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Centre for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom

For over a decade various cell populations have been investigated for their vasoreparative

potential. Cells with the capacity to promote blood vessel regeneration are commonly

known as endothelial progenitor cells (EPCs); although such a definition is currently

considered too simple for the complexity of cell populations involved in the reparative

angiogenic process. A subset of EPCs called endothelial colony forming cells (ECFCs)

have emerged as a suitable candidate for cytotherapy, primarily due to their clonogenic

progenitor characteristics, unequivocal endothelial phenotype, and inherent ability to

promote vasculogenesis. ECFCs can be readily isolated from human peripheral and

cord blood, expanded ex vivo and used to revascularize ischemic tissues. These

cells have demonstrated efficacy in several in vivo preclinical models such as the

ischemic heart, retina, brain, limb, lung and kidney. This review will summarize the

current pre-clinical evidence for ECFC cytotherapy and discuss their potential for clinical

application.

Keywords: endothelial progenitor cells (EPC), angiogenesis, cell therapy, endothelial colony forming cells (ECFCs),

ischemia, vascular repair

THE POTENTIAL OF VASCULAR REGENERATION AS A
THERAPEUTIC GOAL

Vasodegeneration and the ensuing tissue ischemia remains a significant challenge for healthcare
systems worldwide. Diseases such as ischemic heart disease, stroke, peripheral artery disease, and
ischemic retinopathies are complex to treat because there are diverse underpinning causes of non-
perfusion and each tissue exhibits a distinct response to hypoxia. Current available treatments aim
to remove damaged tissue, widen obstructed blood vessels or replace blocked vasculature with
bypass surgery. A potential new approach would be to regenerate the compromised vasculature
using so-called “therapeutic angiogenesis”. While delivery of pro-angiogenic peptides have often
provided scope for achieving re-perfusion, the use of cell therapy products have gained favor
since they can offer sustained delivery of a multitude of angiogenic factors and/or provide direct
replacement of damaged vascular cells (1). Although several cell-types such as mesenchymal stem
cells (MSCs) (2), embryonic stem cells (ESCs) (3), and induced pluripotent stem cells (iPSCs) (4)
have been tested pre-clinically for their therapeutic potential, endothelial progenitor cells (EPCs)
have emerged as a population of cells with promising tissue regenerative properties.

EPCs have been the subject of considerable controversy due to their ambiguous definition (5)
and this term actually encompasses a range of very different cell types (6). Cells named as myeloid
angiogenic cells (MACs), circulating angiogenic cells (CACs), and early EPCs, all of which are
hematopoietic cells, have been shown to promote vascular repair through paracrine mechanisms.
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Recently, leading experts in the field published a consensus
statement on EPC nomenclature to standardize terminology
(7). Endothelial progenitors are thus defined as cells with an
unequivocal endothelial phenotype, self-renewal potential and
a capacity for de novo, in vivo blood vessel formation. It
is now widely accepted that endothelial colony forming cells
(ECFCs) comply with this definition and are considered the
“bona fide endothelial progenitor” with emerging therapeutic
potential (7).

WHAT ARE ECFCS?

Endothelial colony forming cells (ECFCs) are sometimes referred
to in the literature as late Endothelial Progenitor cells (due to
their later appearance in culture), blood outgrowth endothelial
cells, or outgrowth endothelial cells. ECFCs are isolated in vitro
from the cultured mononuclear fraction of peripheral blood or
umbilical cord blood, grown under endothelial conditions. They
appear in culture as cobblestone shaped colonies within weeks
of mononuclear cell plating and have significant proliferative
potential (Figure 1) (8). It has been demonstrated that ECFCs
can also be derived from human induced pluripotent stem cells
by sorting for markers Neuropilin-1 and CD31 (9). In addition to
cord blood, ECFCs have also been successfully isolated from fat
tissue (10), placenta (11), and lungs (12); these findings suggest
that ECFCs originate from tissue resident vascular progenitors.
Recent reports pinpoint specific endothelial subsets within the
vasculature and these may constitute “vascular stem cells” with
homeostatic reparative roles. These vascular stem cells are
identified by the expression of CD201, the protein C receptor
(PROCR) EPCR, a type 1 transmembrane receptor which is
known to be highly expressed on vascular endothelial stem
cells (VESCs). PROCR+ selection facilitates their isolation and
enriches for highly clonogenic cells with bipotent differentiation
capacity into endothelial cells and pericytes (13). CD157, also
known as bone marrow stromal antigen 1 has also been identified
as amarker of tissue resident VESCs, it is expressed in endothelial
cells of large vessels and CD157+ cells possess significant
vascular regenerative potential (14).

THE HALLMARKS OF ECFCS

ECFCs typically exhibit high clonogenic capacity. Indeed, these
cells can yield a hierarchy of different sized colonies with
umbilical cord blood giving rise to the highest frequency of
largest colonies that have high proliferative potential (HPP)
when compared to adult peripheral blood (15). ECFCs are
characterized by the expression of endothelial markers CD31,
CD146, VEGFR2, vWF, and VE-cadherin. ECFCs also express
CD34, although the frequency of this marker is variable and can
diminish as the cells are expanded in vitro. Importantly, ECFCs
are negative for hematopoietic markers CD14 and CD45. An
essential property of ECFCs is their ability to form either a de
novo vascular network in vitro while in vivo these cells integrate
seamlessly with the host vasculature (Figure 1).

PRE-CLINICAL APPLICATION OF ECFCS

The Ischemic Retina
Ischemic retinopathies such as retinal vein occlusion, diabetic
retinopathy, and retinopathy of prematurity are common causes
of visual impairment and are characterized by vasodegeneration
(16). Pre-clinical evidence shows that ECFC cell therapy may be a
potential treatment strategy for such ischemic retinopathies (17).
The retina differs from other organs, as it has a certain degree
of immune privilege and so provides a unique environment
to examine the effects of human ECFCs. When these cells
were injected into murine models of retinal ischemia, they
promoted vascular repair, decreased the avascular area, enhanced
the normovascular area, and importantly, decreased pathological
neovascular tuft formation. Furthermore, human ECFCs could
be found directly integrating and forming new vessels within
the host murine vasculature (8). The same effects were seen
when ECFCs derived from induced pluripotent stem cells
were used (9). In addition, beneficial effects of ECFCs may
be enhanced using agents that alter growth factor signaling
pathways. For example, AAV2.COMP-Ang1 was shown to
enhance the therapeutic benefit of intravitreally delivered ECFCs
by promoting their integration into the murine vasculature (18).
Although there is a lot more work needed before translation
of ECFCs into therapy for the ischemic retina, we have
recently evaluated the effect of ECFCs in the mouse oxygen-
induced retinopathy model, by examining dose, delivery route,
and immunogenicity. Human ECFCs delivered to the murine
ischemic retina demonstrated a vasoreparative effect both by
intravitreal and intracarotid delivery. Importantly, cells conferred
therapeutic benefit by promoting vascular repair. In addition,
if ECFCs were delivered into healthy adult mice, they were
completely cleared from the retina within 3 days (17). It has
also been reported that ECFCs promote vascular repair in the
ischemic retina through release of paracrine factors. A subset of
ECFCs was found to be effective in rescuing retinal degeneration,
this subset was found to express high levels of CD44, the
hyaluronic acid receptor (19). Taken together, these data provide
convincing scientific evidence to support ECFCs as a potential
cell therapy for ischemic retinopathies.

The Ischemic Brain
Ischemic stroke is a common worldwide cause of mortality.
Fewer than 10% of patients experiencing ischemic stroke are
suitable for thrombolysis treatment which can effectively restore
some cerebral blood flow (20), therefore there is a need for
therapies that induce vascular repair and more effectively restore
blood flow for greater number of patients. ECFCs are emerging
as a promising new treatment option for ischemic stroke
and their therapeutic potential in the rodent brain has been
demonstrated. For example, GFP-labeled ECFCs were tracked for
cell engraftment in a photothrombotic ischemic stroke mouse
model. Cells were delivered via the left cardiac ventricle 24 h
after stroke. Bioluminescence signals were highest in the brain on
day 1 and decreased steadily until day 14. GFP-positive ECFCs
were found at the infarct border demonstrating a successful
homing response to regions of tissue hypoxia. Importantly,
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FIGURE 1 | Properties of ECFCs. (A) ECFC cobblestone monolayer morphology (Scale bar 200µm). (B) A tight monolayer of ECFCs with adherens junctions (β

catenin = green, Vimentin = red, scale bar 100µm). (C) A colony derived from a single cell demonstrating clonogenic potential of ECFCs (crystal violet stained, scale

bar 200µm). (D) ECFCs express endothelial markers CD31 & CD146 and are negative for hematopoietic markers CD14/45 and stromal marker CD90. (E) ECFCs

have tubulogenic capacity in vitro (scale bar 200µm) (F,G). ECFCs form perfused vessels in vivo in the Matrigel plug assay (Scale bar, 5mm and 200µm respectively).

ECFC therapy led to improved angiogenesis, neurogenesis,
decreased neuronal apoptosis, and ultimately led to restoration
of brain function (21). In addition, in a rat model of transient
focal cerebral ischemia and middle cerebral artery occlusion
(MCAO), ECFCs primed with erythropoietin (EPO) were shown
to have enhanced efficacy for reversing stroke injury (22, 23). In
another study using the samemodel, labeled ECFCs administered
intravenously 24 h after MCAO were seen to specifically home to
the ischemic hemisphere and settled in the injured area. ECFCs
transplantation stimulated an increase in capillary density at the
site of injury. Although in this study, ECFCs were not detected
integrating within the vasculature, they stimulated an increase
in proangiogenic growth factor expression at the ischemic site,
which was also associated with a reduction in the number of
apoptotic cells (24).

ECFCs have also been examined for their potential to repair
vascular damage in pre-clinical models of traumatic brain injury
(TBI) in rodents. TBI, created by lateral fluid percussion injury
was used to assess the effects of cord blood-derived ECFCs. Cells
were intravenously infused 1 h after injury. ECFCs successfully
homed to the injured site, were detected in the injured brain
after 24 h and were effective in promoting neovascularization
and improving neurological function (25). A further follow-up

study demonstrated that infusion of ECFCs can repair blood
brain barrier tight junction functionality (26). In addition, in a
rat model of cerebral aneurysm, ECFC transfusion was shown
to inhibit inflammatory signaling, protect smooth muscle cells
from apoptosis and promote vascular regeneration (27). Taken
together, these studies highlight the potential therapeutic effects
of ECFCs for vascular repair in the brain.

Peripheral Artery Disease
Peripheral artery disease (PAD) can lead to ischemic injury and
amputation. Prognosis is poor and current treatments for PAD
patients are limited (50); therefore there is a pressing need for
new strategies to enhance angiogenesis and collateral arterial
growth. The potential for ECFC treatment in PAD has been
demonstrated in several preclinical studies using the murine
hindlimb ischemia model. Firstly, ECFCs were shown to increase
perfusion by rapidly relocating to the ischemic hind limb within
6 h after injection. In addition, there was enhanced benefit when
a combination of ECFCs and mesenchymal stem cells (MSCs)
were used. Further analysis showed that the reparative effects
of ECFC therapy were due to direct vascular incorporation
(28). Although it has also been suggested that ECFCs can
function as paracrine mediators, modulating MSC engraftment
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via PDGF-BB/PDGFRb signaling (29). Similar beneficial effects
were reported in a later study in which ECFCs combined with
mesenchymal progenitor cells enhanced blood flow recovery of
the ischemic limb. Interestingly, analysis showed that improved
blood flow was in part due to the recruitment of host myeloid
cells with, presumably, concomitant release of pro-angiogenic
growth factors (30). Another study combining ECFCs andMSCs,
via retro-orbital delivery, demonstrated the homing ability of
the cells and increased vessel density via an endoglin-dependent
mechanism (31). Modification or pre-treatment of ECFCs has
been shown to enhance their effects. For example, ECFC-
induced functional recovery and limb salvage were markedly
improved by Fucoidan pre-treatment, which protected the cells
from replicative cellular senescence (32). Overexpression of
integrin B1 was also reported to augment ECFC vasoreparative
potential as it improved homing of the cells to the ischemic
tissue, leading to improved perfusion in the ischemic limbs (33).
Similarly, adiponectin pre-treatment has been demonstrated
to increase ECFCs neovascularization capacity in a hind limb
model in streptozotocin-induced hyperglycemic nu/nu mice
(34). ARA290, an agonist of Erythropoietin has also been shown
to enhance ECFC function by increasing the homing of these
cells to the ischemic limb (35). In addition, ECFCs derived from
human induced pluripotent stem cells (iPSCs) have also been
shown to contribute to hind limb vascular repair. In a model
of hindlimb femoral vessel removal in nude mice, hiPSC ECFCs
were shown to improve blood perfusion and limb salvage as well
as cord blood-derived ECFCs (9). This result is important as it
means that it may be possible to generate patient specific hiPSC-
derived ECFCs for autologous treatment of vascular disease.

The Ischemic Myocardium
Ischemic heart disease is a common cause of mortality
worldwide. Cell therapy to regenerate the ischemic heart is a
rapidly emerging concept. Most clinical trials have used bone
marrow mononucleated cells (MNCs). Although bone marrow
MNCs have demonstrated some therapeutic efficacy for the
ischemic myocardium (51), they remain a very heterogeneous
population of cells and therefore it is difficult to decipher the
individual contributions of cell populations responsible for the
repair. In addition, bone marrow MNCs from patients with
ischemic heart disease have been shown to have a reduced
neovascularization capacity (52). ECFCs remain to be tested
clinically in the ischemic myocardium. The first pre-clinical
studies were performed using CD34+ cells with presumed
endothelial precursor capacity. These cells increased vessel
density within the infarct area and improved left ventricular
function although whether these heterogeneous cells were acting
as paracrine reservoirs or endothelial “building blocks” remains
unknown (36). Further pre-clinical studies have shown that
ECFC therapy is beneficial; cells participate in the vascular repair
process and promote vascular recovery of the ischemic heart.
In an acute myocardial infarction model in pigs, infusion of
autologous ECFC-like cells improved myocardial remodeling;
decreased infarct size, increased vessel density and ECFCs were
seen to incorporate within vessels at the border zone (37).
Myocardial injection of ECFCs expressing AKT/HO-1 into a
murine myocardial infarction model demonstrated an increase

in blood vessel density, a decrease in apoptotic cells at the infarct
site, reduction in oxidative stress and pro inflammatory molecule
TNFα as well as an improvement in ejection fraction (38). More
recently, the transplantation of ECFCs pre-treated with Genistein
was shown to increase cellular proliferation at the ischemic sites,
enhance neovascularization, decrease myocardial fibrosis, and
improve cardiac function (39).

Wound Healing
The inability to efficiently repair wounds is a common feature of
patients suffering with vascular disease. Due to their angiogenic
potential, ECFCs have been examined for their capacity to aid
vascular repair in several wound injury models. In a murine
model where tissue injury was induced by dye laser, digital
intravital microscopy revealed that human umbilical cord blood-
derived ECFCs delivered via infusion through the jugular vein
migrate to sites of injury and promote endothelial regeneration
(40). Interestingly, this study found that recruitment of ECFCs
was dependent on the presence of neutrophils at the site
of injury via the binding of P-selectin glycoprotein ligand-1
(PSGL-1) (40). In a murine model of full thickness dermal
wound in athymic nude mice, unlike HUVECs, treatment
with ECFCs was shown to induce wound vascularization by
direct integration with host vasculature, demonstrated by blood
filled vasculature. Furthermore, cells were detectable up until
day 10, wounds that received ECFCs showed reduced levels
of hypoxia, enhanced matrix organization and accelerated
epithelial coverage. Interestingly, the border of the ECFC treated
wounds contained smooth muscle cells likely mobilized by the
secretion of PIGF and PDGF-BB by the ECFCs. This study
also demonstrated ECFCs pro-angiogenic potential by paracrine
factors: ECFCs expressed higher levels of pro-angiogenic
growth factors such as VEGF, PIGF, and Ang-1 compared
to HUVECs; ECFC-conditioned medium (CM) significantly
improved collagen matrix organization from human dermal
fibroblast sheets; and ECFC-CM boosted keratinocyte migration
and proliferation across the wound via secretion of KGF and
HGF (41). ECFCs also have the potential to be embedded within
scaffolds or skin substitutes (42) where they can vascularize
the scaffolds alone or in combination with accessory cells, and
following subcutaneous transplantation, can anastomose within
the host vasculature enabling perfusion (43). Cord blood-derived
ECFCs seeded in a RGD-g-PLLA biosynthetic scaffold (designed
to promote survival and retention of the cells at the wound
site) enhanced dermal wound neovascularization and labeled
ECFCs were seen to be retained in the wound up to a week after
transplantation (44).

The Lungs
The lungs are highly vascularized organs. Recent research
indicates that lung microvascular endothelium is a rich source
of resident ECFCs, which contribute to normal vascular
homeostasis (12, 14). Studies investigating the effects of ECFCs
in the lung have shown beneficial effects. For example, in a rat
injury model of oxygen-induced bronchopulmonary dysplasia, a
lung disease of prematurity, human cord blood-derived ECFCs
were administered through the jugular vein. ECFCs significantly
improved lung compliance and the architecture of the alveoli.
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It also showed that ECFC therapy improved lung angiogenesis
and prevented pulmonary hypertension in hyperoxia-exposed
newborn mice. Treatment with ECFC-CM showed similar
therapeutic effects in such models of bronchopulmonary
dysplasia (45, 46). Such studies highlight that ECFCsmay provide
vasoreparative effects through paracrinemechanisms, in addition
to direct vascular engraftment.

The Kidney
Ischemia reperfusion injury is the main cause of acute kidney
injury (AKI) which results in endothelial cell loss and apoptosis,
leading to reduction in peritubular capillary blood flow (53).
ECFCs may facilitate the development of new treatments for
AKI. The administration of ECFCs in a mouse model of ischemic
AKI was shown to reduce tubular injury, renal apoptosis,
and infiltration of macrophages and attenuate increases in
plasma creatinine levels. Because there was little evidence of
ECFCs remaining within the murine kidneys, their protective
effects were primarily attributed to the release of exosomes, as
injecting ECFC-derived exosomes alone protected against the
multiple parameters of kidney injury (47). A follow-up study
showed that specifically the microRNA miR-486-5p, present at
high amounts within the ECFC exosomes, accounted for the
therapeutic effects of ECFCs (48). In agreement with this, other
studies have also shown that ECFCs secrete soluble factors
to preserve microvascular function. Conditioned media from
human cord blood-derived ECFCs offered protection in a rat
model of ischemia reperfusion injury. Interestingly, ECFC-CM
significantly reduced ICAM-1 expression and decreased the
number of differentiated lymphocytes recruited to the kidney
after renal ischemia (49). These studies suggest that ECFCs and
their CM may provide a therapeutic option for the treatment of
AKI.

FUTURE PERSPECTIVES

The studies discussed in this review (Table 1), support the
case for ECFCs as a potential novel endothelial cell therapy
that promotes vascular repair in many different vascular beds
albeit tissue specific endothelial heterogeneity. It is possible that
ECFCs, as progenitors, have required plasticity to adopt organ
specific endothelial characteristics. A sole mechanism of action
(MOA) for ECFC beneficial effects remains unclear. In some
of these studies, ECFCs facilitate vascular repair by directly
integrating within the host vasculature, while in others vascular
engraftment of these cells is low or completely absent and their
therapeutic benefit can be explained by the paracrine release of
proangiogenic growth factors. More research is needed to fully
elucidate mechanisms of action, but these are likely to depend
on the experimental model used. Demonstration of long-term
engraftment in pre-clinical models is challenging considering
ECFCs are human cells delivered into immunocompetent mice.
Other factors that need to be considered for each target
disease are cell dosage, delivery route, and timing of ECFC
administration (1).

To induce maximal therapeutic efficacy, it may be worthwhile
considering co-transplantation of ECFCs with accessory cells

such as MSCs (28, 30), smooth muscle cells (SMCs) (54), adipose
tissue-derived stem cells (43) or myeloid angiogenic cells (55).
Several studies have shown this to be an effective approach
as it may promote long-term neovascularization by directly
supporting and stabilizing ECFC-derived neovessels and also by
providing proangiogenic factors to aid the regenerative process.

The majority of studies described in this review have been
performed using a xeno-allogenic approach, testing human cells
inmouse and rat models. However, in order to translate this work
toward the clinical setting; it might be necessary to collect data
from larger animal models, which may also allow an autologous
approach. ECFCs have successfully been isolated from rabbits
(56), dogs (57), pigs (58), sheep (59), horses (60), and monkeys
(61) and there is some evidence for autologous ECFC therapy to
be efficacious in pigs (37). Despite these results, when considering
the use of ECFCs as a potential cytotherapy for human disease,
it is likely that initial ECFC therapy may be allogeneic due to
the fact that ECFCs cannot always be obtained efficiently from
adult peripheral blood and those isolated from patients may be
dysfunctional and therefore not optimal for cell transplantation.
Another consideration is that ECFCs in human blood are very
rare, and numbers are reduced with disease (62), thus it may
not be possible to isolate them from every patient. Furthermore,
isolation, characterization and ex-vivo expansion of autologous
ECFCs requires 4–6 weeks which is a limiting factor for diseases
with a narrow therapeutic window. Therefore, we consider ECFC
allogeneic therapy as the most feasible and practical strategy
in which ECFCs will be HLA typed to match patients and
will be stored in cell banks as an “off-the-shelf ” cell therapy
product.

There is quite a high failure rate in successful translation of
regenerative medicine therapies to clinical use. This is mainly
due to potential cell products not passing the regulatory
requirements, clinical efficacy standards, and the high
manufacturing cost (63). Successful translation in the EPC
field has been mainly impaired due to the use of heterogeneous
populations of non-endothelial cells such as BM-MNCs, which
have led to conflicting results and discourage pursue of further
clinical trials (64). High cell population heterogeneity and low
purity characterized the first generation of cell therapies, but next
generation cell therapies require a highly pure and well-defined
cell therapy product for consistency. In the EPC field, a recently
published consensus on EPC nomenclature recommended
accurate cell definitions and meaningful nomenclature (7).

This review shows pre-clinical evidence suggesting that
ECFCs have therapeutic value for ischemic diseases. Advances
in cell therapy manufacture technologies in combination with a
first-in-man clinical trial are needed to facilitate the translational
pathway for ECFCs into patients. Importantly, both cells
GMP manufacture and clinical trial design have to align
with regulatory frameworks for advanced therapy medicinal
products.

Finally, before ECFCs are used in the clinical setting, protocols
for their isolation, culture, and expansion must strictly adhere
to GMP standard operating procedures. GMP guidelines may
vary from country to country (65). In addition, xeno-free culture
conditions are preferable. Replacing the use of animal products
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required for ECFC culture, such as fetal bovine serum and rat
Collagen I are being investigated by many groups. Strategies
to overcome these issues include the use of human platelet
lysate (66, 67) and the manufacture of GMP synthetic basement
membrane substrates (68). In addition, the use of automated
cell culture facilities will enable scalable and standardized
methods to create a reliable and reproducible cell therapy
product.

In conclusion, harnessing the reparative angiogenic capacity
of ECFCs may provide an exciting new regenerative therapy for
vascular disease, however there are still challenges to overcome,
and more research is warranted before these can be used in the
clinic.
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