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Use of a left ventricular assist device (LVAD) can benefit patients with end stage heart

failure, but only with careful patient selection. In this study, previously derived Bayesian

network models for predicting LVAD patient mortality at 1, 3, and 12months post-implant

were evaluated on retrospective data from a single implant center. The models performed

well at all three time points, with a receiver operating characteristic area under the curve

(ROC AUC) of 78, 76, and 75%, respectively. This evaluation of model performance

verifies the utility of these models in “real life” scenarios at an individual institution.

Keywords: left ventricular assist device, Bayesian, mortality prediction, patient selection, heart failure,

INTERMACS

INTRODUCTION

Heart failure is a chronic, progressive condition that affects over 6 million Americans. It is
characterized by a decline in function of the heart to pump enough blood to perfuse the body
(1). As the condition progresses, treatments may escalate from risk factor modification and oral
medications to intravenous inotropes and surgical interventions, such and mechanical heart-assist
pumps and heart transplantation (2). Heart transplantation is the gold standard treatment for
end stage heart failure; however, donor heart supply is limited and not all patients are eligible for
transplant, due to their age, comorbid conditions, or lifestyle choices. As an alternative, advanced
heart failure patients may receive a durable left ventricular assist device (LVAD) as a bridge to
transplant (BTT) or as a destination therapy (DT) (3).

LVADs can improve quality of life and increase patient survival (4, 5), but also require changes in
daily life, a significant investment of time andmoney, and are associated with risks of adverse events
(6). These tradeoffs underscore the importance of careful patient selection, for which predictive
models can serve as an important component of risk assessment.

We recently developed models to predict post-LVAD mortality at 1, 3, and 12 months after
implant (7) using the data from the Interagency Registry for Mechanically Assisted Circulatory
Support (INTERMACS), the largest registry of retrospective LVAD patient data in the United States
(4). The models were developed using Bayesian analysis and validated with a subset of registry
data that was withheld from the model derivation. While use of the large registry dataset provides
a robust model, it obscures institution-dependent differences in patient selection, care, and
outcomes. Use of a personalized decision support tool in a “real world” clinical setting is necessary
to understand its applicability at individual institutions.

Additionally, the INTERMACS registry has missing data and entry errors. The extent to which
missing data affects the performance of the Bayesian predictive models is unknown; therefore,
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a carefully checked and evaluated dataset from a single clinical
site was used to measure model performance.

This study was undertaken to establish the performance of our
Bayesian models for LVADmortality at a single institution with a
complete, retrospective patient data set. The goal of this work was
to prove the utility of the models for eventual use in prospective
patient risk assessment.

METHODS

Data Acquisition and Cleaning
We acquired site-specific INTERMACS data for 100 consecutive
patients who received a CF-LVAD at Allegheny General Hospital
(AGH) between 2014 and 2015. Patients signed consent forms for
their data to be collected in INTERMACS at the time of LVAD
implant. A data sharing agreement was established between
Carnegie Mellon University (CMU) and AGH to assure the
security of protected health information in this study. This study
was approved by CMU and AGH’s review boards for biomedical
research (IRBs).

The time-period was selected to include records with at
least 1 year of follow up data. The data was organized into
three categories: Pre-Implant, Post-Implant, and Events. Missing
or illogical data (outside of feasible range or conflicting with
other entries) was manually identified and checked by a data
coordinator. Data elements that were designated as “unknown”
or “missing” were addressed by reviewing all available patient
medical records. In cases where the data could not be found, the
data field was denoted as “not recorded.” All units for continuous

variables were also checked. Once all 100 patients were verified
by the coordinator at AGH, the data set was sent to CMU for
analysis.

Data cleaning revealed 9% of all pre-implant information
(2,704 out of 28,500 possible fields, 2,850 per patient) was missing
or out of range in the patient records. After data cleaning,
this was reduced to 4% (1,184) fields that were confirmed as
not recorded. This cleaned data set was used for the validation
analysis.

Data Pre-processing
Pre-implant continuous data were binned into groups, which
were determined during the initial model derivation (7) and
briefly described, below.Mortality outcomes were determined for
each patient using the Event data for each of the three time points:
1, 3, and 12 months post-LVAD.

Original Model Derivation and Predictive
Variables
The models used in this analysis were derived using pre-implant
patient information from INTERMACS from January 2012 to
December 2015, for adults (over 18 years of age) who received
their first primary continuous flow LVAD or LVAD and right
ventricular assist device (RVAD) in combination (n = 10,277).
This time frame was chosen to include current generation
continuous flow LVADs and contemporary approaches to
patient management. Outcomes for mortality were chosen at
1, 3, and 12 months after primary LVAD implant, to capture

early outcomes that may impact hospital performance and
reimbursement (8) (1 and 3 months) and long-term outcomes
(12 months).

Naïve Bayes (NB) models were derived for each time point
using a training dataset consisting of 80% of the records selected
at random (n = 8,222). The remaining 20% (n = 2,055)
were held aside for model validation. Continuous variables
were discretized using either expert binning, equal frequency,
or equal width binning to achieve the maximum information
gain for each variable with respect to the model time-point.
Feature selection was performed using information gain on
the training data. Models were learned using the NB method
in GeNie 2.2 (BayesFusion, Pittsburgh, PA). Each model was
optimized by running 10-fold cross validation and removing
variables with low diagnostic value (as measured in GeNie)
until the area under the receiver operator characteristics
curve (ROC AUC) dropped precipitously. The final NB
models had 28, 26, and 21 predictive variables for the 1, 3,
and 12-months outcomes, respectively, with 36 total unique
variables. The resulting Bayesian models are illustrated in
Supplemental Material.

Variables with the highest diagnostic value for 1-month
post-LVAD mortality were concomitant RVAD implant,
total number of events during the implant hospitalization,
platelet count, bilirubin, aspartate aminotransferase, and
INTERMACS profile. For the 3-months mortality model,
the highest diagnostic value variables were concomitant
RVAD implant, age, blood urea nitrogen, hemoglobin and
INTERMACS profile. For the long-term mortality prediction,
the most associated variables were age, blood urea nitrogen,
hemoglobin, device strategy (DT), and concomitant RVAD
implant. The diagnostic value for each variable in the model is
captured in Supplemental Material.

Analysis of Patient Population
The patient population from the AGH study cohort was
compared to the LVAD patient population from INTERMACS
that was used for original model derivation and validation.
Fisher’s exact test, Pearson’s chi-square and student’s t-test were
used to compare the populations in SPSS (IBM).

Model Validation and Comparison
The complete AGH data sets were used to measure the
Bayesian mortality model performance for each time point,
using test validation in GeNie (BayesFusion, Pittsburgh, PA).
The resulting ROC AUCs were compared to the original model
validation performance using DeLong’s test (9) with the pROC
package in R.

RESULTS

The patient cohort at AGH was similar to the overall
INTERMACs population in terms of patient age and gender
(Table 1). The main difference between cohorts were the
distribution of INTERMACS profiles (p-value < 0.001) and the
distribution of device strategies (p-value < 0.001). The AGH
population had a larger proportion of INTERMACS profiles 1
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TABLE 1 | Comparison of AGH patient cohort with overall INTERMACS registry.

Characteristic AGHpatients

(n = 100)

INTERMACS patients (n = 10,277) p-value

Mean (SD) Mean (SD)

Age 56.2 (12.7) 56.9 (13) 0.592

n % n %

Gender Male 73 73% 8,044 78% 0.280

Ischemic Etiology Yes 52 52% 4,637 45% 0.189

INTERMACS 1 20 20% 1,671 16%

2 48 48% 3,548 35%

3 14 14% 3,318 32%

4–7 18 18% 1,740 17% <0.001

Device Strategy BTT likely 67 67% 5,261 51%

BTT unlikely 5 5% 267 3%

DT 25 25% 4,658 45%

Other 3 3% 91 1% <0.001

Mortality 1-month 4 4% 540 5% 0.820

3-months 8 8% 976 9% 0.733

12-months 18 18% 1,849 18% 1.000

INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support; BTT, bridge to transplant; DT, destination therapy.

TABLE 2 | 1-Month mortality model performance.

Mortality at 1 month Survival at 1 month Total

Actual outcome 4 96 100

Predicted* 3 87 90

Performance 75% Sensitivity

(95% CI 0.22–0.99)

91% Specificity

(95% CI 0.82–0.95)

90%

Accuracy

*Based on predictive survival above 50%.

and 2 and a larger proportion of likely bridge to transplant
(BTT) patients. The rate of mortality events was similar to the
INTERMACs population for all three end-points.

One month after implant, 4 (4%) of the 100 AGH patients had
died. The 1-month mortality model correctly predicted 3 out of
the 4 deaths (75%) and predicted 87 out of 96 alive patients (91%),
using a threshold of 50% (Table 2). The ROCAUCwas 78%, with
a 95% confidence interval (CI) of 0.36–1.0. This is performance
is comparable to the original model validation of 70% ROCAUC,
with CI 0.65–0.74 (Figure 1). Comparison of the ROCAUCswith
DeLong’s test yielded p-value = 0.71, no statistical difference in
performance.

At 3 months after implant, 8 (8%) of the 100 patients had
died. The Bayesian mortality model correctly predicted 4 of the
8 deaths (50%) and 83 of the 92 living patients (90%), using a
mortality risk threshold of 50% (Table 3). The ROC AUC for
the model performance was 76% with 95% CI 0.56–0.96. This
is comparable to the original model test validation of 71%, with
95%CI 0.67–0.75 (Figure 2). Comparison of the ROCAUCs with
DeLong’s test yielded p-value = 0.61, no statistical difference in
performance.

FIGURE 1 | ROC curves for 1-month mortality from original and AGH-specific

validation.

By 12 months after implant, 18 (18%) of the 100 patients
had died. The Bayesian mortality model correctly predicted 6
of the 18 deaths (33%) and 73 of the 82 living patients (89%),
using a mortality risk threshold of 50% (Table 4). The ROC AUC
for the model performance was 75%, 95% CI 0.65–0.87, which
was comparable to the original model validation of 69%, 95%
CI 0.66–0.72 (Figure 3). Comparison of the ROC AUCs with
DeLong’s test yielded p-value = 0.28, no statistical difference in
performance.
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TABLE 3 | 3-Months mortality model performance.

Mortality at

3 months

Survival at

3 months

Total

Actual outcome 8 92 100

Predicted* 4 83 87

Performance 50% Sensitivity

(95% CI 0.17–0.83)

90% Specificity

(95% CI 0.82–0.95)

87%

Accuracy

*Based on predictive survival above 50%.

FIGURE 2 | ROC curves for 3-months mortality from original and

AGH-specific validation.

TABLE 4 | 12-Months mortality model performance.

Mortality at

12 months

Survival at

12 months

Total

Actual outcome 18 82 100

Predicted* 6 73 79

Performance 33% Sensitivity

(95% CI 0.14–0.59)

75% Specificity

(95% CI 0.80–0.94)

79%

Accuracy

*Based on predictive survival above 50%.

DISCUSSION

The Bayesian models for mortality derived on INTERMACS
data performed with ROC AUCs of 78%, 76%, and 75% in
a single center retrospective cohort for 1, 3, and 12 months
post-LVAD implant, respectively. We had previously reported
ROC AUCs of 70, 71, and 69% with a validation cohort from
INTERMACS. All three mortality models performed comparably
in the AGH patient dataset, indicating that these models have
utility for prospective patient validation at this LVAD implant
center.

FIGURE 3 | ROC curves for 12-months mortality from original and

AGH-specific validation.

Verifying model performance on a center’s specific patient
population is especially important given the influence of
institutional experience on outcomes. This has been illustrated
by the Heartmate II Risk Score, which includes institution
implant volume as a statistically significant predictor for
mortality outcomes (10). Additionally, an assessment of
implant center volume on 1-year mortality of destination
therapy (DT) patients found that low volume centers had
a higher mortality rate (11). Similar relationships have
been reported for transplant graft survival (12) and right
heart failure-associated mortality (13). Since AGH is an
experienced, high volume implant center, the models
may perform better there than in a lower implant volume
institution.

In addition to different in hospital experience, the mix
of patient health status and strategy of patient management
may impact model performance. There were significantly
more patients with severe heart failure, as indicated by the
percentage of patients with INTERMACS 1 and 2 profiles,
at AGH. However, the mortality rates for AGH patients at
each time point were comparable to the mortality rates in the
INTERMACS population. Subjectivity in patient classification
(14) or experience in patient management may contribute to
the rate of patient survival. AGH also had significantly more
patients who were BTT and fewer who were DT, compared
to the INTERMACs population. However, this distribution
of patients is in line with the INTERMACs cohort, where
DT patients are more often INTERMACs profile 3 and
4 (15).

Despite the data cleaning step at AGH, there were 1,184
fields that were not recorded. A strength of using the Bayesian
modeling for this risk tool is that it is robust to missing
information when making predictions, as demonstrated by
the resulting ROC AUCs. Whether having no missing data
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FIGURE 4 | Screen capture of the CORA decision support tool. The myCORA app shows risk predictions for survival, ischemic stroke (Isch-CVA), recurrent GI

bleeding, right heart failure (RHF), and hemorrhagic stroke (ICH-CVA). Data are presented in the Prognosis table as percent probability at different time points. In the

Survival line graph, the predicted survival for the patient on an LVAD is shown in the blue “VAD” line. The gray “Avg 43” presents the survival of a non-sick

43-years-old, derived from census data. The dark gray line “Device Strat” presents the survival prediction for all patients with the same device strategy (e.g., Bridge to

Transplant). The green line “INTERMACS” presents the survival for all patients with the same INTERMACS Profile (e.g., profile 3). Finally, the orange line “SHFM” is the

survival prediction for the patient calculated with the Seattle Heart Failure Model.

would improve the model performance remains unknown.
However, it is unlikely that any institution can have a value
for every possible patient variable, especially in cases where
rapid patient deterioration requires an emergent decision. The
use of Bayesian methods makes these models attractive for real
world use.

The models assessed in this analysis are available at
app.myCORA.org with an institutional login, as part of the
Cardiac Outcomes Risk Assessment (CORA) decision support
tool for physicians (Figure 4). This tool has begun to be
prospectively evaluated by the multidisciplinary team at the
weekly transplant meetings at AGH to assess its performance and
impact on clinician decision making. At present, patient data will
be entered manually into the tool by a VAD coordinator, but
work is in progress to allow for integration with the electronic
health record system. Predictive models for post-LVAD adverse
events are being developed to add to the CORA tool (e.g.,
ischemic stroke, recurrent gastrointestinal bleeding, and right
heart failure) andwill be evaluated for performance with the same
single center, retrospective validation methodology.

CONCLUSION

By validating the model set at a single clinical site, performance
can be demonstrated for the patient population served at
that particular site and for the unique surgical and medical
management style of the clinicians. This exercise is imperative to
confirm the utility of the mortality models for clinical decision
making. Future work will be to prospectively test the model
performance in the AGHmultidisciplinary teammeeting setting,
to evaluate utility in real life decision making.
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