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In recent years, various studies have increasingly explained platelet functions not only

in their central role as a regulator in cellular hemostasis and coagulation. In fact, there

is growing evidence that under specific conditions, platelets act as a mediator between

the vascular system, hemostasis, and the immune system. Therefore, they are essential

in many processes involved in tissue remodeling and tissue reorganization after injury

or inflammatory responses. These processes include the promotion of inflammatory

processes, the contribution to innate and adaptive immune responses during bacterial

and viral infections, the modulation of angiogenesis, and the regulation of cell apoptosis

in steady-state tissue homeostasis or after tissue breakdown. All in all platelets may

contribute to the control of tissue homeostasis much more than generally assumed. This

review summarizes the current knowledge of platelets as part of the tissue remodeling

network and seeks to provide possible translational implications for clinical therapy.

Keywords: platelets, innate immunity, inflammation, infection, cytokines, leukocytes, complement, tissue

remodeling

INTRODUCTION

The role of platelets in vaso-occlusive diseases such as stroke, myocardial infarction and deep vein
thrombosis has long been known (1, 2). Recently, more emphasis has been placed on their influence
on inflammatory and immunological processes going beyond the initiation of primary hemostasis
(3). These emerging aspects include various pathologies, bacterial, and viral infections as well as
cancer metastasis and many others (4). In fact, platelets interact with a broad range of immune cells
and thereby help regulating the immune response to injury, infections, inflammatory responses
as well as regenerative mechanisms of tissue remodeling (5, 6). Platelets are among the first cells
arriving at the site of vascular lesions and organ breaches, where they interact with leukocytes,
endothelial cells, and resident or circulating cells, which contribute to tissue re-organization (7).
For instance, they can influence central processes such as inflammation, angiogenesis, and tissue
apoptosis (8). Here, we summarize these often underestimated platelet functions and discuss them
as potential targets in translational therapy in addition to the classical function of platelets as
thrombus forming cells.

INTRODUCTION TO THE INTERSECTION OF PLATELET
ACTIVATION AND TISSUE INJURY/REPAIR

The induction and regulation of hemostasis belongs to the primary functions of platelets and can be
found among the first steps of tissue repair. However, platelet activation also affects other parts of
the wound healing process. For instance, tissue injury leads to the release of signalingmolecules that
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trigger the recruitment and activation of inflammatory cells. The
following immune reaction shields the organism from invading
pathogens, regulates the removal of cell fragments, and damaged
tissue and enables tissue restructuring. Platelets also influence
this inflammatory process through a broad range of membrane
receptors and soluble mediators, which are released upon platelet
activation. The breakdown of tissue barriers during injury also
enables the invasion of microorganisms and might provoke
tissue infections. Thus, the initiation and regulation of immune
reaction against invading pathogens represents an important
step in tissue healing. Platelets have been shown to contribute
to this process. Indeed, there is growing evidence that platelets
link innate and adaptive immunity in response to infections.
Angiogenesis–the formation of new vessels–is another important
process in response to injury and influences tissue remodeling
during wound healing, inflammation, and tumor progression.
After tissue injury, new capillaries are required to provide the
wound with nutrients, oxygen, and immune cells and to remove
metabolites. Similar to the immune response, angiogenesis is
regulated by a well-orchestrated system of cell-cell-interactions
and soluble mediators. It is not surprising that platelets bearing a
wide variety of membrane receptors and cytokines, also take part
in the mediation of angiogenesis. Efficient recovery from tissue
injury is a long process of tissue reorganization and restructuring,
which is known as tissue remodeling. A growing body of evidence
shows that platelets influence this elementary step of wound
healing, thereby giving a possible explanation for the beneficial
effects of platelets and platelet rich plasma in clinical wound
therapy. In the following sections, we will give more detailed
information on the different aspects of platelet response to tissue
injury.

PLATELETS AS MEDIATORS OF
PROVISIONAL WOUND CLOSURE AFTER
INJURY

The role of platelets in primary hemostasis is an often reviewed
topic. With an average count of 150–450× 109 per liter, platelets
together with erythrocytes are the most frequent cells in the
blood circulation (9). Any endothelial lesion causes the exposure
of collagen and tissue factor from the subendothelial matrix.
Within seconds, platelets adhere to this endothelial lesion via
interaction of platelet glycoprotein Ib-IX-V-receptor (GPIb-IX-
V) with collagen-bound von Willebrand factor (vWF) (10).
Especially at high shear rates, this first rather loose contact
seems to be essential for slowing down the platelets and for
enabling the formation of more stable binding by the platelet
receptors α2β1 and GPVI (11). The latter adheres tightly to
collagen and promotes platelet activation via an FcRγ-chain
mediated mechanism (12, 13). This process leads to a rise in
cytosolic calcium levels and, consequently, to the transition
of platelet GPIIb/IIIa receptor from a low affinity into a
high affinity state (“inside-out signaling”) (14). In addition,
the platelet granule cargo containing a wide variety of highly
active mediators is released, which further amplifies platelet
activation and aggregation (15). Among these mediators are

vWF, fibrinogen, P-selectin from α-granules, and adenosine
diphosphate (ADP), calcium, and serotonin from dense granules
(16–18). Furthermore, the rise in cytosolic calcium levels
initiates a change of platelet shape, resulting in the formation
of pseudopodia, which alters the platelet surface area and its
contact with the surrounding micro-milieu (19). Finally, platelet
GPIIb/IIIa receptor binds to endothelial vitronectin, vWF and
soluble fibrinogen which cross-links the platelet to endothelial
cells and other platelets (20, 21). In a process referred to as
“outside-in signaling,” the binding of the platelet GPIIb/IIIa
integrin triggers the reorganization of the cytoskeletal system via
interaction with cytoskeletal proteins such as talin and kindlin-3
(22, 23). This is essential for sufficient platelet spreading, stable
thrombus formation, and clot retraction (24, 25). Following
activation, the platelet cyclo-oxygenase catalyzes the formation
of thromboxane A2 from arachidonic acid (26). Furthermore, in
the context of an endothelial lesion, platelets can be activated
by a wide range of factors besides subendothelial collagen.
Thrombin, produced by the simultaneously triggered coagulation
cascade, is a strong activator of platelets via the platelet protease
activated receptors (PAR) 1 and 4 and GPIbα (27). Additionally,
ADP which is released from activated platelets and damaged
tissue, further stimulates platelet activation, and aggregation by
binding to the platelet purinergic receptors P2Y1, P2Y12, and
P2X1 (19, 20, 28). When a patient receives antiplatelet therapy,
the commonly used drugs clopidogrel, ticagrelor and prasugrel
inhibit this mechanism (29–32). Another important fact is that
activated platelets express P-selectin on their surface (33). This
leads to the recruitment of leukocytes into the growing thrombus
which as a consequence, promotes tissue factor, and fibrin
deposition (34, 35). Interestingly, a recent study indicated that
leukocytes might directly enhance thrombosis by the binding of
leukocyte Macrophage-1 antigen (Mac-1) to the platelet GPIbα-
receptor (36).

PLATELETS AND INFLAMMATION

Upon activation, platelets expose a variety of membrane
receptors, and release soluble mediators that regulate
inflammation and other immune responses (2). One of the most
important receptors is P-selectin, a membrane protein stored in
platelet alpha-granules, which binds to P-selectin glycoprotein
ligand-1 (PSGL-1) on neutrophils, monocytes, and eosinophils
(37–39). Both neutrophils and monocytes are recruited to
vascular lesions by “rolling” on immobilized, adherent platelets
via P-selectin (Figure 1) (40, 41). More stable binding is
subsequently established by the interaction of leukocyte Mac-1
and platelet receptor GPIbα, junctional adhesion molecule
3 (JAM3), and intercellular adhesion molecule 2 (ICAM-2)
(42–44). This promotes recruitment of leukocytes into the
growing thrombus and seems to be essential for stable thrombus
formation (40, 45). Interestingly, the blockade of P-selectin
significantly protects against atherosclerotic plaque formation in
mice (46, 47). In the clinical Phase II trial SELECT-ACS, the P-
selectin antagonist inclacumab reduced myocardial damage after
NSTEMI (48). Furthermore, platelets enhance inflammation in
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FIGURE 1 | Interactions of platelets and immune cells in the regulation of inflammation. Platelets express membrane receptors and produce soluble mediators such

as chemokines which regulate the inflammatory response of immune cells. The interactions include monocytes, T-cells, neutrophils, and dendritic cells. DC, dendritic

cells; EC, endothelial cells; ICAM-1, intercellular adhesion molecule 1; IL 6/8, interleukin 6/8; MCP1, monocyte chemotactic protein 1; TF, tissue factor; JAM C,

junctional adhesion molecule C; PF4, platelet factor 4; PSGL-1, P-selectin glycoprotein ligand-1; RANTES, chemokine ligand 5 (CCL5); TNF α, tumor necrosis factor

α; VCAM-1, vascular cell adhesion molecule 1.

severe asthma via P-selectin mediated recruitment of eosinophils
to the lung (49). Another important mediator of the immune
response is platelet CD40 ligand (CD40L), which is released
both in a membrane-bound and a soluble form (50, 51). Its
receptor, CD40 can be found on endothelial cells, monocytes,
lymphocytes, and dendritic cells (DCs) (52). In monocytes,
the binding of platelet CD40L stimulates the expression of
tissue factor which activates the coagulation cascade (Figure 1)
(53, 54). Furthermore, in endothelial cells, platelet CD40L
upregulates the expression of the adhesion receptors E-Selectin,
vascular cell adhesion molecule 1 (VCAM-1), and ICAM-1
(52) as well as the secretion of proinflammatory cytokines such
as interleukin 6 (IL-6), IL-8 and monocyte chemoattractant
protein-1 (MCP-1) (50, 55). Platelet released soluble CD40L
seems to play an essential role for stable thrombus formation
via interaction with platelet GPIIb/IIIa receptor (56). However,
deficiency of platelet CD40L led to a significant reduction of
atherosclerotic plaque formation in ApoE-/- mice, which could
be explained by a CD40L-dependent dysregulation of T cell
hemostasis (57). Apart from the membrane bound mediators,
platelets secrete a broad range of cytokines (Figure 1). It was

shown that upon activation, platelets synthesize and secrete
IL-1β, a highly potent pro-inflammatory cytokine (58, 59). IL-1β
upregulates both expression of adhesion receptors and secretion
of IL-6 and IL-8 in endothelial cells and increases nitric oxide
(NO) induced vascular permeability (60–62). However, other
studies suggest that IL-1β secretion in platelet extracts results
from contaminating leukocytes (63). Another platelet chemokine
is Regulated And Normal T cell Expressed and Secreted
(RANTES), which is usually released by cytotoxic T cells (64).
It was demonstrated that platelet derived RANTES binds to
endothelial cells and promotes the adhesion of monocytes to
inflamed endothelium and atherosclerotic plaques (Figure 1)
(65, 66). Furthermore, the same group demonstrated that
blockade of RANTES led to reduced neointimal formation after
vascular lesion in ApoE-/- mice, thereby further indicating
a role of platelet-derived RANTES in the development of
atherosclerosis (67). Interestingly, platelet RANTES was shown
to form heteromers with neutrophil-derived human neutrophil
peptide 1 (HNP-1) and platelet factor 4 (PF4), which both
enhance monocyte attraction (68, 69). Recently, Machlus et al.
showed that platelet RANTES induced proplatelet production
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in megakaryocytes—this might be an explanation for the
transient rise in platelet counts during inflammation and
infection (70). When referring to platelet chemokines, PF4
has to be mentioned. In 1981, Deuel et al. discovered that
PF4 served as a chemoattractant both for neutrophils and
monocytes (71). In following studies, however, effects of PF4
on leukocyte chemotaxis could not be underscored (72, 73). In
neutrophils, PF4 enhances granule secretion in the presence of
tumor necrosis factor α (TNFα) (72). Other functions of PF4
include inhibition of apoptosis in monocytes and stimulation of
monocytes differentiation into macrophages (74). In addition,
it stimulates monocyte oxidative burst and phagocytosis (75).
As mentioned above, platelet PF4 and RANTES heteromeric
interactions lead to an increased binding of monocytes to
endothelial cells. Interestingly, it was demonstrated that a
blockade of this interaction by the peptide inhibitor MKEY led to
reduced atherosclerotic plaque formation in hyperlipidemic mice
without targeting any immunological response to infections (76).
A recent study indicates that MKEY also significantly reduces
infarct size in strokes and improves neurological outcome (77).

PLATELETS AND INFECTIONS

There is a growing body of evidence that platelets not only
influence the process of sterile thrombo-inflammation in vascular
lesions, but also link innate and adaptive immunity in response
to infections (7). The platelet arsenal ranges from direct killing of
bacteria to enhancement of immune cell differentiation (6, 78).
For instance, platelets closely interact with neutrophils, which is
especially important for the formation of neutrophil extracellular
traps (NET). NETs consist of DNA, histones and neutrophilic
proteins and effectively trap and eliminate bacteria and fungi
(79, 80). Clark et al. found that platelets recognize bacterial
lipopolysaccharides (LPS) via a toll like receptor 4 (TLR 4)
mediatedmechanism, and as a result, stimulatedNET production
in neutrophils (Figure 2) (81). In a further study, it could be
established that platelets contain human β1-defensins, which
can trigger NET formation by neutrophils and inhibit bacterial
growth (82). Platelet P-selectin was furthermore shown to play
a significant role in platelet-dependent NET formation (83).
Moreover, platelets express a ligand for leukocyte Triggering
Receptor Expressed On Myeloid Cells 1 (TREM-1), a receptor
which is upregulated in the presence of bacterial structures, and
enhance TREM-1-induced respiratory burst and IL-8 secretion
in neutrophils (84). T-lymphocytes represent a central cell type
involved in the modulation of immune responses by platelets. In
a model of acute viral hepatitis, platelets were shown to trigger
cytotoxic T-cell response, thereby contributing to liver injury
(Figure 2) (85) Elzey et al. demonstrated that the interaction
of platelets and cytotoxic T-cells was dependent on platelet
CD154 (86, 87). A further study using a model of chronic
viral hepatitis showed that platelet derived serotonin significantly
aggravated liver cell damage by reducing sinusoidal blood flow
and impairing cytotoxic T-cell recruitment (88). Interestingly,
serotonin can also activate T-cells via their 5-HT-receptors (89).
Moreover, RANTES, which is secreted by platelets, seems to

play an essential role in cytotoxic T-cell function during viral
infections (90). In the last years, many studies have pointed
out that PF4 (please refer also to the chapter platelets and
inflammation) has a considerable effect in distinct models of
infection (91). For instance, platelet released PF4 was proven
to bind red blood cells infected with the malaria parasite
Plasmodium falciparum and helps to eliminate the intracellular
parasite (92, 93). Indeed, it was found that infected red blood
cells were able to take up platelet PF4 through the Duffy antigen
receptor for chemokines (DARC). Inside the erythrocyte, PF4 led
to the destruction of the parasite digestive vacuolar membrane,
thereby enabling its rapid elimination (94). However, some
scientists have challenged these findings, as they were neither
able to reproduce the inhibition of parasite growth by platelets in
vitro, nor did they find an effect of platelet depletion on parasite
blood levels (95). In contrast, another recent study examining
the blood of naturally infected malaria patients demonstrated
an intraerythrocytic accumulation of PF4 leading to parasite
elimination as well as a platelet-dependent reduction of parasite
growth in vitro. According to the study, between 5 and 20% of
parasites in the bloodstream of malaria patients are killed by
platelets (96). The contradicting results might be explained by
the use of different malaria strains and parasite concentrations,
which could be clarified by further, more standardized studies.
Apart from its role in malaria, PF4 binds to a variety of
bacterial strains thereby exposing them as a target of anti-PF4-
antibodies, which leads to an enhanced phagocytosis by immune
cells (Figure 2) (97). Recently, it was shown that binding of
PF4 and anti-PF4-antibodies alone may kill bacterial cells (98).
Interestingly, in amodel of cardiac transplantation, PF4 regulated
the expansion of T-cell subtype Th17, which indicated another
role of platelet PF4 in the modulation of adaptive immunity
(99). However, platelets can also exert a direct microbicidal effect
on invading pathogens (Figure 2). In their granules, they store
the proteins thrombocidin 1 and 2, which are both able to
kill a broad range of bacteria (100, 101). A recently discovered
link between platelets and the immune system consists of the
interaction of platelets with the complement system (102–104).
Thus, platelets were shown to bind C3b, one of the most central
elements in the complement system, via P-selectin and to trigger
the formation of anaphylatoxin C5a and the membrane attack
complex (MAC), which is essential for lysis of pathogen cells
(105). In addition, Verschoor et al. found that platelets adhered
to bacteria opsonized by C3 via platelet GPIbα-receptor and
directed them to CD8α+ dendritic cells in the spleen (34).
Interestingly, platelet depletion led to a significantly aggravated
bacterial load and reduced survival time in a model of systemic S.
aureus infection (106).

However, a recent study indicated that platelets were also
able to trigger an overshooting reaction to pathogens which led
to a cascade of systemic shock and thrombocytopenia (107).
Platelet Fcγ receptor IIA (FcγRIIA) has been identified as the
major mediator of this process. Previous studies have already
demonstrated that influenza virus H1N1 and several gram-
positive bacteria such as Staphylococcus aureus or Streptococcus
pneumoniae formed immune complexes with IgG antibodies,
which bound to platelet FcγRIIA and thereby induced platelet
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FIGURE 2 | Platelets in bacterial and viral infections. The role of platelets in infections may be underestimated. Platelets were shown to have a significant part in

infectious diseases such as viral hepatitis, malaria, and listeriosis. Bct, bacteria; CD40L, cluster of differentiation 40 ligand; C3, complement component 3; cT-Cell,

cytotoxic T-cell; DC, dendritic cell; GPIbα, glycoprotein Ibα; 5HT-R, 5-hydroxytryptamine-receptor; IL8, interleukin 8; LPS, lipopoly-saccharides; MAC, membrane

attack complex; PF4, platelet factor 4; P-sel, P-selectin; RBC, red blood cell; ROS, reactive oxygen species; Ser, serotonin; Tcd 1/2, thrombocidin 1/2; TLR4, toll like

receptor 4; TREM1, triggering receptor expressed on myeloid cells 1.

activation (108, 109). Recent findings showed that the interaction
of immune complexes with FcγRIIA stimulated platelet release
of serotonin, a shock mediator initiating vasodilatation, vessel
leakage and finally a systemic shock reaction. Furthermore,
FcγRIIA activation led to sequestration of platelets in the lungs
and the brain, which could explain transient thrombocytopenia
in immune-complex induced systemic inflammation (107). Thus,
platelets might be a possible target in the prevention and
treatment of immune-complex triggered shock reactions.

In conclusion, these insights obtained in recent years
shed more light onto the role of platelets in infections and
inflammation and delineate a more complete picture of the
various platelet functions beyond thrombosis.

PLATELETS AND ANGIOGENESIS

Many studies have indicated that platelets play an important
role in the induction and regulation of angiogenesis after
tissue injury (110). Indeed, platelet granules contain both

pro- and antiangiogenic factors (Figure 3) (110, 111). It has
been suggested that these angiogenic factors are sorted into
different subpopulations of platelet α-granules according to their
function, and that these distinct factors can be released in an
agonist-dependent manner (112, 113). For instance, Italiano
et al. indicated that ADP stimulated platelets secreted the
proangiogenic vascular endothelial growth factor (VEGF) while
thromboxane stimulation led to the release of antiangiogenic
endostatin (114). In other studies, neither a functional packaging
of angiogenic factors nor a selective release could be detected
(115, 116).

Platelets contain a variety of factors which are essential
for the stimulation of angiogenesis, such as VEGF, basic
fibroblast growth factor (bFGF), epidermal growth factor (EGF),
sphingosine-1-phosphate (S1P), angiopoietin-1 (Ang1), and
platelet-derived endothelial growth factor (PD-ECGF; Figure 3)
(117–122).

In the early stage of angiogenesis, during vessel sprouting,
VEGF is the most important among them. Indeed, endothelial
cells are activated by the binding of VEGF to their VEGF
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FIGURE 3 | Platelets as regulators of angiogenesis. Platelets are able to both stimulate and inhibit the process of angiogenesis due to a variety of mediators stored in

their granules. Furthermore, platelets are suggested to recruit circulating regenerative cells to the site of vascular lesion supported by soluble mediators. How these

cells then contribute to tissue remodeling is still a matter of debate. BM-PC, bone marrow derived progenitor cells; bFGF, basic fibroblast growth factor, EC,

endothelial cell; EGF, epidermal growth factor; HGF, hepatocyte growth factor; MMPs, matrix metalloproteinases; PDGF, platelet derived growth factor; PF4, platelet

factor 4; P-sel, P-selectin; PSGL1, P-selectin glycoprotein ligand-1; PTL, platelet; S1P, sphingosine-1-phosphate; SDF-1, stromal cell-derived factor 1; TIMPs, tissue

inhibitors of matrix metalloproteinases; TSP-1, thrombospondin 1; VEGF, vascular endothelial growth factor.

receptor 2 (VEGFR 2) and develop into “tip cells,” motile cells
exposing filopodia that promote vessel sprouting along a VEGF
gradient (123). The tip cells are followed by endothelial stalk
cells, which proliferate and establish a stable vessel lumen (124).
Platelets are a source of VEGF for this process. It has been
shown previously that platelets stored VEGF and released it
upon thrombin activation. In support of these data, Arisato et al.
found significant levels of VEGF in the fibrin net after thrombus
formation (117). Another recent study suggested that platelet
VEGF release and concomitant angiogenesis promotion could be
suppressed by treatment with Tamoxifen, an estrogen receptor
modulator used for breast cancer therapy (125).

Apart from VEGF, bFGF is another essential factor for the
induction of angiogenesis which can be found in platelets. When
co-cultured with platelets in vitro, endothelial cells showed both
prolonged survival and enhanced proliferation. This influence
has been reduced by antibody blockade of bFGF alone, while
double inhibition of bFGF, and VEGF almost abrogated it (118).

Some studies indicated that bFGF exerted its proangiogenic
effect through stimulation of VEGF release from endothelial cells
(126). Most recent antiangiogenic therapies therefore intend to
synergistically block both factors (127).

During early angiogenesis, chemoattractant factors are key
elements for the formation and guiding of new vessels. Some of
them can be also found in platelets, for instance S1P and PD-
ECGF. Upon activation, platelets release S1P from their granules,
which triggered a strong chemotactic response in endothelial
cells in vitro (120, 128). However, in an in vivo cornea model,
only the combination of S1P with bFGF, but not S1P injection
alone showed a significant proangiogenic effect. Therefore, S1P
rather appears to have a complementary role in angiogenesis
stimulation. Another platelet-released chemoattractant factor is
thymidine phosphorylase (TP), an enzyme first isolated from
human amniochorion, which is identical with PD-ECGF (122,
129, 130). PD-ECGF exerted chemotactic effects on endothelial
cells in vitro and promoted angiogenesis in vivo (131, 132).
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The angiogenic effects of PD-ECGF could be explained by
the enzymatic release of the endothelial-cell chemoattractant
2-deoxy-d-ribose (132, 133). In addition, high levels of PD-
ECGF were also associated with an increased secretion of
angiogenic factors such as IL-8 and bFGF (134). Catalytic
production of deoxyribose-1-phosphate (dRP) from thymidine
has been identified as another mechanism of PD-ECGF-
dependent induction of angiogenesis. dRP led to an upregulation
of integrin αvβ3 in endothelial cells and thereby stimulated cell
migration in vitro as well as vessel formation in vivo (135). Apart
from platelets, enhanced expression of PD-ECGF can also be
found in solid tumors, such as breast carcinoma, non-small-cell
lung cancer, renal cell carcinoma, and uterine cervical cancers
and has been associated with increased tumor growth and higher
tumor vascularization (136–139). A recent study shed light to a
yet unknown function of PD-ECGF, namely that it could also
activate platelets and contributed to thrombosis, which made it
a possible target for novel antithrombotic therapies (140).

While platelet PD-ECGF and S1P contribute to chemotactic
migration of endothelial cells, matrix metalloproteases (MMP 1,
2, and 9) facilitate this migratory process through degradation
of inhibiting structures, such as the basement membrane and
extracellular matrix components. Platelets have been also found
to stimulate MMPs release from leukocytes and to secrete several
MMPs such as MMP-1, MMP-2, and MMP-14 by themselves,
thereby further promoting endothelial cell migration (141, 142).

In the later stages of angiogenesis, the stabilization of the
newly formed vessels becomes more important. Thrombin-
activated platelets release Ang1, an angiogenic factor which
enhances vascular stability and prevents vessel leakage (121).
Since vascular growth initiated by VEGF often leads to instable
and leaky vessels, the effects of Ang1 are needed to promote
vascular maturation (143). A recent study found that Ang1
also bound and blocked thrombomodulin, a central coagulation
inhibitor (144). Although no differences in tail bleeding times
could be observed between wild type and Ang1 knockout
mice, this might indicate a possible role for angiogenic factors
in hemostasis. Beyond the effects of Ang1, the proliferation,
and migration of pericytes, e.g., smooth muscle cells and
fibroblasts, to the sprout is indispensable for the stabilization
of any developing vessel. Platelets support pericyte recruitment
by secretion of platelet-derived growth factor BB (PDGF-
BB), a strong mitogen, and chemoattractant for a variety of
mesenchymal cells (145, 146). However, the effects of PDGF-
BB also depend on which isoform of the PDGF receptors it is
binding to.While PDGF receptor β induces mesenchymal cell
proliferation, ligation to PDGF receptor α has been found to
inhibit the pro-angiogenic effects of bFGF both in vitro and
in vivo (147). This indicates that PDGF has a dual role in
the regulation of angiogenesis and that differential receptor
expression determines the outcome of PDGF signaling.

Apart from their stimulatory effect on endothelial and
mesenchymal cell proliferation and migration, platelets also
regulate angiogenesis through the recruitment of endothelial
progenitor cells and stem cells. For instance, platelets bind
to CD34+-stem cells via expression of stromal-derived factor
1 (SDF-1) and support their differentiation into endothelial

progenitor cells (Figure 3) (111). Under hypoxic conditions,
platelets recruit bone marrow derived cells to the site of vascular
proliferation and thereby stimulate angiogenesis (148).

Angiogenesis, as many other physiologic processes, depends
on a balance between stimulatory and inhibitory signals. In
the case of an overshooting stimulation, such as in tumor
angiogenesis, an excessive, “unhealthy” growth of vascular
structures leads to the formation of unstable, often immature
blood vessels (149). Platelets store a broad range of inhibitors
of angiogenesis, among them thrombospondin-1 (TSP-1),
endostatin and PF4, which block the interaction of proangiogenic
VEGF with endothelial cells (110, 150, 151). These angiogenesis-
restricting factors might be especially important for the
regulation of tumor progression. For instance, platelet-released
TSP-1 has been found to suppress tumor growth in mice
inoculated with lung carcinoma cells through the inhibition
of tumor angiogenesis (150). Other studies suggested that
platelets might be able to scavenge angiogenic factors in tumor
environment. Platelets frommice bearing liposarcoma contained
higher levels of angiogenesis modulators such as VEGF and
bFGF than healthy animals (152). Further studies have to clarify
whether this sequestration of angiogenesis factors shows an effect
on tumor vessel growth.

Indeed, many efforts have been made to elucidate the role
of platelets in tumor angiogenesis (153). It is well established
that tumor cells activate platelets and the coagulation cascade
through the production of various procoagulant factors, the
most important among them being tissue factor (TF) (154).
One consequence of this TF-mediated platelet activation is
an increased rate of thrombotic events and thrombophlebitis
in cancer patients, clinically known as Trousseau syndrome
(155, 156). Upon activation, platelets release a variety of pro-
angiogenic factors such as VEGF and bFGF, which contribute to
tumor angiogenesis. Indeed, the exposure of platelets to breast
cancer cells triggered the secretion of VEGF and promoted
increased vascular growth in a capillary tube formation assay
(114). It might therefore be an interesting approach to modulate
platelet activation and angiogenic factor secretion in cancer
treatment. There is increasing evidence in the literature on
the beneficial effects of both anticoagulation and antiplatelet
therapies on tumor angiogenesis. Treatments with heparin,
fondaparinux or PAR1 antagonists significantly reduced platelet
release of VEGF in the presence of tumor cells and almost
totally diminished platelet proangiogenic activity (157). The
common COX-inhibitor aspirin has also been suggested to
be a potent inhibitor of platelet-induced angiogenesis. After
pre-treatment with aspirin, platelet proangiogenic effect in
response to thrombin has been almost completely blocked (158).
If platelet-mediated angiogenesis is inhibited by antiplatelet
therapy, this might also have implications for the treatment of
other diseases apart from cancer, for instance cardiovascular
diseases. However, in clinical therapy, it appears difficult to
separate the beneficial antithrombotic effect of aspirin from its
potential influence on angiogenesis, which limits therapeutic
consequences.

In general, most forms of wound healing after tissue injury
are affected by platelet induced angiogenesis. While the relative
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importance of the different angiogenic factors is yet to be
clarified, the overall influence of platelets on angiogenesis
seems to be beneficial for efficient tissue regeneration. In a
cornea angiogenesis model, thromobocytopenic mice showed
fewer vessels, and higher vessel fragility compared with the
control animals. Increased vessel fragility has also been found
in thrombocytopenic mice after s.c. matrigel implantation
(159). Therefore, platelets or platelet microparticles (PMP),
small vesicles shed from platelet plasma membrane, could
have a therapeutic potential in the treatment of tissue
injuries, especially in cardiovascular diseases. There is evidence
that injection of PMPs into chronic ischemic myocardium
promotes capillary growth and new vessel formation in
the ischemic tissue (160). In line with this, another group
demonstrated increased vessel density and improved left
ventricular function in pigs which received an intramyocardial
injection of platelet rich plasma (PRP) and anti-inflammatory
factors after myocardial infarction (161). Injection of PRP
might also be beneficial in other fields. In mice suffering
from open abdominal wounds, administration of platelet
rich plasma gel significantly improved neovascularization,
and wound healing (162). Further studies have to evaluate
the safety and sustainability of these promising therapeutic
approaches.

Apart from the use of platelets in regenerative medicine,
platelet angiogenic factor release might also be differentially
targeted in the prevention of ischemic diseases. Recently, it was
shown that VEGF and bFGF, but not PDGF-BB could be held
accountable for the formation of immature and leaky vessels in
arteriosclerotic plaques of rabbits on a high cholesterol diet (163).
Since several studies have indicated that the release of VEGF from
platelets was triggered by ADP-dependent platelet activation,
the use of ADP receptor inhibitors might have beneficial effects
on the prevention of instable arteriosclerotic plaques. Further
research will be needed to clarify this topic.

EVIDENCE FOR PLATELETS AS
MEDIATORS OF TISSUE REMODELING

The role of platelets in wound healing is well established.
In clinical therapy, platelet rich plasma has become an
essential treatment of acute wounds, non-healing ulcers and
orthopedic diseases (164–166). Tissue remodeling, which means
the reorganization and restructuring of tissue, is an important
step of wound healing. There is growing evidence that platelets
are also involved in this process. Indeed, Schleicher et al. were
able to demonstrate that activated platelets expressed FAS ligand,
an apoptosis inducing ligand usually present on cytotoxic T-
cells, and that blocking this platelet ligand or platelet depletion
resulted in reduced apoptosis in models of retinal inflammation
and stroke (167). Interestingly, Langer et al. reported enhanced
apoptosis of dendritic cells after coincubation with platelets
(168). Another study documented increased endothelial cell
apoptosis in the presence of activated platelets (169). In a sepsis
model, platelets induced apoptosis in splenocytes in a contact-
dependent manner, which could be blocked by inhibition of

platelet GPIIb/IIIa receptor (170). However, the role of platelets
in apoptosis is multidimensional, as platelet cytokines such as
S1P or PDGF show strong antiapoptotic effects, for instance
providing survival of fibroblasts and human embryonic stem
cells (171, 172). A second, essential platelet function in tissue
remodeling is the interaction with progenitor cells. Massberg
et al. indicated that platelets recruited bone marrow derived
progenitor cells to a vascular injury site via secretion of SDF-
1 and the P-selectin/PSGL-axis (173) SDF-1 was also shown to
enhance the recruitment of smooth muscle cell progenitor cells
(174) and after myocardial infarction, to augment migration of
cardiac stem cells to the myocardium (175, 176). As reported
in a recent study, platelet derived SDF-1 promoted alveolar
regeneration after lobectomy of the lung (177), while Langer
et al. found that platelet bFGF supported mesenchymal stem
cell recruitment and integration into an endothelial monolayer
in vitro (178). Other data suggest that apoptotic myocardial
cells induce migration of mesenchymal stem cells via release of
hepatocyte growth factor (HGF) and that this process is inhibited
by platelet expression of the inflammatory cytokine highmobility
group box 1 (HMGB1) (179, 180). Therefore, platelet-progenitor
cell interactions seem to be complex and multidimensional.
Another currently discovered platelet function raises interesting
questions about the role of platelets in the stabilization of vascular
integrity. Two platelet receptors, GPVI and C-type lectin−2
(CLEC-2) are associated with immunoreceptor tyrosine-based
activation motive (ITAM) mediated signaling (181). Binding of
the respective ligands collagen or podoplanin to these receptors
leads to the phosphorylation of the ITAM tyrosine residues,
which triggers an intracellular signaling cascade and finally
results in platelet activation (182). It was shown that both
deficiencies of GPVI or CLEC-2 expression and the blockade
of the intracellular ITAM signaling pathway significantly
increased vascular permeability during inflammation. Thus,
ITAM-mediated platelet activation seems to be essential for
the maintenance of vascular integrity under inflammatory
conditions (183). In line with that, platelet-depletion resulted in
hemorrhage in different models of inflammation but not in non-
inflammatory control groups (184). A recent study suggested
that neutrophil invasion triggered bleeding in thrombocytopenic
mice, whereas GPVI-mediated platelet recruitment prevented
this complication (185). Platelet CLEC2 receptor also stabilizes
the vascular integrity. Current data indicate that it also exerts
an anti-inflammatory effect in sepsis and promotes thrombus
development in hemostasis, which makes CLEC2 an interesting
target for antithrombotic therapy (186, 187).

Platelets have been also shown to affect specific organ
regeneration after injury. In the liver, hepatocyte proliferation
was markedly reduced in thrombocytopenic mice after 70%
hepatectomy, but could be completely restored by injection of
serotonin receptor agonists. Concomitantly, mice lacking platelet
serotonin also presented with reduced liver regeneration markers
(188). In a model of ischemic/reperfusion hepatic injury, platelet
depletion led to increased liver cell necrosis after 7 days while
absence of platelet serotonin significantly diminished hepatocyte
proliferation (189). Another beneficial effect of platelet serotonin
has been demonstrated in a study of regeneration in the
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older liver. A serotonin agonist stimulated hepato-sinusoidal
blood flow and hepatocyte proliferation through the enhanced
expression of proangiogenic VEGF (190). Platelets also release
S1P, which suppressed apoptosis in human liver sinusoidal
endothelial cells in vitro and promoted as well the release of
VEGF (191). In a recent study, platelets were demonstrated
to activate liver sinusoidal endothelial cells via SDF-1 and to
further upregulate this process through VEGF-mediated myeloid
cell recruitment (192). Although this mechanism contributed
to liver regeneration, platelet derived SDF-1 also played a role
in the pathogenesis of liver fibrosis. In chronic injury, SDF-1
receptor expression switched from the pro-regenerative C-X-C
chemokine receptor type 7 (CXCR7) to the pro-fibrotic CXCR4,
thereby initiating liver fibrosis (193). Platelets also regulate organ
remodeling after lung injury. Similarly to liver regeneration,
platelet released SDF-1 plays a pivotal role in this process. A
recent study found that after lobectomy, platelet SDF-1 bound
to CXCR4 and 7 on pulmonary capillary endothelial cells, which
resulted in the secretion of mediators that stimulated alveolar
regeneration (177). After bleomycin-induced lung injury, SDF-
1/CXCR4 axis mediated stem cell recruitment from the bone
marrow to the lungs and contributed to lung fibrosis (194).
Platelets are also involved in inflammatory airway remodeling
in chronic asthma, namely, platelet depletion significantly
decreased subepithelial fibrosis and smooth muscle thickening
in the airway wall (195). This is consistent with the results of a
study on platelet induced fibrosis, which indicated that platelet
released serotonin stimulates extracellular matrix production
in fibroblasts (196). These effects can also be found in the
heart tissue after myocardial infarction. A recent study showed
that high levels of platelet activation after ST-segment elevation
myocardial infarction (STEMI) predicted the risk of adverse
left ventricular remodeling (197). Patients with aortic stenosis
showed elevated serotonin blood levels which were strongly
correlated with left ventricular hypertrophy. As platelets are
the major source of serotonin outside the CNS, this might
suggest a causal role of platelet activation and serotonin release
in myocardial remodeling. Another platelet derived mediator
in cardiac fibrosis and hypertrophy is transforming growth
factor beta 1(TGF-β1), which is stored, and released from α-
granules upon platelet activation. After surgical transverse aortic
constriction (TAC), mice specifically lacking platelet TGF-β1
showed a significant reduction of cardiac hypertrophy and
fibrosis as well as better cardiac function than wild type animals
(198). At the same time, mice deficient in platelet activating
receptor P2Y12 showed reduced cardiac fibrosis after TAC (199).
Several studies implicated a protective effect of platelets on
heart function after injury. By using a TAC model, Wu et al.
found that perivascular coronary fibrosis and smooth muscle
proliferation was significantly enhanced after platelet depletion
(200). However, this response might also be a result of a
reactive rise in platelet counts following the treatment. Another
study examined the effects of platelet releasates on cardiomyocte
survival after ischemic injury in vitro and discovered a protective
effect of platelet SDF-1α and TGF-β1 (201).

In summary, there is striking evidence that platelets contribute
to tissue regeneration and remodeling after injury in different

organs. Indeed, platelet cytokines and mediators regulate pivotal
elements of tissue remodeling such as angiogenesis, apoptosis,
stem cell recruitment and connective tissue production. While
in angiogenesis, platelets show an overall angiogenic effect which
might be useful for treatment of ischemic injury, their role
in apoptosis has not been well established yet. Future studies
have to clarify whether platelet induced apoptosis contributes to
the healing process or on the contrary, aggravates cell damage.
With respect to stem cell recruitment, several studies have
outlined the beneficial effects of platelets on wound healing
and vascular formation through SDF-1 and bFGF secretion
(111, 202). Furthermore, platelet mediators such as SDF-1 and
TGF-β1 stimulate extracellular matrix formation and connective
tissue restructuring. While this represents a necessary step
in tissue remodeling, it can also lead to tissue fibrosis and
hypertrophy. Both in acute liver and lung injury, platelet
cytokines contributed to the restoration of tissue homeostasis.
However, in case of chronic injury, platelet activation provoked
a pivotal stimulation of fibrosis and after ischemic heart
injury, activated platelets have been associated with enhanced
ventricular hypertrophy and fibrosis. Despite these controversial
results, platelet rich plasma is a well-established therapy to
treat chronic wounds and ulcers. The effects of the platelets
on tissue remodeling depend on the affected organ which
needs to be considered when developing new therapeutic
targets.

CONCLUSIONS

In conclusion, platelets are mediators between various
closely related processes such as inflammation-immunity,
inflammation-angiogenesis, and hemostasis-inflammation.

Consequently, platelets seem to be a central part of
the network counteracting tissue breakdown and pathogen
invasion. There is increasig evidence for their role in tissue
remodeling ranging from the induction of apoptosis and
the recruitment of progenitor cells to the maintenance of
vascular integrity. A broad range of basic research, translational
approaches and clinical studies are still required to improve
our understanding about the underlying mechanisms as to
how platelets modulate the progression of and the regeneration
from diseases, in order to use this knowledge for targeted
treatment.
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