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Over the past decade, we have witnessed an exponential growth of interest into the role

of endothelial progenitor cells (EPCs) in cardiovascular disease. While the major thinking

revolves around EPC angiogenic repair properties, we have used a hypothesis-driven

approach to discover disease-related defects in their characteristics and based on these

findings, have identified opportunities for functional enhancement, which offer an exciting

avenue for translation into clinical intervention. In this review, we focus on two groups;

circulatingmyeloid angiogenic cells (MACs) and late outgrowth endothelial colony forming

cells (ECFCs), and will discuss the unique properties and defects of each population,

as new insights have been gained into the potential function of each sub-type using

current techniques and multiomic technology. We will discuss their role in inflammatory

disorders and alterations in mitochondrial function. In addition, we share key insights

into the glycocalyx, and propose this network of membrane-bound proteoglycans and

glycoproteins, covering the endothelium warrants further investigation in order to clarify

its significance in ECFC regulation of vascularization and angiogenesis and ultimately for

potential translational therapeutic aspects.

Keywords: endothelial progenitor cells, glycocalyx, cardiovascular, mitochondrial function, inflammation, lupus,

rheumatoid arthritis, diabetes

ENDOTHELIAL DAMAGE AND REPAIR IN HIGH-RISK DISEASE
CONDITIONS

Endothelial Damage
Endothelial dysfunction is a preceding factor in the development of cardiovascular disease, with
vascular damage leading to atherogenesis, and plaque formation (1). Endothelial damage may
be mediated by a number of biological stimuli, such as inflammatory mediators, and hypoxia
(2). Indeed, many conditions characterized by inflammation, of either a chronic or transient
nature, are associated with a high risk of endothelial dysfunction. These “high risk” conditions
include autoimmune diseases such as systemic lupus erythematosus (SLE) (3) and rheumatoid
arthritis (RA) (4), as well as chronic conditions such as type 2 diabetes mellitus (T2DM) (5). The
association between cardiovascular and autoimmune disease has been recognized for a number
of years (6), where it is known that cardiovascular risk in young women with SLE is increased
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50 fold (7, 8). These patients experience endothelial dysfunction
prior to accelerated subclinical atherosclerosis, possibly due to
the sustained activation of the immune response, including
production of pro-atherogenic hormones and immune
complexes (9), and research has shown that endothelial
progenitor cells (EPCs) are likely to play a role in this process
(10). In addition, T2DM patients likewise experience endothelial
dysfunction due to the accumulation of advanced glycated
end products, oxidized low density lipoprotein (oxLDL),
and oxidative stress, making the diabetic patient prone to
atherogenesis, and increased cardiovascular risk (5), with recent
evidence suggesting this could be influenced by a decrease in the
number and function of EPCs (11).

Endothelial Homeostasis and Repair
EPCs are important for vascular homeostasis and repair, where
differences in their number and function in health and disease
are apparent (12). It is well recognized that during stress
or endothelial activation, EPCs can be mobilized, with their
numbers being increased in the circulation (13). Growing
evidence suggests that EPCs could be a link between a defective
homeostatic or endogenous repair mechanism and vascular
dysfunction (14) and in this regard could have a future impact
as a biomarker of atherosclerosis and vascular disease (15).
Characteristics of the late outgrowth endothelial colony forming
cell (ECFC) phenotype, including cell-surface markers necessary
for adhesion to the vascular endothelium, and their angiogenic
capacity, support the suggestion that ECFCs are a key sub-
population of EPCs involved in vascular repair (16, 17). Tissue
injury studies in animal models have demonstrated mobilization
and migration of EPCs from the bone marrow niche, followed
by homing to the site of vascular damage, where they modulate
repair through angiogenesis, neovascularization, and endothelial
cell replenishment, all of which has been elegantly reviewed
elsewhere (18, 19). Although the evidence for the role of EPCs
in atherosclerosis has met with some discrepancy, it is likely
due to differences in the particular EPC phenotype investigated,
their distinctive functional effects, as well as initiating factors
triggering their action. A recent report used EPCs, defined by
their combined expression of CD34+, CD133+, and KDR+, and
demonstrated an association between a high EPC count with less
coronary plaque burden of a stented vessel segment, which adds
to previous findings of their protective role in atherosclerosis
(20). In addition, it has been reported that factors released from
atherosclerotic plaques ex vivo, induce, not only mobilization of
EPCs, but also EPC expression of angiogenic factors (21).

In parallel, there is evidence that MACs are also of
utmost importance in their contribution to angiogenesis, tissue
regeneration and endothelial repair (22, 23), where these
precursor cells exert paracrine and trophic effects that influence
the host microenvironment (24, 25). The following sections
will describe mechanisms underpinning vascular dysfunction in
inflammatory conditions with high risk of cardiovascular disease
(CVD) and consider potential therapeutic options aimed at
improving progenitor cell reparative function (26, 27) as a novel
approach to exploit endogenous repair processes.

DEFECTIVE EPCS IN AGING AND
DIABETES

Aging
It would appear that numbers of circulating ECFCs reduce
over time, such that older volunteers are found to have fewer
ECFCs than their younger counterparts (28, 29). This is mirrored
in coronary heart disease, reinforcing the connections between
ECFC dysfunction, aging, and cardiovascular risk (28). However,
there are also reports that bone-marrow derived progenitor cell
numbers remain stable, suggesting that, in some cases, the decline
in reparatory ability may be due to cellular impairments, in their
homing, angiogenic capacity or their propensity for senescence
and premature cell death (28, 30, 31). Studies have shown that late
ECFCs from elderly volunteers demonstrate impaired migration,
proliferation and adhesion properties compared to those from
young participants (29, 32, 33), and show a reduced capacity
for re-endothelialization and incorporation into a damaged
vasculature (29).

ECFCs isolated from older individuals develop a decline
in their response to signaling pathways. Among the many
mechanisms that may underpin the impaired function of EPCs
in disease, our own studies have demonstrated a reduction in
6-O-sulphation of heparan sulfate in aging ECFCs, suggesting
the glycocalyx may play a role in the aging decline of vascular
health (33). In addition, Kushner et al. report that ECFCs from
older subjects, compared to their younger counterparts, have an
increased sensitivity to apoptotic stimuli and demonstrate an
increased level of intracellular caspase-3, along with accelerated
senescence, which was linked to a loss of telomerase, and a
pro-thrombotic phenotype (34). Xia et al. have shown altered
CXCR4/JAK signaling in the elderly is linked to a reduced
capacity for ECFC homing and re-endothelialization (29), which
may concordantly induce anti-atherosclerotic EPC activity and
up regulate expression of vascular endothelial growth factor
(VEGF) receptors, as discussed elsewhere (35). Interestingly,
Heiss et al. found increased concentrations of VEGF in the blood
of older individuals although ECFC responses to the protein were
muted (32, 36, 37), thus implying an increased effort to mobilize
ECFCs and effect vascular repair (32).

Studies have been carried out with MACs also, where young
patients with type 1 diabetes mellitus have shown significantly
higher levels of MACs compared to adult patients, and where a
direct correlation was found between MAC number and disease
duration, when greater than 10 years (38). The authors propose
that the high levels of MACs in the young patients might protect
vessels against endothelial dysfunction and damage and such
protection would be less effective in older subjects, who had
lower EPC numbers (38). In addition, older MACs were shown
to be more susceptible to oxidative stress due to reduced activity
of antioxidant proteins such as GPX1, thus rendering them
vulnerable to apoptosis (38, 39).

Diabetes
As with aging, T2DM is associated with a reduction in
circulating ECFCs, and also shows an impaired VEGF-driven
mobility (38, 40–42), as well as major deficits in vital functions
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such as differentiation and proliferation. The effects of a
hyperglycaemic environment on ECFC number and function
are comprehensively reviewed by Kang et al. (43). Furthermore,
the reduced numbers of ECFCs in T2DM have been associated
with poor glycaemic control, and increased arterial stiffness
(41). Hyperglycaemia may also enable uncoupling of intracellular
eNOS, rendering ECFCs susceptible to ROS and further
migratory incapability (42), although of note, function can be
restored following improved glycaemic control (40), indicating
the potential for lifestyle and therapeutic options to improve
vascular repair. This is particularly important in terms of
peripheral vascular disease and poor wound healing, which
often results in diabetic foot ulceration and amputation (44).
The severely diminished ECFC number and function, which
is apparent in T2DM, also correlates to the prevalence of
atherosclerosis in the lower limbs (44, 45). In this case, the
ECFCs demonstrate impaired clonogenicity and adhesion (45),
which, when coupled with impaired homing, may contribute
to the delayed wound healing observed in diabetes. As an
added complication in a diabetic microenvironment, ECFCs
appear to concurrently undergo a pro-calcific shift, expressing
osteocalcin, and bone alkaline phosphatase, thus promoting the
drive toward vascular calcification, which is so prevalent in
diabetic vasculopathy (46). This phenomenon renders ECFCs not
only important in endothelial dysfunction, but also in smooth
muscle cell osteogenic differentiation.

MECHANISMS OF EPC DYSFUNCTION IN
AGING AND DIABETES

EPCs and the Glycocalyx
Previous research by our group supports the theory of a decline in
function with age, where we demonstrated structural changes in
heparan sulfate within the glycocalyx of aged ECFCs, compared
to those isolated from younger volunteers and cord blood. Our
findings also demonstrate an association with reduced sensitivity
to VEGF (33). Since heparan sulfate is indeed a ligand for VEGF,
we suggest that aged ECFCs may be less sensitive to damage
signals through reduced protective/reparative ligand-binding
(33, 38, 47). Impairments in syndecan 4, another member of
the heparan sulfate proteoglycan receptor family and involved
in SDF-induced cell migration, has been shown to contribute to
impaired ECFC function. The extracellular domain of syndecan
4 is shed from the cell surface of ECFCs in response to ROS-
induced accumulation of advanced glycation end products,
leading to impaired migration of the syndecan4 deficient ECFCs
(48).

In other cell types, the glycocalyx also has a role in immune
regulation, mediated by the binding of complement factor H to
specific, age-related alterations in the sulphation patterning of
heparan sulfate (49, 50). Furthermore, these age-related changes
that we have identified in the glycocalyx of ECFCs (33, 49) could
be caused by the accumulation of metal ions, including cadmium
within the matrix, resulting in ROS-mediated damage to the
glycocalyx, and mitochondrial dysfunction (51), however links

between metal ions and ECFC regulation remain to be further
investigated.

EPCs and Mitochondria
EPCs have previously been demonstrated to form cell-to-
cell connections and, via tunneling nanotubes (TNT), transfer
mitochondria and other organelles to endothelial cells. This TNT
mitochondrial transfer can rescue senescent endothelial cells and
change cell fate (52, 53). Further details of TNT mitochondrial
trafficking in health and disease can be found in other reviews
(54, 55). The energy required for the normal function of
most endothelial cell phenotypes is primarily by glycolysis,
however, the energy requirements for repair and angiogenesis
are considerable and thus require the activation and proliferation
of mitochondria (56, 57). In light of this role in angiogenesis,
mitochondria are key integrators of environmental and disease
signals (58), and they are crucial to the mechanism underpinning
many other factors that influence EPC behavior discussed in this
review. For example, among the many cellular processes which
influences mitochondrial function and metabolic homeostasis
are different shear stress conditions (58), in both mediating and
also causing inflammatory responses (59, 60) and in diabetes
(61). Of note, we have recently identified impaired angiogenic
function and altered mitochondrial activity in ECFCs isolated
from patients with diabetes and foot ulcers (62).

There is also a dynamic interplay between mitochondrial
function, the glycocalyx and extracellular cell matrix; for
example, the glycocalyx can be damaged/changed by ROS
produced in the mitochondria (63) in certain conditions, while
the stiffness of the matrix can also affect mitochondrial function
in other cases (43, 64). Although many of these mechanisms
have not been demonstrated in EPCs it is likely they also have
a role, however, further work is warranted to enhance our
understanding of the complex interplay between EPC function,
the glycocalyx/matrix, mitochondria, and other disease and aging
stimuli.

EPCs and Shear Stress
CD31, or platelet endothelial cell adhesion molecule-1 (PECAM-
1), is a 140kDa type I integral membrane glycoprotein often used
as a marker of EPCs as well as the more mature endothelial
cells and is known to play various roles in vascular biology,
including angiogenesis, platelet function, and thrombosis. It is
also a mechanosensor of the endothelial cell response to fluid
shear stress. It is thought that ECFC filopodial processes may
play a role in cellular communication, and regulating cell to cell
contact by allowing a sensory response to circulatory or sheer
stress. Further work is required to gain insight into the effects of
sheer stress onMAC and ECFC function. Enhanced signaling and
re-endothelialization has been shown to be restored in elderly
ECFCs, following shear stress treatment (29). However, there
is little understanding of the influence of flow stress changes
within the glycocalyx and extracellularmatrix and how thismight
influence MAC or ECFC behavior, providing the impetus for
further studies into novel mechanobiological studies of how these
cells respond to changes in physiological or turbulent flow.
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PROGENITOR CELL IMPAIRMENTS IN
INFLAMMATORY RHEUMATIC DISEASES

Rheumatoid Arthritis
Reports pertaining to progenitor cell numbers in autoimmune
rheumatic conditions are conflicting due to the different
methods of progenitor cell characterization and patient inclusion
criteria used by various groups. While some studies suggest
a decrease in CD34+ cells in rheumatoid arthritis (RA) (65),
other studies demonstrate increased levels (66), or indeed
no change at all in number (23). Although reports of EPC
number in RA are inconsistent, low levels of CD34+/KDR+

cells have been associated with carotid atherosclerosis in patients
(67), suggesting that a reduction in number may be more
representative of vascular dysfunction than inflammatory activity
(68). Furthermore, it has been suggested that ECFC depletion
is associated with disease progression, as patients experiencing
long-term disease appear to show a decline in ECFC numbers,
regardless of age, compared to those with recent disease onset,
whose ECFC numbers match those of healthy participants (69).
Although discrepancies exist in respective RA studies because of
differences in MAC and ECFC isolation methods (70), including
their seeding density, the matrix used for coating culture dishes,
the markers in use for characterization, and the potential
variances in drug regimens of study participants before isolation
of their cells, it is clear that both MACs and ECFCs do have
potential to act as targets for therapeutic improvement in disease
(68).

Systemic Lupus Erythematosus
Patients with systemic lupus erythematosus (SLE) have an
elevated vascular risk due to an early onset of atherosclerosis,
which appears to be independent of traditional CVD risk factors
and associated with an altered interferon-α (IFNα) signaling
pathway. It has been shown that IFNα alters the balance between
endothelial cell apoptosis and vascular repair which is governed
by both ECFCs and MACs (71, 72). When focusing on CD34+

cells, it becomes clear that the majority of studies find decreased
levels of circulating MACs in SLE patients (68). A reduction
in numbers of CD34+/KDR+ MACs in SLE patients, has been
attributed to increased apoptosis, which is also reported in
patients with stable disease in remission, supporting the proposal
of chronically decreased levels throughout the disease, rather
than solely during a disease flare (73). Moonen et al. described
MACs with unusual morphology (74), while Denny et al. found
decreased ability to express pro-angiogenic cytokines such as
VEGF (75), which they correlated with impaired VEGF-driven
migration (76), and was supported by a subsequent study in
our group by Williamson et al. (33). SLE ECFCs have also been
shown to have fundamental impairments in critical functions
such as colony forming ability and proliferation (76), as well
as reduced migration and tube forming capabilities (75). These
findings are strengthened by Deng et al. who found that while
ECFCs isolated from patients with SLE are highly activated and
have elevated expression of interleukin-6 (IL-6) and intracellular
adhesion molecule-1 (ICAM-1) compared to control subjects,
they are impaired in their basic physiological function (77).

INFLAMMATORY SIGNALING AND
RESTORATION OF ECFC FUNCTION

Cytokine-Induced Endothelial Damage
The inflammatory environment plays a vital role in ECFC
function and maturation; IFNα is most often associated with
SLE but may also be elevated in RA and demonstrates
striking correlations with ECFC number and function, suggesting
a role in the induction of differentiation of the ECFC
population (23). One theory states that IFNα drives premature
differentiation of ECFCs to a more mature phenotype, with
little reparatory potential, therefore, even if the cells are found
at healthy levels, their ability to repair vascular damage is
severely limited (69). Impairments in ECFC maturation and
function are likewise linked to IFN signaling in a type I
IFN receptor knockout murine model of SLE, where Thacker
et al. demonstrated increased ECFC number and function,
with improved neoangiogenesis and differentiation (78). It
was suggested that type 1 IFN receptor activation causes the
impairment by transcriptional repression of IL-1β, upregulation
of inflammasome components, such as caspase-1 and a skew
toward pro-inflammatory IL-18. Indeed, blockade of both
caspase-1 and IL-18 enhance differentiation of progenitor cells
(79). Denny et al. support the damaging effects caused by
an altered IFNα signature in an in vitro SLE model, where
they demonstrate increased production of IFNα by both MACs
and ECFCs, which become cytotoxic to the cells, supporting
apoptosis and preventing growth of a confluent monolayer (75).
Administration of IFNα was shown to enhance thrombosis
and platelet activation in a lupus-prone mouse model (78)
and high IFNα levels have been suggested as an independent
risk factor for cardiovascular disease in both SLE and RA
(69, 80). In addition, IL-18 has been associated with vascular
stiffness and plaque instability, acting as an independent
predictor of cardiovascular mortality in patients with subclinical
atherosclerosis (79).

A further hallmark of inflammation is elevated expression
of systemic or tissue tumor necrosis factor α (TNFα), which is
another key cytokine elevated in autoimmune rheumatic disease
(81); accordingly, treatment of harvested healthy ECFCs with
TNFα has been shown to impair proliferation, migration and
tube formation in these cells, and increase apoptosis in vitro
(82). As with increased levels of IFNα contributing to ECFC
dysfunction, so the increased levels of TNFα and subsequent
damage to MACs and ECFCs, may contribute to a poor vascular

repair in these patients. Additional members of the TNF family
may assert detrimental effects on an altered differentiation
programme of progenitor cells. For example, osteoprotegerin
(OPG), which inhibits osteoclastogenesis and is a marker of

vascular calcification (83), has been shown to be inversely

correlated with ECFC numbers in SLE patients, and linked to an
increased rate of OPG-stimulated apoptosis compared to those
from healthy participants, suggesting that the apoptotic cells
could act as a nidus for calcified matrix progression. The same
study demonstrated that ECFCs increased basal production of
ROS, suggesting that the increased inflammation and exposure to
apoptotic stressors associated with SLE increased the likelihood
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of both ECFCs and MACs becoming exhausted and succumbing
to apoptosis (84).

miRs and Microvesicles: Their Effects on
EPCs
MicroRNAs (miRs) are critical players in posttranscriptional
regulation of almost all genes influencing cellular processes, cell
fate decisions, regulating epigenetic changes and contributing to
the disease process, details of which are outside the scope of this
review, but are elegantly reviewed elsewhere (85–87). Elucidation
of the regulatory mechanisms controlled by miRs is an important
step toward development of a novel therapy for cardiovascular
disease and the co-morbidities associated with it. A study by
Khoo et al. describes how differential expression of miR-193a-
3p by ECFCs reduces proliferation, migration and tube forming
ability by interacting with novel targets such as high mobility
group box-1 (88). A further consideration is the reversal of this
pathway, in which microvesicles (MVs) and exosomes derived
from EPCs act upon the endothelium (89); indeed, circulating
ECFC-MVs have been found to stimulate a pro-angiogenic effect
upon endothelial cells, which is mediated by the transfer of
mRNA carried within theMVs (90). Ranghino et al. expanded on
this by establishing a connection between specific miRNA, such
as miR-126, and neoangiogenesis, through the use of ECFC-MVs
for resolution of hind limb ischaemia (91).

Endothelial microvesicles (EMVs) are membrane-bound,
cellular-derived vesicles that exert paracrine or endocrine
effects through the intercellular transfer of contents such as
lipids, proteins, mRNA and microRNA (miRNA), and are thus
intricately linked to endothelial dysfunction (92). Elevation in
EMV levels is associated with coronary artery disease (93), plaque
instability (94), cardiovascular risk (95, 96), and is also apparent
in autoimmune rheumatic diseases, such as SLE, where EMVs
are also associated with vascular dysfunction and poor disease
control (97, 98). A small number of studies have demonstrated
how EMVs produced by endothelial cells following induced
inflammation are able to induce functional defects in EPCs, such
as impaired angiogenesis (99, 100). miRNAs may also be present
in EMVs released from activated cells compared to those from
untreated cells, and could be involved in eliciting these effects
(99).

Epigenetic Influences on EPC Behavior
ECFCs isolated and expanded in culture maintain a phenotype
related to the age, environment and pathologies of the individual
donor; these epigenetic changes make these cells invaluable in the
understanding the ECFC functionality in different conditions.
A more detailed discussion of the histone modification and
miR mechanism behind the epigenetic regulation in diabetes
and other diseases can be found in other reviews (101, 102).
It has also been identified that even ECFCs isolated from
cord blood are epigenetically limited in their repair potential;
Fraineau et al. recently identified a balance between histone
modifications that increase gene expression (histone H3 lysine
4 trimethylation; H3K4me3) and those that inhibit it (histone
H3 lysine 27 trimethylation; H3K27me3). Utilizing an inhibitor
of the methyltransferase EZH2, that establishes the repressive

H3K27me3 marks, Fraineau et al. demonstrated an increase
in the expression of multiple pro-angiogenic pathways and
an increase in vasculogenesis and blood-flow recovery in a
hindlimb ischemia mouse model (103). Previously, a less
targeted inhibition of histone deacetylases by Trichostatin A
has also been shown to improve vasculogenesis in the hindlimb
ischemia mouse model (104). Therefore, the pharmacological
targeting of epigenetic modifications could be a promising
strategy to improve the repair capacity of ECFCs ex vivo before
transplantation (11).

Future Mechanistic Clinical Consideration
In light of the defective progenitor cell function in the
presence of an inflammatory environment described above,
one could hypothesize that anti-inflammatory treatment might
improve EPC number and function. However, progenitor cell
impairments appear to be exacerbated by immunomodulatory
treatments such as methotrexate and rapamycin, which have
been shown to increase ECFC apoptosis in vitro (65, 105).
These observations suggest that one of the clinical effects
of anti-inflammatory treatment in humans may target the
protective properties of MACS or ECFCs. This has particular
relevance in SLE and RA patients treated with chronic high-dose
immunosuppressants to counteract autoimmune disease flares
(106). Therefore, it is critical to consider the long-term side-
effects of these anti-inflammatory medications on vascular repair
and the cells responsible for it and provides the impetus to study
the effects of anti-inflammatory treatment on these reparative
cells in vivo.

THERAPEUTIC STRATEGIES FOR
IMPROVED ECFC FUNCTION

Anti-inflammatory Agents
Improved understanding of progenitor cell subsets and the
mechanistic problems surrounding disease-specific defects will
enable development of targeted therapies to improve a patient’s
natural population of reparatory cells. Some current available
therapies have potential for recovery of progenitor cell function;
glucocorticoids and TNF-blocking treatments appear to boost
progenitor cell numbers in RA patients, while antimalarial drugs,
often prescribed to SLE patients, may also increase levels of
ECFCs (23, 107). A number of monoclonal antibody therapies
targeting cytokines have been approved for use in autoimmune
conditions, including both anti-TNFα and anti-IFNα (108, 109),
although little research has investigated their direct effects on
progenitor cell function, and may be an area worthy of further
study.

Anti-hypertensive Agents
Prostanoids may be another potential therapeutic target agent
relevant to EPFC or MAC function; Iloprost, a prostacyclin
analog and vasodilator, has been shown to increase ECFC
numbers in systemic sclerosis, another autoimmune connective
tissue disease. Following Iloprost infusion, cells demonstrate
enhanced inhibitory regulation of apoptotic genes and increased
VEGF expression, facilitating improved mobilization (110). This
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may be supported by increased presentation of adhesion factors
by the endothelium, alongside increased release of ECFCs from
the bone marrow, as described by Coppolino et al. (111) using a
population of uraemic patients undergoing revascularization for
peripheral limb ischaemia. Indeed, prostanoids such as Iloprost,
have been proposed to improve ulcer healing and reduce the need
for major amputation (112), although further work is required to
link this to MAC or ECFC function.

Glycomimetics as Novel Small Molecule
Drugs
A promising approach is to target the action of proteoglycans
such as heparan sulfate, which is present on the surface of
ECFCs, and plays a vital role in processes including angiogenesis
and wound healing through its varied sulphation patterning,
regulating interactions with growth factors such as VEGF, as
described above (33, 113). The synthesis of small molecule
glycomimetic compounds removes the complexity of larger
carbohydrates, enabling the study of such glycosaminoglycans
(114) and their effect on cell fate and function. Of note, we have
previously discovered a group of glycomimetics, which restore
NO production and antioxidant activity in an in vitro model of
lipid-induced endothelial dysfunction (113), and our preliminary
data suggest the same glycomimetic compounds improve the

function of ECFCs (62). Anothermimetic, used by Chevalier et al.
was shown to improve colony formation, proliferation and
migration of ECFCs (115). Furthermore, Tong et al. developed
a glycomimetic that accelerated wound healing and angiogenesis
in a murine model of diabetes, demonstrating promising future
options using glycomimetics to improve endogenous ECFC or
MAC function for vascular repair, particularly in T2DM foot
ulceration.

Vitamin D Supplementation
Natural solutions for progenitor cell therapy have also been
considered. We have previously found that supplementation
of SLE MACs with calcitriol, a vitamin D supplement,
restores cell surface markers and angiogenicity, via reduced
expression of CXCL10 (25). This supports other research,
stating improvements in angiogenesis, proliferation and VEGF
expression following vitamin D treatment (116). This is
particularly relevant as reduced levels of vitamin D have
been associated with low ECFC numbers, carotid intima-media
thickness and arterial stiffening in rheumatoid arthritis (117).
Vitamin D deficiency also results in impaired ECFC angiogenic
capacity and interferon-stimulated genes in a murine model of
SLE (118). In addition to deficiency, reduced ECFC expression
of the vitamin D receptor has been linked to coronary artery

FIGURE 1 | Schematic diagram highlighting the agents that cause endothelial damage in diseases with a high risk of developing cardiovascular disease (CVD) and

potential therapeutic strategies for endothelial repair. The main protagonists of endothelial damage in diseases including rheumatoid arthritis (RA), Systemic Lupus

Erythematosus (SLE), diabetes and CVD are reactive oxygen species (ROS), immune complexes, advanced glycation end products (AGEs), oxidized LDL, tumor

necrosis factor-α (TNFα), and interferon-α (IFNα). Endothelial damage and activation leads to an increase in adhesion molecules and inflammatory cell infiltration,

mitochondrial damage, as well as release of endothelial microvesicles (EMVs), which may instigate recruitment of endothelial progenitor cells (EPCs; myeloid

angiogenic cells [MACs] and endothelial colony forming cells [ECFCs]) for endothelial repair. These disease conditions, along with aging, are also thought to change

heparan sulfate proteoglycan (HSPG) structure on the cell surface, resulting in altered cell signaling and adhesion of EPCs and defective repair. Various therapeutic

strategies could be employed to reduce the initial damage but also novel approaches using mimics of HSPG to target and improve HSPG signaling and repair are

under investigation.
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disease; high glucose conditions also reduced vitamin D receptor
expression in an in vitro diabetic cellular model (119). Moreover,
calcitriol supplementation supported ECFC viability and colony
forming ability in patients with T2DM (120), which could be
exploited further as a potentially simple and cost-effective mode
of enhancing the health of patients.

CONCLUSION AND FUTURE
APPROACHES

Regenerative medicine is now becoming a realistic innovative
treatment strategy that could be applied to a range of chronic
inflammatory disorders. Validation of the regenerative potential
of adult MACs and ECFCs will be a prerequisite step before
application of cell therapy in the clinical setting and although
still an embryonic field, this challenge holds great promise for
the future. Growing evidence demonstrates that both MACs
and ECFCs play a key role in vascular homeostasis and the
repair of endothelial damage, which has been summarized
schematically in Figure 1. There has been a rapid rise in the
number of publications in EPC function, where proliferation,
migration, differentiation, apoptosis, and angiogenic tube
formation have been studied. More recent research is focused
on signaling pathways involved in these cellular processes.
The “omic” technologies have been used in combination with
bioinformatic analyses to identify transcriptional switches, miR
involvement and their potential targets in both MACs and
ECFCs, which contributes to their compromised function in
disease.

How to best exploit the properties of EPCs to prevent the
downstream effects of endothelial damage in a disease setting is a
key area that warrants further investigation. Several approaches
are being interrogated for the exploitation and application of
MAC or ECFC cellular therapy, such as the use of nanoparticles
as carriers for a controlled release of EPC secretome (121); the
use of hydrogels for delivery of EPCs into ischemic tissue, which
has been shown to increase therapeutic efficiency and efficacy of
repair in animal models (122) and also encapsulation of drugs
or growth factors for slow release to enhance the differentiation
of progenitor cells in vivo. Animal models are being used to
understand signaling pathways involved in vessel repair and ways
to increase endogenous EPC number and function. A few specific
pharmacological strategies are being investigated to improve
their vasculogenic properties before being re-administrated.
However, at the moment the focus is towardmyocardial ischemia
and peripheral vascular disease, but has potential for a much
broader range of diseases in the future. Questions remain to be
answered over the use of MACs and ECFC for cell therapy in
terms of their isolation, culture, survival, function, regulation and
the timing and mode of administration into the tissue. Despite
this, the concept of EPCs as a new therapeutic, or as part of the
armamentarium for regenerativemedicine is a new, dynamic area
of research that will bring further insight in the future.
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