, in addition to the resilience provided
by the erythropoietic system, may be reached when red blood
cells are exposed to pathological processes, such as inflammation
(4). Errors that are inborn or flaws that are acquired in the
circulation in critical structural, functional, or metabolic red
blood cell components are likely to increase the rate at which
the weakest links in these defenses are breached. For example,
a decrease in the capacity to maintain phospholipid asymmetry
increases the likelihood of recognition by macrophages, that is
mediated by the exposure of phosphatidylserine (PS) in the outer
leaflet of the red blood cell membrane. Aging renders red blood
cells more susceptible to PS exposure after osmotic stress (5, 6).

Here we explore the boundaries of these reserves, how
they may be breached, and their pathological implications. The
starting point of this exploration is the complex of structural
and functional characteristics of the aging red blood cell, that
was the foundation of our study of the misshapen red blood
cells that accompany the neurological problems of patients with
neuroacanthocytosis.

RED BLOOD CELL AGING

Physiological aging in vivo, as well as aging in vitro during
storage in the blood bank, induces changes in the red cell
membrane (7), in the activity of the main metabolic pathways
(8, 9), and in hemoglobin (10). These changes not only
affect function by decreasing deformability (11, 12), but also
lead to the appearance of signals that trigger recognition
and removal by the immune system. Especially the latter
process is induced by the conditions that the cells normally
encounter in their journey through the circulation, such as
mechanical stress, oxidation and hyperosmotic conditions (5,
13, 14). A number of pathological conditions may trigger
the same changes, as exemplified by the detrimental effects
of inflammatory lipases on red blood cell structure and the
association between inflammation and anemia (4, 15). Thus,
the biophysical, biochemical, immunological, and functional
characteristics of the healthy, aging red blood cell provide us
with the tools to study the red blood cell structure-function
relationship in a clinically relevant context.

NEUROACANTHOCYTOSIS

Neuroacanthocytosis (NA) is a family of rare neurodegenerative
disorders, that includes chorea-acanthocytosis, McLeod
syndrome, Huntington’s disease-like 2, and panthothenate

kinase-associated neurodegeneration. Patients with NA suffer
from devastating movement disorders, caused by degeneration
of spinal neurons in the basal ganglia. One hallmark of
NA is the presence of acanthocytes, red blood cells with
thorny protrusions, in the blood, but detailed morphological
analysis shows the presence of many other misshapen red
blood cells as well (16, 17). The presence of acanthocytes
is mostly considered as an indication that the pathways
that lead to the red blood cell abnormalities are the same
as those involved in neuronal degeneration. The molecular
similarities between the putative mechanisms inducing
acanthocytosis in red blood cell membrane organization
and in neurodegeneration in patients with NA have been
discussed extensively (18, 19).

In patients with NA, the degree of acanthocytosis may vary
over time. There are no clues for the identity of the processes that
might cause a transition of mature discocytes to acanthocytes.
A recent inventory of the available data has led us to the
hypothesis that red blood cells with an acanthocyte shape may
already be present in the final stages of erythropoiesis, and
appear into the circulation as such (20). This is supported by the
observation that an artificially induced, long-term disturbance
of red blood cell membrane architecture had a lasting effect on
erythropoiesis and caused the appearance of acanthocytes in the
circulation (21).

Recent applications of various combinations of
immunochemical, (phospho) proteomic, lipidomic and
metabolomic approaches have provided indications for
the mechanisms responsible for the acanthocyte shape. In
acanthocytes, Lyn kinase-mediated phosphorylation and
phosphatidylinositol-involving signaling pathways show altered
activities. These pathways regulate the interaction between the
main cytoskeletal and integral membrane proteins, and may be
involved in autophagy during erythropoiesis (19, 20, 22, 23). As
a band 3 plays a central role in multiprotein complex formation
during erythropoiesis (24), disturbance of this process is likely to
affect the stability of the binding of the cytoskeleton to the band
3-based ankyrin-complex and/or the junctional complex. A band
3-centered disturbance of this binding leads to various abnormal
cell shapes, varying from spherocytosis to ovalocytosis and
acanthocytosis (2, 25). Therefore, the processes that are affected
in NA must have very specific, but a yet unknown characteristics
in order to induce the characteristic acanthocyte shape. Band 3
does not only provide high-affinity binding sites for the actin-
spectrin cytoskeleton, but also for deoxyhemoglobin and for key
enzymes of the glycolytic enzyme complex. This interaction plays
a regulatory role in red blood cell metabolism and function (26).
Metabolomic analyses indicate that NA-associated alterations
in band 3-centered protein-protein interactions may also
affect the metabolism of red cells (16). The effect of the latter
changes on red blood cell survival or function are presently
unclear.

Clinical descriptions of patients with NA focus on the
neurological symptoms, and in general do not provide
clear indications for NA-specific red blood cell dysfunction.
Measurement of deformability and relaxation in vitro shows
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that acanthocytes from NA-patients assume a normal bullet-like
shape when passing through a microfluidic., capillary-mimicking
system, and relax toward their original shape as quickly as
cells with a normal morphology. However, acanthocytes
have difficulties when passing through a spleen-mimicking
device in vitro (16). Also, the misshapen red blood cells of
NA patients show a decreased deformability as well as an
abnormal aggregation behavior (Figure 1). Together, these
data constitute strong indications for an altered rheology and
decrease in deformability, that may not only be responsible
for the splenomegaly and hemolysis described in patients
with McLeod disease as well as in a patient with acanthocyte-
associated band 3 mutations (18, 28), but may also contribute to
the neurological problems (see below).

The abnormal cytoskelon/membrane associations that
underly genetically determined alterations in red blood cell
morphology are, in general, associated with a decreased
deformability in vitro (12, 29). Decreased deformability is,
in most cases, associated with a decrease in hematocrit and
in hemoglobin concentration in vivo. Even at subclinical
levels, these may not only induce an increased susceptibility
to red blood cell-centered pathology, as exemplified by the
anemia of aging (30), but also hypoperfusion and thereby
hamper oxygen delivery. In the brain, deprivation of oxygen

leads to excessive glutamate release and NMDA-receptor
activation-induced neuronal cell death. The latter is stimulated
by Lyn-related kinases, that are also implied in acanthocyte
formation during erythropoiesis and neuronal dysfunction
in vitro (23, 31). These data, together with sporadic clinical
observations, led us to the hypothesis that, in patients
with neuroacanthocytosis, the compromised function of
acanthocytes and otherwise misshapen red blood cells
contributes to the neuronal degeneration in the striatum
(20). The most likely underlying mechanism would be a
decrease in red blood cell rheology, resulting in a restricted
perfusion of sensitive brain areas. More subtle metabolic
effects of alterations in cell morphology on oxygen binding
or release by hemoglobin may play a role as well. The
former mechanism may primarily be caused by defective
cytoskeleton-membrane interactions, the latter by defective,
membrane-centered regulation of pH, ATP production, and/or
redox status.

An etiological role of acanthocytosis has been postulated
in the damage to the globus pallidus and development of
choreoathetosis as rare complications of cardiopulmonary
bypass during open-heart surgery, especially in young children
(32). In this hypothesis, the mechanical stress exerted by the
extracorporeal circulation system constitutes a mechanical

FIGURE 1 | Deformability and aggregation of red blood cells from patients with neuroacanthocytosis. Red blood cells were isolated from patients with

neuroacanthocytosis as described before (16), and their morphology, aggregation and deformability were compared with those of a healthy control donor.

(A) Bright-field microscopy of the red blood cells of one patient (0.1% hematocrit in phosphate-buffered saline), showing acanthocytes (arrowhead) and otherwise

misshapen red blood cells (arrow); (B) Bright-field microscopy of the red blood cells of a healthy control donor (1% hematocrit in plasma), showing aggregates mostly

as rouleaux after 2 to 3min of incubation at room temperature; (C) Bright-field microscopy of red blood cells of an acanthocytosis patient showing smaller rouleaux

and much more disordered aggregates; (D) Syllectograms of the red blood cells of a healthy control donor and two neuroacanthocytosis patients obtained in 40%

hematocrit in plasma, showing altered aggregation characteristics of the patients’ red blood cells; (E) Deformability curves of the red blood cells of one healthy control

and two neuroacanthocytosis patients, showing a lower maximum elongation index (EI) in the patients’ red blood cells. Aggregation and deformability were measured

using a Lorrca (RR Mechatronics, Hoorn, The Netherlands) as described before (12, 27).
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trigger that, in combination with hypothermia, spleen
dysfunction, and/or altered pH regulation, may lead to the
formation of misshapen red blood cells with a decreased
deformability and to a hampered oxygen supply to the
brain. A similar phenomenon may underlie the neurological
problems following coronary-artery bypass surgery (33), and
the higher risk of postoperative cognitive dysfunction in
patients with diabetes (34). In most cases, the “postpump”
chorea is transient (32). However, in NA patients a chronic
acanthocytosis might lead to a chronic deficit in oxygen
supply and thereby to a more severe and progressive
neurodegeneration.

RED BLOOD CELLS AND
NEURODEGENERATION

This hypothesis provided an additional trigger to explore the
literature for indications that abnormal red blood cell function
may be an etiological factor in neurodegeneration.

Acanthocytosis
Acanthocytes are present in patients with disorders
of lipid metabolism such as abetalipoproteinemia and
hypolipoproteinemia. However, these patients do not have
any signs of NA-like neurodegeneration, and their red blood cells
have a different molecular phenotype (25, 35). Acanthocytosis
has been described in patients with aceruloplasminemia, and
anemia has been reported to precede neurological symptoms
in almost all patiens with this defect in copper transport and
iron metabolism (36, 37). These data indicate that acanthocyte
generation may be due to various causes, and that the functional
properties of at least some types of acanthocytic red blood cells
may contribute to the development of specific neurological
deficits.

Anisocytosis
Abnormally shaped red blood cells display an increased
heterogeneity in cell volume, due to impaired erythropoiesis or
to excessive fragmentation or destruction. This heterogeneity,
expressed as an increase in red blood cell distribution width
(RDW), is associated with ischemic cerebrovascular disease (38),
with increased odds of having dementia (39), with Alzheimer
disease (40), and with the severity of leukoaraiosis (41). In related
studies, we found indications for disturbed red blood cell aging,
which is associated with changes in cell morphology, in patients
with beginning demantia (42). Also, abnormal red blood cells
were reported to be associated with cognitive performance in a
large longitudinal aging study (43). Such associations may reflect
the expression at different organs of a common pathological
process. Alternatively, the abnormally shape of red blood cells
in individuals with an increased RDW is likely to affect not
only cellular deformability and thereby oxygen delivery (29),
but may also be an indication for impaired red blood cell
signaling-mediated vasodilation by NO, ATP and adenosine (44).
In addition, correlations between RDW and sedentary behavior,

and between RDW and muscle strength suggest that RDW may
be a component of frailty in the elderly (45).

A closer look at red blood cell abnormalities in patients
with various neurodegenerative diseases yields indications
for abnormal cell morphology and/or red cell function in
patients with Huntington’s disease (46–48), Parkinson’s disease
(49), and Alzheimer’s disease (50). These abnormalities may
reflect peripheral phenomena of the major neurodegenerative
mechanism, as indicated by the increased concentration of
the PARK7-coded protein DJ-1 in red blood cells of early-
stage Parkinson’s disease patients (51) or by the alfa-synuclein
levels in red blood cells with Parkinson’s disease (52).
Independent of the underlying mechanisms, the effects of
these abnormalities on red blood cell function may constitute
a risk factor, as has recently be argued for Alzheimer’s
disease (53).

Red Blood Cell-Centered Diseases and
Neurological Problems
Various red blood cell-centered diseases have been reported
to be associated with neurological problems. In patients with
sickle cell disease and thalassemia, impaired cognitive and
neuropsychological functioning are likely due to inadequate
oxygen supply in the frontal, parietal and temporal lobes (54–
56). In these hemoglobinopathies, decreased deformability and
increased aggregation are likely to be the primary causes of
the neurological problems. Also, some hereditary red blood cell
enzymopathies that are accompanied by hemolytic anemia are
associated with neurological problems (57). The lattermay be due
to the expression of the same mutated genes in the brain and in
hematopoietic stem cells, but also to a functional impairment of
the mature red blood cells.

In addition, treatment of anemia with red blood cell
concentrates, especially in transfusion-dependent patients, may
pose its own problems due to its effect on perturbed iron
homeostasis, also in the brain [e.g., (58)]. Themolecular interplay
between red blood cell homeostasis, chronic transfusion and
brain pathology remains to be established.

CONCLUSIONS

The data presented here indicate that physiological and
pathological circumstances may affect red blood cell function,
especially by diminishing their capacity to withstand
pathophysiological stress conditions. In other words, in
normal conditions, the characteristics of aging, stored, and
genetically affected red blood cells may have only subclinical
consequences. However, during periods of stress, for example
during inflammation, already compromised cells may become
less deformable, more fragile, or more prone to recognition by
the immune system.

Our data on acanthocytosis illustrate that an abnormal red
cell structure increases the susceptibility of the misshapen red
cells to mechanical stress and alters their rheological properties.
The underlying mutations may not only affect red cell shape
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and function, but also render neurons in vulnerable brain
areas more susceptible to a concomitant reduction in oxygen
supply.

Thus, interventions that reduce the susceptibility of red
blood cells to pathological as well as physiological stress
conditions may reduce the extent and/or progression of
neurodegeneration.
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